
Multi domain decomposed reduced order model for store trajectory
prediction

NAVDEEP PANDEY and ANIRUDDHA SINHA*

Department of Aerospace Engineering, IIT Bombay, Mumbai 400076, India

e-mail: 204010004@iitb.ac.in; as@aero.iitb.ac.in

MS received 20 April 2023; revised 12 September 2023; accepted 18 October 2023

Abstract. Two-body aerodynamic analysis is crucial whenever there is a store that separates from its parent

body, i.e., the aircraft. Any time that a new aircraft is developed or an existing one undergoes some modification

with its associated store, it has to undergo a meticulous analysis to predict the path of the separated store across a

range of operating parameters (freestream conditions). The present work demonstrates an efficient albeit

approximate semi-empirical technique that employs a reduced-order model based on proper orthogonal

decomposition in conjunction with a multi-domain-decomposition approach for predicting the flow field around

a store-aircraft dyad. Encouraging preliminary results are obtained in the verification that is pursued on a two-

dimensional problem for simplicity. The approach can be readily extended to three-dimensional problems as

well.
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1. Introduction

The aircraft-store separation analysis is crucial, whenever a

new aircraft-store duo is developed or an existing one

undergoes some design changes. In this analysis, trajecto-

ries followed by the store after its release from the parent

body (i.e., the aircraft) are computed under different oper-

ating conditions (i.e., freestream parameters) to predict the

safe separation flight envelope. Although initial attempts

employed expensive and risky flight tests, and subsequent

efforts relied on wind tunnel model testing using captive

trajectory system, almost all current store trajectory pre-

dictions are pursued using computational fluid dynamics

(CFD).

The CFD-based approach to store-trajectory simulation

is summarized in figure 1. One starts with the initial con-

figuration where the store is on the verge of separating from

the aircraft. Invariably, a quasi-steady approach is

employed, wherein CFD simulations of the flow field for

any time instant assume that the flow is steady. Once the

instantaneous forces and moments are obtained on the store

from such a calculation, they are supplied to a 6 degrees of

freedom (DOF) rigid body dynamics solver to determine

the position of the store at the next time step. Steady CFD

calculations are again conducted for this new aircraft-store

configuration, and the simulation proceeds iteratively in

this manner. The calculations are ended once the store is

out of the influence zone of the aircraft.

Even with the exponential development of computational

power and memory, the quasi-steady CFD calculations are

very resource intensive and take time. Hence, there is an

opportunity for developing a method that can predict the

approximate trajectory of the store within limits of practical

applicability with minimal computational cost and time.

The reduced-order model (ROM) approach discussed

herein is one such empirical technique. ROMs are well

known for their ability to predict flow fields efficiently with

a small turnaround time [1–6], which makes them suit-

able for applications where rapid design decisions have to

be made – e.g., multi-disciplinary analysis and optimiza-

tion. In the context of ROMs, the well-resolved CFD

approach is called full-order model (FOM); the latter is

taken as the ‘truth’ solution against which the performance

of the ROM is evaluated.

The overall objective of this work is to establish and

verify a ROM to efficiently predict a store’s trajectory

under different operating conditions of the parent aircraft –

viz. its Mach number M1, angle-of-attack a, etc. For

simplicity, we have considered a two-dimensional (2D)

problem to demonstrate the proposed method. The problem

setup shown in figure 2 consists of two bodies – viz. a wing

(i.e., an airfoil in 2D) and another body that represents the

store whose aerodynamics are influenced by the wing. We

attempt to predict the forces and moments acting on the

store when it is positioned relative to the aircraft flying at a

given ðM1; aÞ condition. The actual computation of tra-

jectory can be performed by integrating a 3 DOF rigid body

solver with the present setup.*For correspondence
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In the proposed ROM approach, we first parameterize the

flow field using a minimal basis derived from proper

orthogonal decomposition (POD) [7, 8]. This leverages the

observed fact that apparently high-dimensional flow fields

can often be approximated very well using a much lower

dimensional embedding. The reduced-order POD basis is

identified empirically, which means that it is based on a

‘learning’ database generated by a FOM. Subsequently, the

coefficients of the basis modes towards the solution for a

new case are determined in an optimization step that

attempts to minimize the residual of the governing equa-

tions while satisfying the boundary conditions. The latter

approach is the same as in any CFD, with the sole differ-

ence being the severely curtailed DOF to optimize due to

the reduced POD basis being employed.

