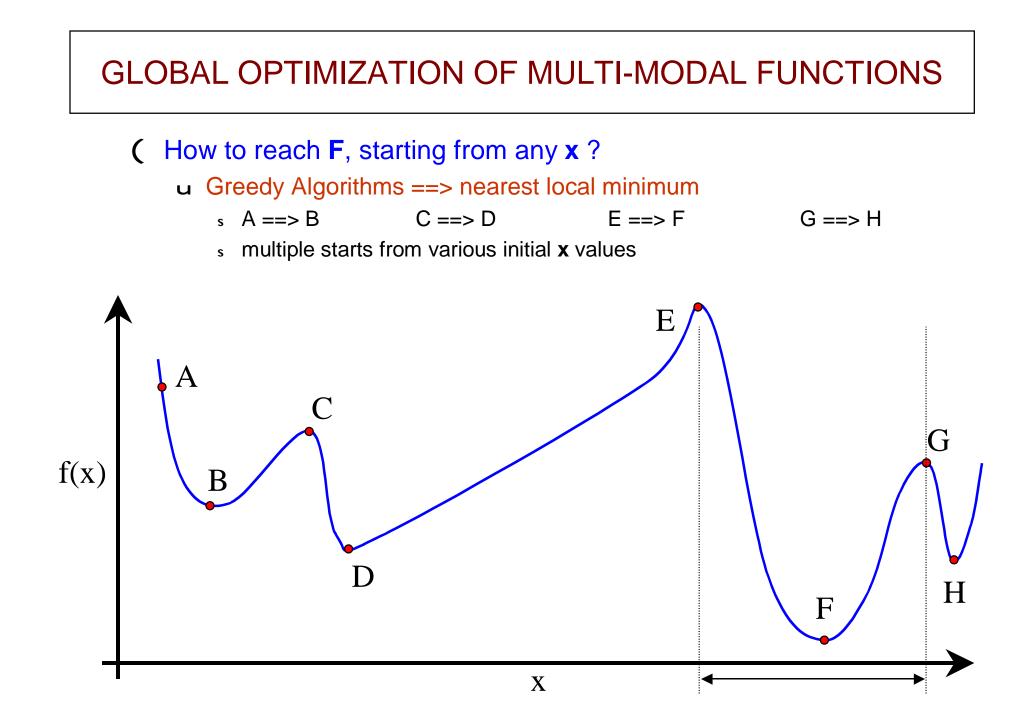
An Introduction to Simulated Annealing

Rajkumar Pant Aerospace Engineering Department IIT Bombay

PRESENTATION OUTLINE

- (HISTORICAL BACKGROUND
- **(** GLOBAL OPTIMIZATION OF MULTI-MODAL FUNCTIONS
- (MARBLE IN CUBE ANALOGY
- (S A ALGORITHM
- (FEATURES OF S A
- (TUNING OF S A PARAMETERS
- (S A V/S CONVENTIONAL METHODS
- (S A FOR FUNCTIONS OF CONTINUOUS VARIABLES
- (APPLICATIONS OF S A
- (IMPROVEMENTS TO THE BASIC ALGORITHM
- (SIMANN S A ALGORITHM



NON-GREEDY ALGORITHMS

(Permit occasional uphill moves

u sparingly, and in a controlled manner

(Large uphill moves

u In the initial stages

- better domain exploration

u Large changes in f(x)

– better chance of improvement

u Once in a while

- to climb out of local minima

HISTORICAL BACKGROUND

(Numerical simulation of Annealing Metropolis et. al, 1953 $p(dE) = e^{(-dE/kT)}$

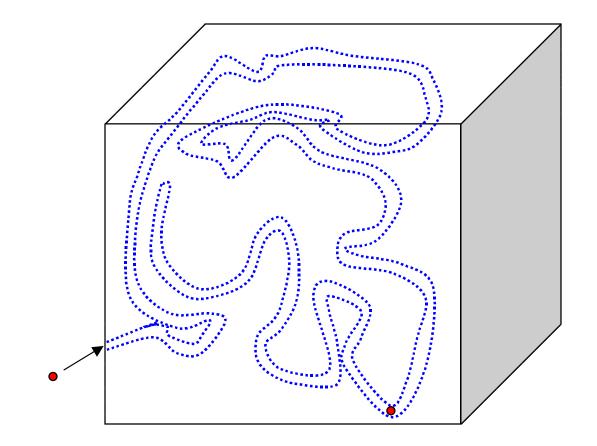
- T = temperature
- p(d E) = probability of an increase in energy by d E
- *k* = Boltzmann's constant
- (Combinatorial Optimization

