
Python for CFD: A case study
Prabhu Ramachandran

Department of Aerospace Engineering

IIT-Madras, Chennai, INDIA

SciPy’04: Python for CFD – p.1

http://www.aero.iitm.ernet.in/~prabhu/

Introduction

Python: ideally suited for scientific computing
Interfaces with Fortran/C/C++
Standard library, Numeric, scipy
Extremely versatile
Interactive interpreter: prototyping, testing,
debugging, analysis (post-processing)
Makes doing ordinarily mundane tasks fun!
Is not just a “glue” language

SciPy’04: Python for CFD – p.2

Outline

Vortex methods

Building with SCons

Miscellaneous scripts

Job scheduler

Wrapping C++: SWIG

Interactive data analysis

Parallel application

Conclusion

SciPy’04: Python for CFD – p.3

Vortex methods

Lagrangian and grid-free numerical scheme

2D, incompressible, Navier-Stokes fluid

Vorticity is the curl of the velocity field

Represent the flow in terms of vorticity

Discretize vorticity into particles (blobs and
sheets)

Track vorticity as per: Dω
Dt

= ν∇2ω

ω = curl~V · k̂, ν kinematic viscosity

BC: no-penetration, no-slip
SciPy’04: Python for CFD – p.4

Vortex Methods: Advantages

No grid generation

Self adaptive

Ideal for unsteady flows

Intuitive solution procedure

SciPy’04: Python for CFD – p.5

Numerical procedure

Create vorticity to satisfy no-slip

Two-step procedure to track vorticity

Advection: Dω
Dt

= 0

Vortex particles move with the flow

Diffusion: ∂ω
∂t

= ν∇2ω

Solution using non-deterministic and
deterministic schemes
Random Vortex Method (RVM)

SciPy’04: Python for CFD – p.6

Salient features

Computationally intensive

Complex algorithms for efficiency (Adaptive
Fast Multipole Methods)

RVM is stochastic, requires ensemble
averaging

High-resolution simulations of flow past an
impulsively started cylinder

VEBTIFS – Vortex Element Based
Two-dimensional Incompressible Flow Solver:
library in C++

SciPy’04: Python for CFD – p.7

Building with SCons

Fairly large code base: ≈ 80 classes

Build variants: graphics, debug, profile,
shared and static

SCons scripts are Python scripts: no new
sytax to learn

Does more with less (1000 line Makefile - 200
line SConscript)

Parallel from ground up

Works well with distcc

SciPy’04: Python for CFD – p.8

Miscellaneous scripts

Parse text data files with a known structure

Trivial to write with Python and very useful

key = value # comment

or

key1, key2 = value1, value2 (garbage text)

or just

value1, value2

SciPy’04: Python for CFD – p.9

Misc. scripts

Output/input file types and versions change

ASCII, XDR, optionally zipped files

Many versions and formats: inter-conversions

A few day’s work resulted in code that can
Interactively explore data files
Change formats
Documents the formats
Useful command line interface

SciPy’04: Python for CFD – p.10

Job Scheduler
Schedule ≈ 1000 runs in limited time

CPU intensive (0.5 to 24 hours per run)

Cluster (running Linux) used by other users

Manually running/managing: inefficient and
error prone

Limited time: eliminates other clustering tools

Not suitable for shell scripts or C/C++

Python: One day’s coding, 500 lines, runs as
a daemon, command line interface

Fun to write!
SciPy’04: Python for CFD – p.11

Managing runs and data

Scripts generate the data files

File associating directories to machines

Scripts to transfer files and submit the jobs

Similar scripts to get data from machines

IPython was used as a shell to drive
everything

Easy to write: a few days of effort

SciPy’04: Python for CFD – p.12

SWIG: Wrapping C++

VEBTIFS is written in C++: ≈ 80 classes

Wrapped to Python using SWIG

About 500 lines of SWIG interface code

Took around a week’s effort to get working
wrappers

Lets us script runs, inspect and analyse data

Scripting VEBTIFS is a huge plus

SciPy’04: Python for CFD – p.13

Interactive data analysis

IPython is used exclusively for the shell

Abstract common tasks into useful functions
and classes

Post-processing of collected data: statistics,
de-noising, derivatives, plotting etcetra