POD requires that the learning database, as well as the

new cases to be predicted, be for the same geometry and

mesh. This is impossible in our store trajectory prediction

problem since the store continuously changes its position

and orientation relative to the aircraft. Hence, the usual

POD-ROM approaches for single-body aerodynamics [1–6]

cannot be employed for the entire flow domain. To cir-

cumvent this limitation, Ref. [9] proposed a POD-based

domain-decomposition reduced-order model (DDROM)

approach, wherein the overall flow domain was decom-

posed into one sub-domain that enveloped the aircraft and

extended to the far-field boundary but had a ‘hole’ or

‘dropbox’ in it located below the aircraft, and the other sub-

domain that accounted for the dropbox containing the

moving store. The former ‘staticzone’ sub-domain was the

same across the entire learning database so that POD-ROM

could be applied. The resulting solution was iteratively

matched with FOM calculations on the dropbox. Since the

majority of the mesh cells were in the staticzone, the use of

POD-ROM promised efficiency gains.

The present work is an extension of the DDROM

approach, wherein further efficiencies are realized by futher

dividing the dropbox sub-domain itself into two sub-do-

mains, and applying POD-ROM to one of them again. It is

termed multi-domain-decomposed ROM (MDDROM). We

demonstrate here that the MDDROM delivers reasonable

accuracy vis-à-vis the FOM ‘truth’.

2. Background

We start with a brief background of existing methods for

trajectory prediction in Section 2.1; subsequently, we dis-

cuss the previous applications of ROMs to similar problems

in Section 2.2.

2.1 Existing methods for trajectory prediction

The very first attempts to predict the trajectory of the stores

were performed using flight testing. The store was

repeatedly dropped from the aircraft flying at gradually

increasing speeds, until the store was observed to come

back closer to the aircraft after its release instead of sepa-

rating monotonically. This method was based on trial-error,

and in some cases, this led to the store hitting the aircraft

itself. In the early 1960’s, wind tunnel model testing for

trajectory prediction was developed using the Captive

Trajectory System [10, 11]. Since wind tunnel tests typi-

cally use small-scale models, large deviations were often

observed in comparison with the more reliable reference

flight test data.

After the advancement of CFD capabilities to accurately

represent the flow around complex aircraft-store geome-

tries, there was a shift towards CFD analysis from wind

tunnel model testing [12]. In the 1980’s, the Influence

Function Method became popular [13], which used com-

puter simulation for store separation studies. In this method,

wind tunnel data was used to determine the influence

coefficients of an aircraft in the vicinity of a reference store,

and this database was used to determine the forces and

moments for any other test store placed at different

Figure 1. Flowchart showing the iterative steps involved in store

trajectory prediction using quasi-steady CFD.

Figure 2. Setup of the two-dimensional 2-body store-separation

problem.
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positions relative to the aircraft. The store trajectory was

determined using a 6 degrees of freedom (DOF) rigid body

dynamics solver in an iterative manner. With the consistent

efforts and investments from US Air Force and Navy, an

experimental database was created in the 1990’s, based on

generic wing-store configurations [14], which further

helped researchers to validate CFD approaches developed

for trajectory prediction [15–19].

Almost all the CFD approaches proposed by researchers

provided results in good agreement with the experimental

database. This paved the way for the adoption of inviscid,

quasi-steady analysis for trajectory prediction (see fig-

ure 1); the method provided sufficient accuracy in cases of

stores dropped from steady flights. Basically, the flow

around the aircraft-store configuration is solved assuming it

to be steady; the resulting aerodynamic forces and moments

on the store are supplied to a rigid-body motion solver to

calculate its changed position after a small time step, the

steady flow is solved again for this new two-body config-

uration, and so on. In spite of its success, researchers were

dubious regarding its accuracy in some complicated cases –

e.g., when multiple stores are released from the aircraft, or

when the aircraft makes sudden manoeuvres, etc. In late

2010’s researchers performed unsteady Euler calculations

for store separations [20, 21] and reconfirmed that quasi-

steady analysis provides sufficiently accurate results for the

store dropped from steady flight and there is no added

advantage in performing unsteady, inviscid analysis.