Kirkpatrick et. al, 1980 Cerny, 1985

Thermodynamic Simulation
System States
Energy
Change of state
Temperature
Frozen state

Combinatorial optimization Feasible solutions Cost Neighboring solution Control Parameter Heuristic Solution

MARBLE-IN-CUBE ANALOGY



How to take the marble to the lowest position in the cube ?

SA ALGORITHM

```
Solution space X
Objective function f
Neighborhood structure N
     Select Initial point s<sub>0</sub>
     Select Initial temperature T_0 > 0
     Select temperature reduction function a
          Repeat
                Repeat
                     Randomly select s \hat{I} N(s<sub>0</sub>)
                     d f = f(s) - f(s_0)
                     If d f < 0
                     then s_0 = s
                     else
                     generate a random number r \hat{I} (0,1)
                       if r < e^{(-df/T_0)} then s_0 = s
               Until iteration count = max. iteration
               Set T = a (T)
        Until stopping condition = TRUE
        s_0 is the approximation to the global minimum solution
```

FEATURES OF SA

- (Direct Method & Non-Greedy algorithm
 - u Global optimization of multi-modal, discontinuous & noisy functions
- (Mathematically proven to converge to global optimum
- Very simple architecture
- (Parameters to be decided
 - u Solution space X, Objective function f
 - s user defined
 - u Neighborhood structure N
 - s should be adaptively modified
 - u Initial point **s**₀
 - s can be randomly selected
 - \mathbf{u} Initial temperature $\mathbf{T}_{\mathbf{0}}$ & Temperature reduction function \mathbf{a}
 - s ensure proper "annealing"
 - u Stopping Criteria
 - s max. number of function evaluations
 - s minimum improvement in **f** acceptable

SA V/S CONVENTIONAL METHODS

- (Very large number of function evaluations

 u nearly 1000 times more !
 u Exact optimal solution not reached in finite time
- (Tuning of SA parameters required before starting u may take up 50% of the total time !
- Cannot implicitly handle constraints
 u Penalty Function approach

Example of Penalty Function

Objective Function = $F_{objt} + \Sigma P_k$ $P_k = iv_k iact_k w_k constr_k$

- s k = number of constraints
- s $constr_k = numerical value of k^{th} constraint$
- s iv_k = 1 if $constr_k > tol_k$, = 0 otherwise
- s tol_k = tolerance on target value for k^{th} constraint
- s $iact_k = 1$ if k^{th} constraint is active, = 0 otherwise
- s w_k = weight on the value of kth constraint

APPLICATIONS OF SA

(Combinatorial problems

- u VLSI & Computer system design
 - s optimal placement of $> 10^6$ transistors on a chip
 - s optimal location of services on a computer network
- u Sequencing & production scheduling
 - s Shop-floor, inventory management, FMS
- u Transport Scheduling & Time-tabling
 - s Travelling Salesman problem, Locomotive Scheduling
 - s Image processing, Building layout design, DNA mapping

(Continuous and mixed functions

- u Engineering Design
 - s Aircraft Conceptual Design, Composite Structure modelling
- u Statistical Functions
 - s Banking industry, and Financial analysis

SA FOR CONTINUOUS VARIABLES

- (Corana et. al
 - u ACM transactions on Mathematical Software, 13(3), 1987
- (Features
 - u Iterative random search procedure, with adaptive step size reduction
 - u maintaining approx. 1:1 rate between accepted and rejected moves
- (Tests
 - u against Nelder-Mead simplex & Adapted Random Search, on
 - s 2 & 4 dim. Rosenbrock's valley function
 - always reached the global minimum
 - 500 to 1000 times higher n_{eval} , compared to Nelder-Mead Simplex
 - s parabolic, multi-minima discontinuous function
 - sometime converged to near-global optimal solutions
 - 20% lower total n_{eval} compared to other methods
- (Pending tasks
 - **u** How to decide T_{int} , better stopping criteria, and SA parameters ??

