Low Cost Wireless Internet Access for Rural Areas using Tethered Aerostats

P. Bilaye, V. N. Gawande, U. B. Desai[†], Senior Member IEEE, A. Raina, and R. S. Pant

Abstract— ICT plays an indispensable role in the overall development of rural areas, especially in developing economies. There is an urgent need to bring the rural areas into the mainstream by providing them last mile connectivity, especially in during natural disasters and calamities, when other modes of communications are severely hampered. This paper describes a low cost innovative solution for providing internet access to rural areas using tethered aerostats, which can easily be relocated.

Index Terms—ICT, Internet, P2MP, Rural areas, Tethered Aerostat, Wireless Communication

I. INTRODUCTION

Lack of infrastructure in rural areas and high installation costs as compared to urban areas are the two major hindrances in building a wireless network which would cater to needs of rural community, especially when other modes of communication are disrupted. The objective of this project was to develop an easily re-locatable Wi-Fi based low cost communication system in rural areas, for knowledge sharing and community participation. The feasibility of the system was established through experiments and a field trial. Large scale deployment of the developed system can play a major role in bridging the gap between distant communities which are beyond the range of present communication towers.

Wireless bridges can provide connectivity up to 10 Km. The conventional approach is to mount antennae (typically directional) on a high tower which is then connected to the wireless bridge. These antennae look at client side antennae through line of sight (LOS) connectivity for internet access. It is the cost of these high towers (50 to 100 meters) at the base station which makes deployment of such wireless networks

Manuscript received June 15, 2008. This work was supported in part by One World South Asia Organisation through EGIFT Fellowship under Grant BS123456 (sponsor and financial support acknowledgment goes here).

U. B. Desai, is Professor with Department of Electrical Engineering, Indian Institute of Technology - Bombay, Mumbai, 400076, India (phone: 91-22-2576-7414; fax: 91-22-2572-3707; email: <u>ubdesai@ee.iitb.ac.in</u>).

R. S. Pant, is Associate Professor with Department of Aerospace Engineering, IIT – Bombay (email: rkpant@aero.iitb.ac.in).

P. Bilaye, is Post-graduate student with Department of Electrical Engineering, IIT – Bombay (e-mail: prakhil.bilaye@gmail.com).

V. N. Gawande, is Post-graduate student with Department of Electrical Engineering, IIT – Bombay (e-mail: vinitng@gmail.com).

A. Raina, is Project Engineer with Department of Aerospace Engineering, IIT – Bombay (email: amool@aero.iitb.ac.in)

expensive. Further, these towers, once erected, are not relocatable to other areas where communication needs may arise.

This paper describes an innovative concept using tethered Aerostats as a platform for raising wireless communication payload, which overcomes the two main limitations of high towers listed above. Tethered aerostats are an outcome of Lighter-Than-Air Technology, where static lift production mechanism is based on the Archimedes Principle [1]. An aerostat does not require any additional energy to reach to a certain height. For a given volume of envelope that contains the lighter than air gas, displaced weight of air creates a vertically upward buoyant force that leads to the lift. One or more Ballonets are provided inside the envelope to adjust the buoyancy. The envelope volume is large enough to ensure that the displaced air should be able to produce sufficient lift, under the entire range of operating conditions, to balance all the weight groups of the aerostat system, viz., envelope, fin, nose battens, ballonets, pivot mechanism, payload, tether, recovery system, gas filling ports, and safety valves.

Aerostats are used all over the globe as a platform to house high-resolution sensors for applications such as aerial surveillance, regional atmospheric data collection and balloonbarrage system. Depending on the payload, range of surveillance, and operational time, these aerostats can be launched to any desired altitude from a few meters above ground level to as high as 5000 m above ground level. Of course, the payload carrying capacity of an aerostat is reduced as the operational height is increased.

Aerostats can easily be deployed at high altitudes, ensuring disturbance free LOS for the communications payload. Once they are deployed, there is very little recurring additional expenditure to keep them afloat, except in the form of small amounts of lighter-than-air gas, just to top-up for the leakages through the fabric over a period of time. Due to its aerodynamic shape as well as provision of fins, an aerostat can remain fairly steady even in strong winds and hence can provide stable line of sight connectivity. An omni-directional antenna mounted below the aerostat, leads to a relaxation in the antenna direction alignment requirement.