2.2 Application of ROM to similar problems

Applications of reduced-order modelling in flow problems

can be broadly divided into three categories – steady (pa-

rameter varying) ROM, unsteady (time-varying) ROM for a

single parameter set, and a combination of the two. In

problems dealing with time-varying flow characteristics,

unsteady ROM is employed to predict the flow behaviour at

different time instants. Steady ROM finds its applications in

the problems where steady (or time-averaged) flow features

(for a particular parameter in a set) are sufficient for the

engineering purpose at hand. In the present work, we are

interested in steady ROMs for the reason described in

section 2.1.

The application of parameter-varying steady ROM to

single-body aerodynamics can be found in several works

[1–6]. As mentioned previously, the first step in the

development of a steady ROM is the generation of the

‘learning database’ comprising of ‘snapshots’ of the steady

flow field for a sufficiently rich yet sparsely-sampled set of

operating parameters (e.g., Mach number, angle of attack,

side slip angle, etc.). This is typically obtained by solving

the FOM – i.e., doing Euler or RANS (Reynolds-averaged

Navier Stokes) CFD simulations; rarely do we get this

empirical data from experiments. This is the one-time cost

of the ROM, albeit a major one. The next step involves the

reduction of the order of the problem by identifying the

underlying simplicity in the flow features present in the

empirical database. Mathematically, we compute a minimal

set of basis functions or modes of the data such that max-

imal information is captured. The most common tool used

for this is proper orthogonal decomposition (POD) [7, 8].

The last step is the prediction of flow field behaviour for a

new set of parameters. This step can be performed in two

ways – (i) flow field prediction based on interpolation (or

extrapolation) of the basis functions [22], or (ii) computa-

tion of flow behaviour as a linear combination of the basis

modes using optimized coefficients that satisfy the steady

governing equations as well as boundary conditions [4, 5],

called steady ROM. The steady ROM approach is more

robust but computationally expensive compared to the

simple interpolation approach. In the present work, we are

interested in the application of steady ROM in the more

complicated 2-body problem.

The present approach primarily builds on top of two of

our previous works – an initial attempt at solving the pre-

sent 2D 2-body problem by decomposing the flow domain

into two sub-domains Ref. [9], and the development of the

aerodynamic database of a missile (i.e., a single body)

using (single domain) POD-ROM Ref. [6]. The former

effort established the basic philosophy of the approach.

However, it failed to achieve any substantial savings in

computational time for reasons that will be evident later.

The latter paper, although concerning a simpler problem,

presented some valuable improvements in the POD-ROM

approach itself that are of relevance here.

3. Methodology

3.1 POD

Let us denote the flow vector field by qðx; lÞ, where x :¼
ðx; yÞ is the 2D Cartesian coordinate and l is the parameter

vector. For example, in a 2D problem governed by Euler

equations, q ¼ ½q; qu; qv; p�T, where q is density, u and v
are x- and y-components of velocity, and p is pressure.

Density and velocity are normalized by the freestream

density q1 and sound speed a1, respectively; pressure is

normalized by q1a21. In POD, we assume that the flow

vector field can be approximated as

qðx; lÞ � qðxÞ þ
XNp

n¼1

gnðlÞeqnðxÞ: ð1Þ

where, qðxÞ is the mean flow vector field (typically aver-

aged over the flow solutions in the learning database) and

the remaining ‘fluctuations’ are approximated as linear

combinations of spatial basis functions feqnðxÞgNp

n¼1 called

POD modes, weighted by POD coefficients fgnðlÞgNp

n¼1. For

later reference, g :¼ ðg1; . . .; gNpÞT. The actual
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determination of the POD modes follows the established

‘snapshot’ POD approach [6, 8, 23], and is not repeated

here.