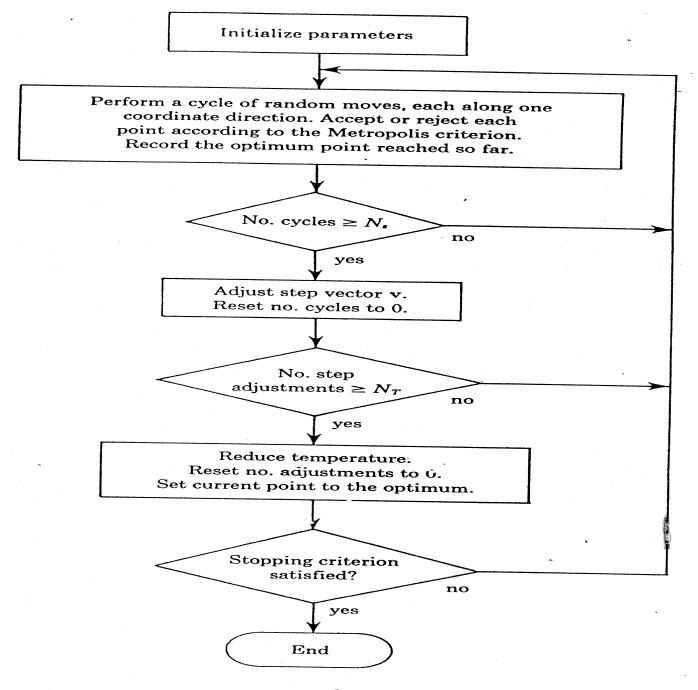
TUNING OF SA PARAMETERS

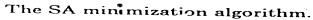
- u Initial Annealing Temperature (T_{int})
 - s of the order of expected objective function value
- **u** Temperature reduction factor (R_T)
 - s 0.85
- **u** No. of cycles before Temperature reduction (N_T)
 - s max (100, 5*n)
- u Initial step sizes for design variables (v_i)
 - s does not matter, as it is changed adaptively
- **u** No. of cycles before step reduction (N_S)
 - s 20
- u No. of cycles for checking convergence (N_{eps})
 - s 4
- u Minimum reduction in Obj. Fun. before termination (eps)
 - s user defined

SIMANN SA CODE

- (Developed by William Goffe, Univ. of S. Mississipi, 1990
 - u Journal of Econometrics, **60**, pp. 65-99, 1994
 - u based on algorithm by Corana et. al
- (FORTRAN source code available from author / Internet
- (Quandt's GQOPT6 Statistical Optimization Package
- (Well tested for several statistical objective functions
 - s 4 econometric problems & 3 optimization methods from IMSL library
 - s best solution in each case with SIMANN
 - s independent of starting values
- (Improvements
 - u test for globalness of solution
 - u restriction of the search area to parameter subspace
 - u methodology for tuning of SA parameters

SIMANN FLOW CHART





TUNING OF SIMANN PARAMETERS

- (Determination of T_{int}
 - **u** Trial run with $T_{int} = 1$ and $R_T = 1.5$
 - s Determine T^* at which v_i cover design variable range
 - u Trial run with very high T_{int}
 - s Determine T* at which v_i decrease rapidly
 - u Set T_{int} slightly greater than T^{*}
- (Determination of $R_T \& N_T$
 - u low value => Quenching
 - u High value => increase in N_{eval}
 - **u** Few trial runs with progressively decreasing $R_T \& N_T$ values
 - u Assign highest values without loss in quality of the solution

TUNING OF SIMANN PARAMETERS

u Selection of v_i

- s 50% of the range of each design variable
- s Not very important, as it is adjusted automatically

u Selection of N_s

s Problem dependent, and determined by trial-and-error

u Selection of N_{eps}

s Large value (4 or 5) for multi-minima functions

u Selection of eps

- s Problem dependent
- s Accuracy of objective function calculation
- s perception of what constitutes worthwhile improvement

SPECIAL FEATURES OF SIMANN

- (Robust and easy to use algorithm

 u fully self-contained, including random number generator
 u easy to use input file structure, and fairly detailed output file

 (Final step sizes indicate sensitivity of design variables
- (Excellent tutorial, with Judge's 2 variable test function
- (Number of function evaluations almost constant

The End