A conceptual sketch of proposed communication system is shown in Fig. 1. The PoE cable carries data as well as power from ground to the router box mounted below the aerostat. The receiver antenna at client location which may be in the range of 10 to 30 km from the aerostat spot location can easily receive these signals.

Section II of the paper focuses on the Networking part of the proposed model. Section III describes the procedure for arriving at the sizing of Aerostat. Experimental details and field trials are included in Section IV. Detailed Cost Analysis is provided in Section V followed by Conclusions in Section VI.

II. WIRELESS COMMUNICATION

Wireless infrastructure can be built for very little cost compared to traditional wired alternatives. Using inexpensive off-the-shelf equipment, high speed data networks can be built for connecting remote areas together. The primary technology used for building low-cost wireless networks belongs to 802.11x family of protocols, also known as Wi-Fi [2].

A. IEEE 802.11b Standard

802.11b [3] uses the ISM (Industrial Scientific Medical) band from 2.400 to 2.495GHz. Due to the ubiquity of equipment and unlicensed nature of the 2.4 GHz ISM band, our work is focused on building a network using 802.11b. It makes use of Direct Sequence Spread Spectrum (DSSS) modulation and has a maximum rate of 11 Mbps, with actual usable data speeds up to about 5 Mbps. 802.11b can be used in a point-to-multipoint configuration, wherein an access point communicates via an omni-directional antenna with one or more clients that are located in the neighborhood of the access point. Typical indoor range is 30 m (100 ft) at 11 Mbit/s and 90 m (300 ft) at 1 Mbit/s. The overall bandwidth is dynamically shared across all the users on a channel depending on the individual demands. The protocol with few modifications can also be used to achieve a range of several kilometers by using high-gain directional antennas when line of sight connectivity is available in fixed point-to-point arrangements.

B. Building a 802.11b wireless network

-

We are using Mikrotik's RB/KAO [4] outdoor router packages at the base station and client end. The router board consists of a 266 MHz processor with 64MB RAM. 802.11b base station device is operated in master mode (also called AP or infrastructure mode). The wireless card creates a network with a specified SSID (Service Set Identifier) and channel, and offers network services on it.

TABLE I WIRELESS ROUTER SPECIFICATIONS			
WLAN support	Two 802.11 a+b+g Wireless miniPCI cards		
Processor RAM	266 MHz NSC SC1100 system on a chip CPU (Intel Pentium MMX architecture) 64MB SDRAM SoDIMM		
Ethernet Ports	Two 10/100 Mbps using the NSC DP83816		
Flash BIOS	2 Mbit on board		
Flash Memory	Compact Flash 64MB		
USB connector	1.0 version		
PoE Standard	802.3af		
Operating Temp.	-20°C to +70°C		
Weight	209 g		
Board Size	105 mm x 215 mm (4.13 inch by 8.46 inch)		

TABLE II Antenna Specifications			
Specifications	Omni-directional Antenna	Directional Antenna	
Frequency	2.4 GHz	2.4 GHz	
Gain	15.4 dBi	19 dBi	
VSWR	1.5 : 1	1.5 : 1	
Polarization	Vertical	Vertical	
H. Beamwidth	-	18°	
V. Beamwidth	-	18°	
Cross Polarization	-	>30 dB	
Max. Input Power	100 Watts	100 Watts	
Impedance	Impedance 50 Ohms		
Windage	200 kmph	-	
Connector	N-Female	N-Female	
Dimensions	1780 mm (height)	394 x 394 x 28mm	
Weight	1.16 kg	1.8 kg	

C. Software

All configurations were done using *Winbox* software tool [4]. The *Winbox* console is used for accessing the MikroTik Router configuration and management features, using graphical user interface (GUI). Four *Winbox* utilities viz., *Traceroute, ICMP Bandwidth Test, Packet Sniffer* and *Ping* were used to analyze the link performance during experimentation.