Use Numeric and scipy for various tasks

2D plots using Grace and gracePlot.py

2D surface and 3D plots using MayaVi

SciPy’04: Python for CFD – p.14

Parallel application

Uses a cluster of Linux machines
1. Slaves and master perform computations
2. Every nsync time steps, slaves

communicate particle data to master
3. Master processes data and sends it back

to slaves
4. Repeat from step 1

Embarassingly parallel

Small amount of communication (3MB per
slave)

SciPy’04: Python for CFD – p.15

Machine configuration

Slave Slave

Slave Slave

Master

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � �� � � � �

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

SciPy’04: Python for CFD – p.16

Implementation in Python

Ideal to prototype using Python

CPU intensive work uses SWIG wrapped
VEBTIFS

Communicate data using Pypar: Numeric
arrays representing particle data sent using
MPI

Particle data stored in internal C++ objects

Protyping the idea took half a day

Debugging took the other half

SciPy’04: Python for CFD – p.17

Salient points

Easy to write

≈ 500 lines of code in all

Pypar initializes MPI and makes it extremely
transparent to use

Easy ability to debug and fix problems

Display graphical progress on all slaves

Problem: Conversion of data from C++ to
Numeric and back is slow

SciPy’04: Python for CFD – p.18

Slow code

def data2Blob(blb_data, bm):
Given numeric arrays containing blob data and a BlobManager,
populate the BlobManager with blobs.
z , gam, core = blb_data[’z’], blb_data[’strength ’], \

blb_data[’core’]
bf = vebtifs .BlobFactory()
for i in xrange(len(z)):

bm.addElement(bf.create(z[i], gam[i], core[i]))

SciPy’04: Python for CFD – p.19

Enter scipy.weave

Weave needed support for SWIG2: added in
a day

Weave’d code is similar and fairly easy to
read

Produces a 300-400 fold speed increase!

Makes it possible to write efficient code

Did take some effort and knowledge to get
working

SciPy’04: Python for CFD – p.20

Weave code

def data2Blob(blb_data, bm):
z , gam, core = blb_data[’z’], blb_data[’strength ’], \

blb_data[’core’]
nb = len(z)
bf = vebtifs .BlobFactory()
code = """
for (long i =0; i<nb; ++i) {

bm−>addElement(bf−>create(z[i], gam[i], core[i]));
}
"""
weave.inline(code, [’bm’, ’ bf ’ , ’ z’ , ’gam’, ’core’ , ’nb’],

headers=[’"blob.H"’])

SciPy’04: Python for CFD – p.21

Results

Data moves from C++ to Python and back
seamlessly and efficiently

Final code: ≈ 570 lines (≈ 500 without
weave), 7 command line options

All Python code

Performance is excellent

3-4 days of effort from idea to production code

This helped produce simulations of
unprecedented resolution

SciPy’04: Python for CFD – p.22

Results ...

SciPy’04: Python for CFD – p.23

Results ...

SciPy’04: Python for CFD – p.24

Conclusion

Python is of immense benefit to anyone
pursuing scientific computing

Easy to learn and very versatile; almost every
aspect of scientific computing can be handled

Relatively easy to interface to C/C++/Fortran

IPython, Numeric, scipy, gracePlot, MayaVi
make interactive, exploration and analysis a
pleasure

Weave helps accelerate slow code

SciPy’04: Python for CFD – p.25

	Introduction
	Outline
	Vortex methods
	Vortex Methods: Advantages
	Numerical procedure
	Salient features
	Building with SCons
	Miscellaneous scripts
	Misc. scripts
	Job Scheduler
	Managing runs and data
	SWIG: Wrapping C++
	Interactive data analysis
	Parallel application
	Machine configuration
	Implementation in Python
	Salient points
	Slow code
	Enter 	exttt {scipy.weave}
	Weave code
	Results
	Results ...
	Results ...
	Conclusion

