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ABSTRACT 

     Two-body aerodynamic analysis is crucial whenever there is 

a store that separates from its parent body, i.e., the aircraft. 

Whenever a new aircraft is developed or an existing one 

undergoes some modification with its associated store, it has to 

undergo a meticulous analysis to predict the path of the 

separated store across a range of operating parameters 

(freestream conditions). The present work demonstrates an 

efficient albeit approximate technique that employs a reduced 

order model based on proper orthogonal decomposition in 

conjunction with a multi-domain-decomposition approach for 

predicting the flow field around a store-aircraft dyad. 

Encouraging preliminary results are obtained in the validation 

that is pursued on a two-dimensional problem for simplicity. 

The approach can be readily extended to three-dimensional 

problems as well. 
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1. INTRODUCTION 

The aircraft-store separation analysis is crucial, whenever a 

new aircraft-store duo is developed or an existing one 

undergoes some design changes. In this analysis, trajectories 

followed by the store after its release from the parent body (i.e., 

the aircraft) are computed under different operating conditions 

(i.e., freestream parameters) to predict the safe-separation flight 

envelope. Although initial attempts employed expensive and 

risky flight tests, and subsequent efforts relied on wind tunnel 

model testing using captive trajectory system, almost all current 

store trajectory predictions are pursued using computational 

fluid dynamics (CFD).  

 
 

Figure 1:  Flow chart showing the iterative steps involved in 

store trajectory prediction using quasi-steady CFD. 

 

 

Figure 2: Setup of the two dimensional 2-body store 

separation problem. 

 

The CFD-based approach to store-trajectory simulation is 

summarized in fig. 1. One starts with the initial configuration 

where the store is on the verge of separating from the aircraft. 

Invariably, a quasi-steady approach is employed, wherein CFD 

simulations of the flow field for any time instant assume that 

the flow is steady. Once the instantaneous forces and moments 

are obtained on the store from such a calculation, they are 

supplied to a 6 degrees of freedom (DOF) rigid body dynamics 

solver to determine the position of the store at the next time 

step. Steady CFD calculations are again conducted for this new 

aircraft-store configuration, and the simulation proceeds 

iteratively in this manner. The calculations are ended once the 

store is out of the influence zone of the aircraft. Even with the 

exponential development of computational power and memory, 

the quasi-steady CFD calculations are very resource intensive 

and take time. Hence, there is an opportunity for developing a 

method that can predict the approximate trajectory of the store 

within limits of practical applicability with minimal 

computational cost and time. The reduced-order model (ROM) 

approach discussed herein is one such empirical technique. 

ROMs are well known for their ability to predict flow fields 

efficiently with a small turnaround time [1–6], which makes 

them suitable for applications where rapid design decisions 

have to be made – e.g., multi-disciplinary analysis and 

optimization. In the context of ROMs, the well-resolved CFD 

approach is called full-order model (FOM); the latter is taken 

as the ‘truth’ solution against which the performance of the 

ROM is evaluated. 

The overall objective of this work is to establish and validate 

a ROM to efficiently predict a store’s trajectory under different 

operating conditions of the parent aircraft – viz. its Mach 

number M∞, angle-of-attack α, etc. For simplicity, we have 
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considered a two-dimensional (2D) problem to demonstrate the 

proposed method. The problem setup shown in fig. 2 consists 

of two bodies – viz. a wing (i.e., an airfoil in 2D) and another 

body that represents the store whose aerodynamics are 

influenced by the wing. We attempt to predict the forces and 

moments acting on the store when it is positioned relative to the 

aircraft flying at a given (M∞, α) condition. The actual 

computation of trajectory can be performed by integrating a 3 

DOF rigid body solver with the present setup. 