3.2 Reduced-order model

The ROM predicts the flow field for a new parameter vector

l0 by invoking the governing equations. This is a more

robust and accurate approach than the more straightforward

interpolation in the parameter space. The POD-based ROM

technique employed here was originally developed for

single-body steady aerodynamics [1–5]; particular details

relevant to this work may be found in Ref. [6]. Here we

give only a brief overview.

Let the vector of governing (unsteady) conservation

equations and boundary conditions be represented as

oðCðqÞÞ
ot

¼ RðqÞ; x 2 X; s.t. BðqÞ ¼ 0; x 2 oX: ð2Þ

Here, C is the operator that maps q to the vector of con-

served flow variables, RðqÞ is a shorthand notation for the

terms other than the local time derivative in the vector

governing equations, X represents the flow domain, and

BðqÞ ¼ 0 codifies the conditions imposed on the boundary

oX. Since the solution qðx; l0Þ must be steady, we should

ideally have Rðqðx; l0ÞÞ ¼ 0 along with Bðqðx; l0ÞÞ ¼ 0.

Just as in the FOM, we cannot hope for the ROM to find

such a solution that exactly satisfies these conditions at all

interior and boundary points in the flow; of course, the

match is expected to be worse for the ROM.

Once the POD modes are determined from the learning

database, only the coefficient vector g is unknown in the

approximate expansion of eqn. 1. Thus, we can write –

Rðqðx; l0ÞÞ �: eRðx; gðl0ÞÞ and Bðqðx; l0ÞÞ �: eBðx; gðl0ÞÞ.
This notation reinforces the fact that the residual at any

point only requires knowledge of the POD coefficients, as

does the boundary condition function.

For a given l0, the optimization problem is posed as:

min
g

keRð�; gðl0ÞÞk
p
X;Lp

s.t. keBð�; gðl0ÞÞk
r
oX;Lr

\�: ð3Þ

Here, Lp is the p-norm, and the domain of evaluation is

indicated in the subscript of the norm too; � is a suitably

chosen threshold. In the present work, we have used the L1

norm of the residual. Moreover, there are so-called hyper-

reduction techniques that drastically reduce the number of

control volumes in which the residual has to be evaluated

[6].

3.3 Multi-domain-decomposed ROM

Consider the two-body problem in figure 3, where the

store is under the influence of the wing and can take any

arbitrary position relative to the wing. Due to this contin-

uous change in the placement of the store, we can not

implement the ROM based on POD for the full domain as

discussed in section 1. Following Ref. [9], we propose a

methodology termed multi domain decomposition ROM

(MDDROM) to circumvent this issue. As shown in figure 3,

we decompose the overall domain into multiple sub-do-

mains as follows:

• Capsule, Xc – region immediately surrounding the

store, which comprises a grid that does not change as

the store moves.

• Dropbox, Xd – maximal region enveloping the capsule

where it may be expected to reach in its separation

trajectory and still remain under the influence of the

wing.

• Staticzone, Xs – remaining flow domain surrounding

the wing and dropbox and extending to the far-field

boundary.

The staticzone and dropbox sub-domains are designed to

have a small overlap – the staticzone-dropbox overlap Xsd

in figure 3. Similarly, the overlap of the capsule with the

dropbox yields Xcd. With careful attention, the overall

mesh may be designed so as to remain unchanged in the

capsule and staticzone sub-domains. The dropbox is the

only sub-domain where the mesh needs to change in the

course of the store separation. Evidently, POD-based ROM

may be applied to Xc and Xs, and it is only in Xd that one

has to look for a FOM solution. But this region, being away

from solid boundaries, should also have the least number of

mesh cells, thereby potentiating significant computational

savings. In the work of Ref. [9], the dropbox and capsule

were a single sub-domain. By identifying the capsule sub-

domain containing a finely-resolved mesh around the store

as a POD-ROM domain, we seek even greater efficiencies

now.