III. AEROSTAT DESIGN

A. Aerostat Design Methodology

A methodology for sizing of a tethered aerostat has been developed by Raina et al. [5]. This methodology arrives at geometrical dimensions and mass breakdown of an aerostat that meets certain user-specified operational and performance related requirements. The methodology was used for sizing of an aerostat meeting the requirements and assumptions shown in Fig. 2

Fig. 2. Flow Chart of the aerostat design methodology [5]

Depending on the payload requirements, operating altitude, temperature variation and other atmospheric input parameters, the envelope volume is assumed at the start, using a thumb rule. The surface area and other parameters like weight of envelope, tether and the fins are then estimated. Once the weight breakup is obtained, the volume and hence mass of the ballonets are calculated. Since the value of net lift available is known, the payload capacity of the aerostat can be estimated. The envelope volume is iteratively adjusted till the payload capacity of the aerostat matches the requirement specified by the user.

B. Aerodynamic Stability

Once the aerostat has been deployed it is mainly subjected to wind loading. The fins are the main directional stabilizers for the aerostat, as they prevent the aerostat from re-orienting itself. We also determined the tether profile under various wind loading conditions, as depicted in the Fig. 3, using the approach suggested by Wright [6]. In our case, an omnidirectional antenna was mounted below the aerostat; hence blow-by was not of much consequence. A swivel coupling can be used to ensure directional stability in case of directional antennas.

Fig. 3. Tether profiles for various wind speeds from the mooring point

C. Output

A typical output derived from the methodology has been illustrated below in Table III. Critical parameters like envelope dimensions and the weight breakup of various groups of the aerostat system are generated based on the aerostat design

TABLE III Output From Aerostat Design Code		
Output Parameters	Unit	Value
Envelope Volume	m3	98.66
Envelope Surface Area	m2	117.57
Envelope Length	m	12.37
Envelope Diameter	m	4.05
Drag on Aerostat Envelope	Ν	66.47
Mass of Envelope Group	Kg	29.83
Mass of Fin Group	Kg	14.88
Mass Tether Group	Kg	18.14

methodology [5].

The methodology also generates the geometrical profile of the Envelope and the Fins, as shown in Fig. 4.

Fig. 4. Geometrical Output obtained from the aerostat design methodology

IV. EXPERIMENTATION AND RESULTS

Initial experimentation was done at the campus of IIT Bombay. Wireless link was set up between one access point (AP) configured in infrastructure mode and two clients placed at an approximate distance of 1.2 Kms from the AP, as shown in Fig. 5.

Fig. 5. Wireless network setup in IIT Bombay campus

IP addresses were allotted to ethernet and wireless interfaces of the routers are listed in Table V. Access point was wired to IIT Bombay LAN. A data file was downloaded from LAN to *Client 1* using FTP application to check the wireless link performance. Average data rate of 700 Kbps was observed. The signal strengths observed for received and transmitted signals is provided in Table VIII.

	TABLE V
I	P ASSIGNMENT

Router Box	Wireless Interface	Ether Interface
Access Point	192.168.7.1	10.107.170.190
Client 1	192.168.7.2	192.168.8.1
Client 2	192.168.7.3	192.168.9.1

campus during the period of trials was hot (40-43°C) with uncertain winds throughout the day. Surrounding area of Dr. BATU is surrounded by hills which made it the best place to operate the aerostat to observe its vulnerability. Two sets of observations were made, one using a spherical balloon and another using a tethered aerostat.

TABLE VI Access Point Routing Table

Destination	Preferred Source	Gateway
10.107.0.0/16	10.107.170.190	
192.168.7.0/24	192.168.7.1	
192.168.8.0/24		192.168.7.2
192.168.9.0/24		192.168.7.3
0.0.0/0		10.107.250.1
TABLE VII Client Routing Table		
Destination	Proformed Source	Cataway

Destination	Preferred Source	Galeway
192.168.7.0/24	192.168.7.2	
192.168.8.0/24	192.168.8.1	
0.0.0/0		192.168.7.1

Omni-directional antenna and access point were mounted on the aerostat/balloon and were sent to a height of around 100 meters above the ground. At the client end 19dBi directional antenna was used. Distance between client and access point was varied from 1.5 Kms to 7.0 Kms and observations like received signal strength, round trip time for ping packets and packet losses were made.

Fig. 6. Round Trip Time as a function of Received Packet Sequence Number. The graph shows the ping statistics for packet numbers 0 to 300 sent over 7 Kms link between BS and Client.