In the proposed ROM approach, we first parameterize the 

flow field using a minimal basis derived from proper orthogonal 

decomposition (POD) [7, 8]. This leverages the observed fact 

that apparently high-dimensional flow fields can often be 

approximated very well using a much lower dimensional 

embedding. The reduced-order POD basis is identified 

empirically, which means that it is based on a ‘learning’ 

database generated by a FOM. Subsequently, the coefficients of 

the basis modes towards the solution for a new case are 

determined in an optimization step that attempts 

to minimize the residual of the governing equations while 

satisfying the boundary conditions. The latter approach is the 

same as in any CFD, with the sole difference being the severely 

curtailed DOF to optimize due to the reduced POD basis being 

employed. POD requires that the learning database, as well as 

the new cases to be predicted, be for the same geometry and 

mesh. This is impossible in our store trajectory prediction 

problem since the store continuously changes its position and 

orientation relative to the aircraft. Hence, the usual POD-ROM 

approaches for single-body aerodynamics [1–6] cannot be 

employed for the entire flow domain. To circumvent this 

limitation, Ref. [9] proposed a POD-based domain 

decomposition ROM (DDROM) approach, wherein the overall 

flow domain was decomposed into one sub-domain that 

enveloped the aircraft and extended to the far-field boundary 

but had a ‘hole’ or ‘dropbox’ in it located below the aircraft, 

and the other sub-domain that accounted for the dropbox 

containing the moving store. The former ‘staticzone’ 

subdomain was the same across the entire learning database so 

that POD-ROM could be applied. The resulting solution was 

iteratively matched with FOM calculations on the dropbox. 

Since the majority of the mesh cells were in the staticzone, the 

use of POD-ROM promised efficiency gains. The present work 

is an extension of the DDROM approach, wherein further 

efficiencies are realized by decomposing the dropbox sub-

domain itself into two subdomains, and applying POD-ROM to 

one of them again. It is called multi-domain-decomposed ROM 

(MDDROM). We demonstrate here that the MDDROM 

delivers reasonable accuracy vis-a-vis the FOM ‘truth’. 

 
2. METHODOLOGY 

2.1 POD 

Let us denote the flow vector field by q(x; µ), where x := (x, 

y) is the 2D Cartesian coordinate and µ is the parameter vector. 

For example, in a 2D problem governed by Euler equations, q 

= [ρ, ρu, ρv, p]T, where ρ is density, u and v are x- and y- 

components of velocity, and p is pressure. In POD, we assume 

that the flow vector field can be approximated as 

                   𝒒(𝒙; 𝝁) ≈ 𝒒̅(𝒙) +  ∑ 𝜂𝑛(𝝁)𝒒𝑛̃𝑁𝑝

𝑛=1
(𝒙)             (1) 

where, 𝒒̅(𝒙) is the mean flow vector field (typically averaged 

over the flow solutions in the learning database) and the 

remaining ‘fluctuations’ are approximated as linear 

combinations of spatial basis functions {𝒒𝑛̃(𝒙)}𝑛=1

𝑁𝑝
 called POD 

modes, weighted by POD coefficients {𝜂𝑛(𝝁)}𝑛=1

𝑁𝑝
. For later 

reference, 𝜼 ∶= (𝜂1, … … 𝜂𝑁𝑝)𝑇. The actual determination of the 

POD modes follows the established ‘snapshot’ POD approach 

[6, 8, 10], and is not repeated here. 

 

2.2 Reduced-order model 

The ROM predicts the flow field for a new parameter vector 

µ0 by invoking the governing equations. This is a more robust 

and accurate approach than the more straightforward 

interpolation in the parameter space. The POD-based ROM 

technique employed here was originally developed for single-

body steady aerodynamics [1–5]; particular details relevant to 

this work may be found in Ref. [6]. Here we give only a brief 

overview. Let the vector of governing (unsteady) conservation 

equations and boundary conditions be represented as  

       
𝜕(𝑪(𝒒))

𝜕𝑡
= 𝑹(𝒒), 𝒙 ∈ 𝛺,   𝑠. 𝑡.  𝑩(𝒒) = 𝟎,   𝒙 ∈ 𝜕𝛺.         (2) 