The MDDROM approach is an iterative procedure, as

shown in figure 4. The iterative process starts with

Figure 3. Three domain-decomposed ROM approach for the

two-body problem of figure 2.
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computing initial solutions on Xs and Xc by interpolating

POD coefficients in parameter space from the learning

database. From these solutions, we extract the flow vari-

ables on the interior interfaces dds and ddc, respectively (see

figure 3). These together serve as the (non-uniform)

Dirichlet boundary conditions for the FOM solved in Xd.

From this FOM solution, we extract the flow variables on

the interior interfaces dsd and dcd (see figure 3 again). The

flow information on dsd, along with the far-field boundary

condition, and wall boundary condition on the wing, serve

as constraints for the POD-based ROM solution pursued in

the staticzone sub-domain Xs. Similarly, the flow infor-

mation on dcd and the wall boundary condition on the store,

fully specify the POD-based ROM to be solved for the

capsule sub-domain Xc. Now that we have the ROM

solution in Xs and FOM solution in Xd, the solutions are

compared on the overlap regions Xsd; a similar check is

done for the other overlap region Xcd. If the both com-

parisons are satisfactory, then we have a self-consistent

solution over the entire flow domain. Else, we go for

another iteration.

The learning database for the present work is generated

by solving Euler equations; so the ROM, as well as FOM

involved in the MDDROM, will also use the Euler

equations. It is shown in many of the earlier works on ROM

for single-body aerodynamics referred earlier that, even if

the learning database uses RANS and the ROM minimizes

Euler residuals, the predicted flow fields automatically

satisfy the no-slip wall condition. Furthermore, the dropbox

sub-domain being away from boundaries, one may solve

the Euler equations therein too without significant penalty.

4. Results and discussion

We have evaluated results based on the proposed

MDDROM method for its verification. A two-dimensional

domain having two bodies, a wing-like body (airfoil in 2D)

and a store-like body under the influence of the wing is

considered for the analysis figure 2.

4.1 Geometry and mesh generation

A circular domain having two bodies, i.e. airfoil, and store

is constructed. The airfoil is a standard RAE-2822 profile,

with chord c. The store is a rectangular slender body, with a

nose and a boat-shaped tail. The length of the store is 0.5c
and its slenderness ratio is 10, thereby making its thickness

d ¼ 0:05c. The nose is a circular-blunted tangent ogive,

with nose radius and nose length as 0.05d and 1.5d. The
boat-tail has a half wedge angle of 20� and its length equals

d. A circle centered at the leading edge of the airfoil and

having a radius 50c constitutes the far-field boundary.

Gmsh v4.8.4, an open-source software, is employed for

the mesh generation [24]. A structured mesh is constructed

around the airfoil and the store as well as for the overlap

regions for ease of handling different domains, and an

unstructured mesh is generated for the remaining domain.

Figure 5, depicts the mesh topology for the domain, having

quadrilateral cells for structured mesh and triangular cells

for unstructured mesh. The overall mesh generation process

is automated using Python scripts in integration with Gmsh.

This allows us to ensure the same mesh (with the same

node and cell numbering) exists in the capsule and static-

zone subdomains for all positions of the store.

4.2 Database generation and POD

The final learning database should comprise of snapshots

of the entire store-separation trajectory for various choices

of wingM1 � a pairs. However, for the present verification
exercise, we treat these wing operating conditions and the

three position DOFs of the store as independent parameters

of a much smaller learning database. Thus, our parameter

vector is l ¼ ðM1; a;Xstore;Ystore; bÞ (see figure 2). The

sets of values used for these five parameters are given in

table 1; all possible combinations of them yield 162

Figure 4. Flow chart of steps involved in three domain-

decomposed ROM for 2-body flow analysis.
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snapshots. As mentioned earlier, the present work uses

Euler calculations, for which SU2 v7.1.1 [25] is used. The

far-field boundary is provided with the free-stream condi-

tion, and the wing and store surfaces are given a no-

through-flow condition. The database generation is auto-

mated using Python scripts that integrate Gmsh and SU2.

