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ABSTRACT
This paper studies the modelling of turbulent scales

used in an existing steady Reynolds averaged Navier-Stokes
solution-based acoustic analogy. The turbulence in the flow
has been described as a statistical model of the two-point
cross-correlation of the velocity fluctuations, characterized
by the turbulent length and time scales. The modelling of
the turbulent length and time scales from the K − ϵ data
used in the steady RANS-based acoustic analogy has been
validated with those computed from the cross-correlation
of the velocity fluctuations. This was pursued with an
LES database comprising an isothermal and a heated
ideally-expanded Mach 1.5 round jets. The far-field noise
has been computed using the turbulent scales from both the
cross-correlation data and the K − ϵ data. The two results
agree very well, and also display reasonable match with
direct predictions from the time-resolved LES data using
the Ffowcs Williams-Hawkings method.

Keywords: Aeroacoustics, jet noise prediction, noise
source modelling

I. INTRODUCTION
Jet noise is one of the most challenging fluid mechanics

problems that researchers have been working on for the
last few decades. It is also one of the loudest noises
ever produced by mankind. Jet noise consists of turbulent
mixing noise, broadband shock associated noise (BBSAN)
and screech tones [1]. The latter two noise components are
generated only in supersonic jets when the jet is imperfectly
expanded and a shock cell structure is formed in the jet
plume. The turbulent mixing noise is the dominant compo-
nent of the jet noise which is generated by the mixing of
the jet with the ambient air. We focus only on the turbulent
mixing noise in this paper.

The approach to jet noise prediction has the following
elements to it. The designation of a noise source and
propagation operator, either calculation or modelling of the
noise sources, and solution of the radiated sound. But there
is no clear separation of noise from the rest of the flow
and there is no unique designation for the noise source. So
there are numerous possible choices for decomposing the
flow equations, written compactly here for flow field vector
q as N(q) = 0, into a noise source S and a propagation
operator L as Lq = S (q). This is an exact reformulation,
and it is known as an acoustic analogy. The first such theo-
retical formulation for aerodynamic noise prediction was the
work of Lighthill [2]. Lighthill’s formulated his analogy by
reworking the Navier-Stokes equation (NSE) itself. He chose

the propagator L as the free-space wave operator and the
source took on a quadrupolar character. Lilley [3] modified
Lighthill’s equation by considering the propagation of sound
through a locally-parallel medium, as is appropriate for many
shear flows, and jets in particular. Later, Ref. [4] proposed a
generalized acoustic analogy that was an exact consequence
of NSE considering the propagation of sound through an
arbitrary medium. These successive developments are geared
towards shifting the burden from modelling of the source S
to solving the wave operator L.

The direct prediction of the noise generated and radiated
by a turbulent flow using Direct Numerical Simulation
(DNS) or Large Eddy Simulation (LES) is computationally
expensive and time-consuming. Ref. [5] proposed a semi-
empirical theory to predict the far-field noise from fine-
scale turbulence that required minimal information from a
CFD database. This model required only the mean flow
velocity, density, turbulent kinetic energy and dissipation in
the near-field region. The much more economical steady
Reynolds averaged Navier-Stokes (RANS) simulation suf-
ficed for this purpose. The turbulent statistics in the source
region were modelled using the turbulent length scales, time
scales and velocity scales. The authors showed very accurate
noise prediction vis-à-vis experimental measurements over
a wide range of jet velocities and temperature ratios for
single-stream round jets, especially in the sideline and up-
stream direction where the fine-scale contribution dominates.
Refs. [6] and [7] introduced an acoustic analogy based on
the linearized Euler equations (LEE) with no assumptions
of fine-scale or large-scale noise sources. This approach was
also used in Ref. [8] for a Mach 0.9 jet, where comparisons
were made with the noise results from the asymptotic
solutions given in Refs. [9] and [10]. Miller [11] presented
an acoustic analogy that independently predicted the noise
from turbulent mixing and shock interactions based on the
LEE. Of late, this methodology has been successfully used
to predict the noise from chevron jets and axisymmetric
dual-stream jets for a wide range of Mach numbers and
temperature ratios; it is employed in the present work too.

