AE 457/641 Navigation and Guidance

Insemester Test: 11:35am - 12:35pm, 24/10/07
Total Marks - 10
An A4-size sheet written on both sides in one's own handwriting allowed. Notes, photocopies, printed matter are not allowed. This question paper is printed on BOTH sides.

1. A missile follows an ideal pursuit trajectory to intercept a target moving uniformly along a straight line. The missile moves one and a half times faster than the target. If the closing velocity equals the missile velocity when the range is R_{1}, find the range when the closing velocity is half the missile velocity.
2. A ground-to-air missile is to be launched to intercept an airborne target that is receding from the launch site along a straight line at an altitude of 1 km with a constant speed of $270 \mathrm{~m} / \mathrm{s}$. If the missile speed is $500 \mathrm{~m} / \mathrm{s}$, and the target is 1 km away from the launch site (in terms of distance measured along the ground) at the time of launch, find the launch angle required to place the missile on a collision course with the target. Find the closing velocity and the time to intercept for the launch angle that you calculate.

AE 457/641 Navigation and Guidance
 Insemester Test: 11:35am - 12:35pm, 24/10/07
 Total Marks - 10

An A4-size sheet written on both sides in one's own handwriting allowed. Notes, photocopies, printed matter are not allowed. This question paper is printed on BOTH sides.

1. A missile follows an ideal pursuit trajectory to intercept a target moving uniformly along a straight line. The missile moves one and a half times faster than the target. If the closing velocity equals the missile velocity when the range is R_{1}, find the range when the closing velocity is half the missile velocity.
2. A ground-to-air missile is to be launched to intercept an airborne target that is receding from the launch site along a straight line at an altitude of 1 km with a constant speed of $270 \mathrm{~m} / \mathrm{s}$. If the missile speed is $500 \mathrm{~m} / \mathrm{s}$, and the target is 1 km away from the launch site (in terms of distance measured along the ground) at the time of launch, find the launch angle required to place the missile on a collision course with the target. Find the closing velocity and the time to intercept for the launch angle that you calculate.
3. In the block diagram below, $u(t)=t$ and K is a constant, while $y(0)=0=\dot{y}(0)$. Draw the adjoint that can be simulated to find $y\left(t_{\mathrm{F}}\right)$ as a function of t_{F}.

4. In the block diagram below, $u(t)=t$ and K is a constant, while $y(0)=0=\dot{y}(0)$. Draw the adjoint that can be simulated to find $y\left(t_{\mathrm{F}}\right)$ as a function of t_{F}.