The conserved variables obtained from the SU2 solution

are converted into the chosen set of normalized POD

variables mentioned in section 3.1. From the generated

database, the flow solutions for staticzone and capsule sub-

domains are extracted, and vector POD is performed on the

snapshots in each sub-domain separately for these two sub-

domains. The fractional eigenspectra of POD correspond-

ing to the two sub-domains are shown in figure 6. There is a

rapid decrease (4 orders of magnitude) in the ‘energy’

content (or relative importance) of the POD modes from

mode 2 to 3 in the staticzone sub-domain. The reason for

this rapid decrease is that the first few modes capture the

flow characteristics for the overall domain, whereas sub-

sequent higher modes capture the localized flow features

near the wing. On the contrary, the same is not true for the

capsule sub-domain, because the capsule sub-domain con-

sists of a very narrow region near the store, and all the

parameters’ variations affect the flow in this region. For the

staticzone, POD mode 10 accounts for about 10�6 less

‘energy’ vis-à-vis POD mode 1; for the capsule, it is POD

mode 15 that has about this relation with its POD mode 1.

Table 2. Top half: parameters of five verification cases. Bottom

half: comparison between the truth and MDDROM model pre-

dictions of the store’s lift coefficient cl and pitching moment

coefficient cm about its nose, in these cases.

Case no. I II III IV V

l a 0:5� 0:5� 0:95� 1:2� 1:2�

M1 0.46 0.46 0.47 0.48 0.46

Xstore 0.2 0.2 0.2 0.4 0.4

Ystore �1:0 �0:9 �0:1 �1:2 �1:2
b �1� 0� �1� 0� 0�

Truth cl � 10 1.10 0.41 1.34 0.73 0.72

Model cl � 10 1.08 0.41 1.33 0.73 0.71

% error in cl 1.82 0.00 0.75 0.00 1.39

Truth cm � 100 1.53 0.65 1.82 0.94 0.93

Model cm � 100 1.49 0.66 1.8 0.94 0.92

% error in cm 2.61 1.54 1.10 0.00 1.08

Figure 5. Mesh topology for wing-store in 2D. (a) Overall

domain. Zoomed views of (b) dropbox sub-domain, (c) store with

body-fitted structured mesh as capsule sub-domain, and (d) wing

with body-fitted structured mesh.

Table 1. Operating parameters for learning database.

Parameter, l Values

Angle of attack, a 0�; 1�; 2�

Free stream Mach no., M1 0.45, 0.47, 0.49

x-position of store, Xstore 0, 0.2, 0.4

y-position of store, Ystore �0:9, �1:0, �1:2
Rotation angle of store, b 0�, �1�

0 5 10 15 20
10−10

10−8

10−6

10−4

10−2

100

POD mode no.

F
ra
ct
io
n
al
en
er
g
y

Staticzone

Capsule

Figure 6. Vector POD eigenspectra for the staticzone and

capsule sub-domains in terms of the fractional energy content –

viz. ki=
P

j kj, where ki is ith POD eigenvalue.
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Therefore, for reconstructing the flow field using ROM, we

use 10 and 15 POD modes for the staticzone and capsule

sub-domains, respectively.

The shapes of POD modes 1 and 15 are presented in

Figures 7 and 8 for the staticzone and capsule sub-domains,

respectively. Since the flows considered are weakly com-

pressible, pressure follows density, and is hence omitted

from the plots. The main motivation in presenting these

extreme POD modes is to highlight the difference in the

flow features captured by lower and higher POD modes. As

stated previously, POD mode 1 of staticzone captures the

flow characteristics for the overall domain, whereas its

mode 15 counterpart displays localized flow features – viz.

wakes of the store corresponding to its three y�positions

included in the learning database. In the case of the capsule,

POD mode 1 already displays some fine-scale structure;

however, the structures in mode 15 are much finer.

4.3 Verification of multi-domain-decomposed ROM

The MDDROM approach necessitates an iterative solution

of the POD-ROM in the staticzone and capsule sub-do-

mains and the FOM in the intermediate dropbox sub-do-

main to sustain the continuity of the flow field. As

mentioned earlier, Euler residuals are minimized in the

POD-ROM. The sequential least-square quadratic pro-

gramming (SLSQP) method available in the scipy library

of Python is employed for this optimization. The FOM

solves the Euler equation using SU2, which has been

augmented to implement the non-uniform boundary con-

ditions arising at the interface between the sub-domains.