In all the steady RANS-based acoustic analogies, the
local turbulent length and time scales are modeled from local
K − ϵ data using simple scaling laws and empirical coef-
ficients. In this work, we investigate the accuracy of these
models by comparing them with the length and time scales
computed directly from the cross-correlation of the velocity
fluctuations found in a well-validated LES database [12]
comprising of two supersonic round jets – one isothermal
and the other heated. In essence, we extract the relevant time-
averaged quantities from the LES data, and use only these as
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input to the RANS-based acoustic analogy model. We find
that, although there are some discrepancies in the modeled
scales, the predicted far-field sound from both inputs closely
match the sound propagated directly from the time-resolved
LES data using the Ffowcs Williams - Hawkings (FW-H)
approach.

II. PREDICTING JET NOISE FROM RANS
The acoustic analogy presented here is based on the

works of Refs. [5–8, 11]. We start from the Euler equations
as viscous effects are unimportant for both sound generation
and propagation. The equations are

Dπ

Dt
+∇ · u = 0, (1a)

Du

Dt
+ a2∇π = 0. (1b)

where D(·)/Dt is the material derivative and π :=
(1/γ) ln (p/p∞). These are rewritten by expanding the flow
variables as fluctuations on a time-averaged base state and
retaining terms on the left hand side (LHS) that are linear in
the fluctuations while gathering all remaining terms in the
right hand side (RHS). The consequent forced LEE is:

Dπ′

Dt
+∇ · u′ = −u′ · ∇π′ =: f0, (2a)

Du′

Dt
+ u′ · ∇u+ a2∇π′ = −u′ · ∇u′ −

(
a2
)′∇π′ =: f ,

(2b)

where D(·)
/
Dt := ∂(·)/∂t + u · ∇ (·). The nonlinear

terms on the RHS are the noise sources; specifically, f0
is the unsteady dilatation and f is the unsteady force per
unit mass. For free jets, the mean pressure is generally
taken to be the ambient value (i.e., p = p∞). Also,
π′ ≈ π = γ−1 ln(1 + p′/p∞) ≈ γ−1p′/p∞. The solution to
the inhomogeneous equation can be determined by finding
its Green’s function.

Considering a locally parallel mean flow, we arrive at
the following formulation of the forced LEE in cylindrical
coordinates x := (x, r, ϕ) in the frequency domain:

Dωπ̂ +
∂ûx

∂x
+

1

r

∂(rûr)

∂r
+

1

r

∂ûϕ

∂ϕ
= f̂0, (3a)

Dωûx +
dux

dr
ûr + a2(x)

∂π̂

∂x
= f̂x, (3b)

Dωûr + a2(x)
∂π̂

∂r
= f̂r, (3c)

Dωûϕ +
a2(x)

r

∂π̂

∂ϕ
= f̂ϕ, (3d)

where Dω := −iω + ux∂/∂x.
To make progress, the four periodic vector Green’s

functions of the LEE are defined as the solutions of

Dωπ̂
n
g +∇ · ûn

g = δ (x − xs) δ0n, (4a)

Dωû
n
g,x +

dux

dr
ûn
g,r + a2

∂π̂n
g

∂x
= δ (x − xs) δxn, (4b)

Dωû
n
g,r + a2

∂π̂n
g

∂r
= δ (x − xs) δrn, (4c)

Dωû
n
g,ϕ +

a2

r

∂π̂n
g

∂ϕ
= δ (x − xs) δϕn. (4d)

Here, the vector Green’s functions have the common argu-
ments (x|xs;ω) and are indexed by n, which takes values
in N := {0, x, r, ϕ}. Basically, we are seeking the response
at x due to harmonic forcing at the location xs with ω.
Moreover, the forcing is of a particular kind – either a
volume source or one of the three components of a force
source.