Here, C is the operator that maps q to the vector of conserved 

flow variables, R(q) is a shorthand notation for the terms other 

than the local time derivative in the vector governing equations, 

Ω represents the flow domain, and B(q) = 0 codifies the 

conditions imposed on the boundary ∂Ω. Since the solution q(x; 

𝝁𝟎) must be steady, we should ideally have R(q(x; 𝝁𝟎)) = 0 

along with B(q(x; 𝝁𝟎)) = 0. Just as in the FOM, we cannot hope 

for the ROM to find such a solution that exactly satisfies these 

conditions at all interior and boundary points in the flow; of 

course, the match is expected to be worse for the ROM. Once 

the POD modes are determined from the learning database, only 

the coefficient vector η is unknown in the approximate 

expansion of eqn. (1). Thus, we can write 𝑹(𝒒(𝒙; 𝝁𝟎)) ≈

: 𝑹̃(𝒙;  𝜼(𝝁𝟎)) and 𝑩(𝒒(𝒙; 𝝁𝟎)) ≈: 𝑩̃(𝒙;  𝜼(𝝁𝟎)) This notation 

reinforces the fact that the residual at any point only requires 

knowledge of the POD coefficients, as does the boundary 

condition function. For a given µ0, the optimization problem is 

posed as: 

     𝑚𝑖𝑛
𝜼

‖𝑹̃(∙; 𝜼(𝝁𝟎)‖
𝛺,ℒ𝑝

𝑝
  𝑠. 𝑡.    ‖𝑩̃(∙; 𝜼(𝝁𝟎)‖

𝛺,ℒ𝑝

𝑟
<  𝜖.       (3) 

Here, ℒ𝑝 is the p-norm, and the domain of evaluation is 

indicated in the subscript of the norm too; 𝜖 is a suitably chosen 

threshold. In the present work, we have used the ℒ1 norm of the 

residual. Moreover, there are so-called hyper-reduction 

techniques that drastically reduce the number of control 

volumes in which the residual has to be evaluated [6]. 

2.3 Multi-domain-decomposed ROM 

Consider the two-body problem in fig. 3, where the store is 

under the influence of the wing and can take any arbitrary 

position relative to the wing. Due to this continuous change in 

the placement of the store, we cannot implement the ROM 

based on POD for the full domain as discussed in section 1. 

Following Ref. [9], we propose a methodology termed multi-
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domain decomposition ROM (MDDROM) to circumvent this 

issue. As shown in fig. 3, we decompose the overall domain into 

multiple sub-domains as follows: 

 

 
 

Figure 3: Three domain-decomposed ROM approach for 

the two-body problem of fig. 2. 

• Capsule, Ωc – region immediately surrounding the store, 

which comprises a grid that does not change as the store moves. 

• Dropbox, Ωd – maximal region enveloping the capsule where 

it may be expected to reach in its separation trajectory and still 

remain under the influence of the wing. 

• Staticzone, Ωs – remaining flow domain surrounding the wing 

and dropbox and extending to the far-field boundary. 

The staticzone and dropbox sub-domains are designed to 

have a small overlap – the staticzone-dropbox overlap Ωsd in 

fig. 3. Similarly, the overlap of the capsule with the dropbox 

yields Ωcd. With careful attention, the overall mesh may be 

designed so as to remain unchanged in the capsule and 

staticzone sub-domains. The dropbox is the only subdomain 

where the mesh needs to change in the course of the store 

separation. Evidently, POD-based ROM may be applied to Ωc 

and Ωs, and it is only in Ωd that one has to look for a FOM 

solution. But this region, being away from solid boundaries, 

should also have the least number of mesh cells, thereby 

potentiating significant computational savings. In the work of 

Ref. [9], the dropbox and capsule were a single sub-domain. By 

identifying the capsule subdomain containing a finely-resolved 

mesh around the store as a POD-ROM domain, we seek even 

greater efficiencies now.  