The conserved variables solutions at the interface bound-

aries between dropbox-staticzone ðddsÞ and dropbox-cap-

sule ðddcÞ are provided as custom boundary conditions in

SU2. The POD-ROM and SU2-FOM are driven iteratively

from a Python script.

(a) Density: POD mode 1 (b) Density: POD mode 15

(c) x-momentum: POD mode 1 (d) x-momentum: POD mode 15

(e) y-momentum: POD mode 1 (f) y-momentum: POD mode 15

Figure 7. POD mode 1 (left column) and mode 15 (right

column) of the staticzone sub-domain.

(a) Density: POD mode 1 (b) Density: POD mode 15

(c) x-momentum: POD mode 1 (d) x-momentum: POD mode 15

(e) y-momentum: POD mode 1 (f) y-momentum: POD mode 15

Figure 8. POD mode 1 (left column) and mode 15 (right

column) of the capsule sub-domain.

(a) Density: MDDROM (b) Density: Truth

(c) x-momentum: MDDROM (d) x-momentum: Truth

(e) y-momentum: MDDROM (f) y-momentum: Truth

Figure 9. MDDROM solution (left column) and the ‘truth’ result

(right column) for case I of table 2.
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The MDDROM approach is verified using five new cases

as delineated in table 2. Full-order solutions for these cases

are computed using SU2’s Euler solver and are used as

truth solutions in the verification exercise. For illustration,

representative flow variables from the case I computed

using the MDDROM approach are compared with their

‘truth counterparts in figure 9. The visual agreement is very

reasonable. The error contour plots (see figure 10) corre-

sponding to the case I (table 2) for all conserved variables

(i.e., Density, x� momentum, y�momentum, and Energy)

are also computed for the demonstration of magnitude as

well as the location of maximum error. Error is defined as

the difference in the magnitude of the flow variables

between MDDROM and truth. It can be observed that the

maximum non-dimensional error in the flow variables is of

the order of 10�3, which can be admitted considering the

practical applicability of the results. The error is even lower

on the store surface, where forces and moment coefficients

are to be predicted.

The primary objective of the proposed methodology is to

predict the store-separation trajectory by computing the

aerodynamic forces and moment acting on the store in an

efficient manner. Hence, the store’s lift coefficient and

moment coefficient are computed from the true solution

and the MDDROM, and they are compared in the bottom

half of table 2. The percentage absolute error is below 2%

for the ðclÞ and below 3% for the ðcmÞ, which may be well

within the range of practical applicability of the results. The

store-surface pressure coefficient cp, being the ingredient

for calculating its lift and pitching moment coefficients, is

also presented in figure 11 for case I of table 2. Again, the

MDDROM prediction closely follows the truth cp plot.

5. Conclusions

This paper presents a POD-based ROM approach in con-

junction with multi-domain-decomposition methodology

(MDDROM) for two-body aerodynamics problems. The

overall motivation is to reduce the computational expense

of store-separation trajectories prediction, as required in the

certification of the safe-separation flight envelope of air-

craft-store dyads. The proposed approach replaces Euler

simulations on the flow domain with a relatively faster

multi-variable optimization problem for the major portion

of the domain. It resorts to Euler calculations for a very

small number of mesh cells that necessarily change when

the store moves relative to the aircraft. The approach is

verified on a two-dimensional two-body problem, where

Euler calculations are pursued in the full domain for the

generation of the underlying empirical database. Compar-

ison of MDDROM results with full-order Euler simulations

reveals very encouraging agreement, both in terms of flow

structures as well as the lift coefficient of the store.

For preliminary demonstration and verification of the

proposed method, the low-fidelity Euler solver is imple-

mented for FOM calculations at present. We propose to use

RANS calculations in the future, and investigate if the

MDDROM method continues to deliver reasonably accu-

rate results. Moreover, the actual store-separation problem

will also be addressed with the MDDROM.
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