TABLE VIII
OBSERVATIONS

OBSERVATIONS			
Within IIT Bombay Campus			
Base Station	Rooftop, Electrical Department		
Client	In Hostel 12		
Distance between BS & Client	1.2 Kms		
Max Tx/Rx Signal Strength	-64/-65 dBm		
Min Tx/Rx Signal Strength -80/-80 dBm			

At BATU Campus Using a Spherical Balloon			
Base Station	Mechanical Workshop, BATU		
Client 1	Staff Quarters		
Distance between BS & Client	1.5 Kms		
Max Tx/Rx Signal Strength	-75/76 dBm		
Min Tx/Rx Signal Strength	-82/-84 dBm		
Minimum Ping Time	2 ms		
Average Ping Time	10 ms		
Client 2	Temple		
Distance between BS & Client	2.5 Kms		
Max Tx/Rx Signal Strength	-90/-90 dBm		
Min Tx/Rx Signal Strength			
Minimum Ping Time	2 ms		
Average Ping Time	18 ms		
At DATU Communa Using Associat			

At BATU Campus Using Aerostat			
Base Station	Mechanical Workshop, BATU		
Distance between BS & Client	7.0 Kms		
Max Tx/Rx Signal Strength	-81/-82 dBm		
Min Tx/Rx Signal Strength	-92/-92 dBm		
Minimum Ping Time	3ms		
Average Ping Time	85.3ms		

V. COST ANALYSIS

A detailed cost analysis of the proposed system is shown Table IX. It shows one time expenditures involved in infrastructure as well as the operational costs that would be involved over a span three years. The initial cost of the system (consisting of wireless equipment and aerostat) is INR 242,000, whereas the lifecycle cost of the system over three years is INR 423,000. While comparing these costs with those of fixed towers, it may be kept in mind that this system is relocatable; hence much lesser installations will be needed to provide wireless coverage over a given area, for disaster management.

TABLE IX Cost Analysis

Infrastruc	ture	Approx. Cost (INR)	Approx. Cost over a span of 3 yrs (INR)
Wireless	Equipment (Routers		
+ Antenn	ae +	150000	150000
Cables &	Connectors)		
Aerostat			
-	Hull	80000	80000
-	Tether	3000	3000
-	Winch	8000	8000
-	Initial Gas filling	1000	1000
-	Gas top-up (once in three months)	100	1200
Miscellaneous			
(Transportation, Manpower		5000	180000
& Maintenance) per month			
Total			423000

VI. CONCLUSIONS

The proposed system having a central base village providing internet connectivity to neighboring villages has been studied extensively for its technical and economical feasibility. The use of aerostats results in reduced overall system cost. Setting up of several point-to-point links will certainly distribute the available bandwidth but most of the rural areas don't demand high speed connectivity, so using Wi-Fi with point-tomultipoint setup is a feasible solution.

The proposed system can also be deployed immediately to serve emergency situations like floods, earthquakes and other natural disaster affected areas where connectivity is worst hit. Also relocation of the system to anyplace within operational range is possible with very less launching area requirement.

ACKNOWLEDGMENTS

The authors would like to thank *One World South Asia* for providing financial support in funding this study. Help and assistance rendered by the following personnel from Dr. BATU, Lonere during the field trial is also greatly acknowledged; Prof. M. S. Tandale, Head, Dept. of Mechanical Engg., Mr. Gerald Sequeira, Mr. Kaviresh Bhandari, Mr. R. M. Chavan and Mr P. S. Shrivardhankar.

REFERENCES

- Khoury G. A., Gillet J. D., Eds., "Airship Technology" Cambridge Aerospace Series: 10, ISBN 0 521 430 737, Cambridge University Press, 1999
- R. Flickenger, Wireless Networking in the Developing World, 2nd ed. December 2007.
- [3] IEEE 802.11b Standard <u>http://www.ieee802.org/11/</u>.
- [4] Routers and Wireless Systems. <u>http://www.mikrotik.com/systems.php</u>.
- [5] Raina, A. A., Gawale A. C., Pant, R. S., "Design, Fabrication and Field Testing of Aerostat system", National Seminar on Strategic Applications of Lighter- Than- Air (L-T-A) Vehicles at Higher Altitudes, Snow and Avalanche Study Establishment, Manali, India, 12-13 October 2007.
- [6] J. Wright, "Computer programs for tethered-Balloon System Design and Performance Evaluation," Report No. AFGL-TR-76-0195. Air Force Geophysics Laboratories (LCB) Hanscom AFB, Massachusetts 01731, August 1976.