The MDDROM approach is an iterative procedure as shown 

in fig. 4. The iterative process starts with computing initial 

solutions on Ωs and Ωc by interpolating POD coefficients in 

parameter space from the learning database. From these 

solutions, we extract the flow variable on interior interfaces δds 

and δdc, respectively (see fig. 3). These together serve as the 

(non-uniform) Dirichlet boundary conditions for the FOM 

solved in Ωd. From this FOM solution, we extract the flow 

variables on the interior interfaces δsd and δcd (see fig. 3 again). 

The flow information on δsd, along with the far-field 

boundary condition, and wall boundary condition on the wing, 

serve as constraints for the POD based ROM solution pursued 

in the staticzone sub-domain Ωs. Similarly, the flow 

information on δcd and the wall boundary condition on the store, 

fully specify the POD-based ROM to be solved for the capsule 

sub-domain Ωc. Now that we have the ROM solution in Ωs and 

FOM solution in Ωd, the solutions are compared on the overlap 

regions Ωsd; a similar check is done for the other overlap region 

Ωcd. 

 
 

Figure 4: Flow chart of steps involved in three domain-

decomposed ROM for 2-body flow analysis. 

If the both comparisons are satisfactory, then we have a self-

consistent solution over the entire flow domain. Else, we go for 

another iteration.  

The learning database for the present work is generated by 

solving Euler equations; so, the ROM and FOM involved in the 

MDDROM will also use the Euler equations. It is shown in 

many of the earlier works on ROM for single body 

aerodynamics referred earlier that, even if the learning database 

uses RANS and the ROM minimizes Euler residuals, the 

predicted flow fields automatically satisfy the no-slip wall 

condition. Furthermore, the dropbox sub-domain being away 

from boundaries, one may solve the Euler equations therein too 

without significant penalty. 

 
3. RESULTS AND DISCUSSION  

We have evaluated results based on the proposed 

multidomain-decomposed ROM method for its validation. A 

two-dimensional domain having two bodies, a wing-like body 

(airfoil in 2D) and a store-like body under the influence of the 

wing is considered for the analysis fig. 2. 

. 

3.1 Geometry and mesh generation  

A circular domain having two bodies, i.e., airfoil and store 

is constructed. The airfoil is a standard RAE-2822 profile, with 

chord c. The store is a rectangular slender body, with a nose and 

a boat-shaped tail. The length of the store is 0.5c and its 
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slenderness ratio is 10, thereby making its thickness d = 0.05c. 

The nose is a circular-blunted tangent ogive, with nose radius 

and nose length as 0.05d and 1.5d. The boat-tail has a half 

wedge angle of 200 and its length equals d. A circle centered at 

the leading edge of the airfoil and having a radius 50c 

constitutes the far-field boundary. Gmsh v4.8.4, an open-source 

software, is employed for mesh generation [11]. A structured 

mesh is constructed around the airfoil and the store as well as 

for the overlap regions for ease of handling different domains, 

and an unstructured mesh is generated for the remaining 

domain. Figure 5, depicts the mesh topology for the domain, 

having quadrilateral cells for structured mesh and triangular 

cells for unstructured mesh. The overall mesh generation 

process is automated using Python scripts in integration with 

Gmsh. This allows us to ensure the same mesh (with the same 

node and cell numbering) exists in the capsule and staticzone 

subdomains for all positions of the store. 

 

 

      
     (a)                                                   (b)  

 

 
(c) 

 

 
(d) 

Figure 5: Mesh topology for wing-store in 2D. (a) Overall 

domain, Zoomed views of (b) dropbox sub-domain, (c) store 

with body-fitted structured mesh as capsule sub-domain, 

and (d) wing with body-fitted structured mesh. 

3.2 Database generation and POD 

The final learning database should comprise of snapshots of 

the entire store-separation trajectory for various choices of wing 

𝑀∞ − 𝛼 pairs. However, for the present validation exercise, we 

treat these wing operating conditions and the three position 

DOFs of the store as independent parameters of a much smaller 

learning database. Thus, our parameter vector is µ = (𝑀∞, 𝛼, 

Xstore, Ystore, β) (see fig. 2). The sets of values used for these five 

parameters are given in table 1; all possible combinations of 

them yield 162 snapshots. As mentioned earlier, the present 

work uses Euler calculations, for which SU2 v7.1.1 [12] is used. 

The farfield boundary is provided with the free-stream 

condition, and the wing and store surfaces are given a no-

throughflow condition. The database generation is automated 

using Python scripts that integrate Gmsh and SU2. 

 

Table 1: Operating parameters for learning database. 

Parameter, (μ) Values 

Angle of attack (α) 00, 10, 20 

Free stream Mach no. (M∞) 0.45, 0.47, 0.49 

x-position of store (Xstore) 0.0, 0.2, 0.4 

y-position of store (Ystore) -0.9, -1.0, -1.2 

Rotation angle of store (β) 00, -10 

 

The conserved variables (ρ, ρu, ρv, E) (E being the energy) 

obtained from the SU2 solution are converted into the chosen 

set of POD variables mentioned in section 2.1 (i.e., pressure is 

used instead of energy). Ref. [6] gives the rationale for the 

choice of this particular set of variables for POD. The flow 

variables are normalized such that they are of order unity. From 

the generated database, the flow solutions for staticzone and 

capsule sub-domains are extracted, and vector POD is 

performed on the snapshots in each subdomain separately for 

these two sub-domains. 

 
Figure 6: Vector POD eigenspectra for the staticzone and 

capsule sub-domains in terms of the fractional energy 

content – viz. 𝝀𝒊/ ∑ 𝝀𝒋,𝒋  where λi  is the ith POD eigenvalue. 

The fractional eigenspectra of POD for the two subdomains 

are shown in fig. 6. There is a rapid decrease (4 orders of 

magnitude) in the ‘energy’ content (or relative importance) of 

the POD modes from mode 2 to 3 in the staticzone sub-domain. 

The reason for this rapid decrease is that the first few modes 

capture the flow characteristics for the overall domain, whereas 

subsequent higher modes capture the localized flow features 

near the wing. On the contrary, the same is not true for the 

capsule sub-domain, because the capsule sub-domain consists 

of a very narrow region near the store, and all the parameters’ 

variations affect the flow in this region. For the staticzone, POD 

mode 10 accounts for about 10-6 less ‘energy’ vis-a-vis POD 

mode 1; for the capsule, it is POD mode 15 that has about this 

relation with its POD mode 1. Therefore, for reconstructing the 
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flow field using ROM, we use 10 and 15 POD modes for the 

staticzone and capsule sub-domains, respectively. 

     

(a) Density: POD mode 1     (b) Density: POD mode 15 

         

(c) x-mom.: POD mode 1     (d) x-mom.: POD mode 15 

         

(e) y-mom.: POD mode 1      (f) y-mom.: POD mode 15 

Figure 7: POD mode 1 (left column) and mode 15 (right 

column) of the staticzone sub-domain. 

The shapes of POD modes 1 and 15 are presented in Figures 

7 and 8 for the staticzone and capsule subdomains, respectively. 

Since the flows considered are weakly compressible, pressure 

follows density, and is hence omitted from the plots. The main 

motivation in presenting these extreme POD modes is to 

highlight the difference in the flow features captured by lower 

and higher POD modes. As stated previously, POD mode 1 of 

staticzone captures the flow characteristics for the overall 

domain, whereas its mode 15 counterpart displays localized 

flow features – viz. wakes of the store corresponding to its three 

y-positions included in the learning database. In the case of the 

capsule, POD mode 1 already displays some fine-scale 

structure; however, the structures in mode 15 are much finer. 

3.3 Multi-domain-decomposed ROM validation 

The MDDROM approach necessitates an iterative solution 

of the POD-ROM in the staticzone and capsule subdomains and 

the FOM in the intermediate dropbox sub-domain. As 

mentioned earlier, Euler residuals are minimized in the POD-

ROM. The sequential least-square quadratic programming 

(SLSQP) method available in the scipy library of Python is 

employed for this optimization. The FOM solves the Euler 

equation using SU2, which has been augmented to implement 

the non-uniform boundary conditions arising at the interface 

between the sub-domains. The POD-ROM and SU2-FOM are 

driven iteratively from a Python script. 

The MDDROM approach is validated using five new cases 

as delineated in table 2. Full-order solutions for these cases are 

computed using SU2’s Euler solver and are used as truth 

solutions in the validation exercise. For illustration, 

representative flow variables from the case I computed using 

the MDDROM approach are compared with their ‘truth 

counterparts in fig. 9. The visual agreement is very reasonable. 

  
(a) Density: POD mode 1     (b) Density: POD mode 15 

  
(c) x-mom.: POD mode 1     (d) x-mom.: POD mode 15 

  
 

(e) y-mom.: POD mode 1      (f) y-mom.: POD mode 15 

Figure 8: POD mode 1 (left column) and mode 15 (right 

column) of the capsule sub-domain. 

The primary objective of the proposed methodology is to 

predict the store-separation trajectory by computing the 

aerodynamic forces acting on the store in an efficient manner. 

Hence, the store’s lift coefficient is computed from the true 

solution and the MDDROM, and they are compared in the 

bottom half of table 2. The percentage absolute error is below 

2%, which may be well within the range of practical 

applicability of the results. 

 

Table 2: Top half: parameters of validation cases for the 

MDDROM approach. Bottom half: comparison of the 

store’s lift coefficient cl in the respective cases. 

Case no. I II III IV V 

α 0.50 0.50 0.95 1.2 1.2 

M∞ 0.46 0.46 0.47 0.48 0.46 

Xstore 0.20 0.20 0.20 0.40 0.40 

Ystore -1.00 -0.90 -0.10 -1.20 -1.20 

β -1.00 0.00 -1.00 0.00 0.00 

Truth cl 0.110 0.041 0.134 0.073 0.072 

MDDROM cl 0.108 0.041 0.133 0.073 0.071 

% error in cl 1.80 0.0 0.70 0.0 1.40 

 
4. CONCLUSIONS  

This paper presents a POD-based ROM approach in 

conjunction with multi-domain decomposition methodology 

(MDDROM) for two-body aerodynamics problems. The 

overall motivation is to reduce the computational expense of 

store-separation trajectories prediction, as required in the 
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certification of the safe-separation flight envelope of aircraft-

store dyads. The proposed approach replaces Euler simulations 

on the flow domain with a relatively faster multi-variable 

optimization problem for the major portion of the domain. It 

resorts to Euler calculations for a very small number of mesh 

cells that necessarily change when the store moves relative to 

the aircraft. The approach is validated on a two-dimensional 

two-body problem, where Euler calculations are pursued in the 

          
    (a) Density: MDDROM                    (b) Density: Truth 
 

          
         (c) x-mom.: MDDROM                      (d) x-mom.: Truth 
 

          
     (e) y-mom.: MDDROM                     (f) y-mom.: Truth 

Figure 9: MDDROM solution (left column) and the ‘truth’ 

result (right column) for case I of table 2. 

full domain for the generation of the underlying empirical 

database. Comparison of MDDROM results with full-order 

Euler simulations reveals very encouraging agreement, both in 

terms of flow structures as well as the lift coefficient of the 

store. 

For preliminary demonstration and validation of the 

proposed method, the low-fidelity Euler solver is implemented 

for FOM calculations at present. We propose to use RANS 

calculations in the future, and investigate if the MDDROM 

method continues to deliver reasonably accurate results. 

Moreover, the actual store-separation problem will also be 

addressed with the MDDROM. 
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