The vector LEE operator can be simplified to a third-
order scalar operator acting on the most relevant component
– viz. π̂n

g – called the Lilley’s operator:(
D

3

ω − a2 Dω∇2 − da2

dr
Dω

∂

∂r
+ 2a2

dux

dr

∂2

∂x∂r

)
︸ ︷︷ ︸

LL

π̂n
g

= D
2

ω (δ (x − xs)) δ0n −Dω
∂

∂x
δ (x − xs) δxn

−
[
1

r
Dω

∂

∂r
(rδ (x − xs))− 2

dux

dr

∂

∂x
δ (x − xs)

]
δrn

− 1

r
Dω

∂

∂ϕ
δ (x − xs) δϕn =: S n(x − xs;ω). (5)

Lilley’s operator’s (scalar) Green’s function is such that

LLĝ (x|xs;ω) = δ (x − xs) . (6)

It turns out that it is much simpler to solve the adjoint
problem and invoke reciprocity to arrive at ĝ [5]. With this in
hand, the pressure component of the vector Green’s function
of LEE can be written as

π̂n
g (x|xs;ω) =

∫∫∫
ĝ (x|xt;ω)S n(xt − xs;ω)dxt.

(7)

The pressure fluctuation is obtained by convolving the
four Green’s functions’ pressure components with the cor-
responding source terms of the LEE. However, we are
interested in (and cannot ask for more than) the spectral
density of pressure. This is found as

Sp(x, ω)

(γp∞)2
=

∑
n,n′∈N

∫
xs

π̂n∗
g (x|xs;ω)

∫
η

π̂n′

g (x|xs + η;ω)

×
∫
τ

⟨fn(xs, t)fn′(xs + η, t+ τ)⟩ eiωτdτdηdxs. (8)

Thus, the necessary input for our approach is the mean flow
field for computing the Green’s functions and a model of the
two-point–two-time cross-correlation of the nonlinear source
terms of the LEE.
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Based on extensive round jet databases accumulated
over decades, such a model for the spatio-temporal cross-
correlations of the source terms has been proposed by many
researchers [5, 7, 13], and is of the form

⟨fn(xs, t)fn′(xs + η, t+ τ)⟩
= δnn′An(xs)e

−|τ |/τs−(ηx−uxτ)
2/ℓ2x−η2

y/ℓ
2
y−η2

z/ℓ
2
z , (9a)

A0 = B2
0

(us/a∞)4

τ2s
, An = B2

>0

(us/a∞)2u4
s

ℓ2x
. (9b)

where n ∈ {x, r, ϕ}. At zero-time lag, this posits a Gaussian
decay of the two-point cross-correlation in all directions,
albeit with different length scales ℓx, ℓy , ℓz . Moreover, it
invokes the frozen field hypothesis and posits an exponential
decay of correlation with time having time scale τs, if one
were to move with the mean flow (assumed negligible in the
cross-stream directions for this purpose). Further, the model
assumes that the four source terms (for the four equations)
are uncorrelated. Finally, the magnitudes of the correlation
functions are related by dimensional analysis to the local
velocity scale us and the length and time scales.

The turbulent length scale is expected to depend on the
frequency being considered. Let us denote the frequency-
dependent streamwise length scale as lx(xs, St), where
St = ωDj/(2πUj) is the Strouhal number corresponding to
the frequency ω under consideration, Dj is the jet’s nozzle-
exit diameter, and Uj is its nozzle-exit velocity. Following
Ref. [14], all these length scales are modeled as

li(xs, St) = ℓi(xs)
1− e−cfSt

cfSt
, ∀i ∈ {x, r, ϕ}, (10)

where cf = 11.25 was chosen to match the experimental
observations.

Assuming that the observer is in the far-field, the vector
Green’s function of two closely-placed source points differ
by only a phase factor:

π̂n
g (x|xs + η;ω) ≈ π̂n

g (x|xs;ω) e
−(iω/R/a∞)x·η, (11)

where R is the polar radius of the observer (i.e., distance
from the jet nozzle exit’s center). Using this simplification,
along with the specific model of the spatio-temporal cor-
relation in eqn. (9), allows one to analytically evaluate the
integral in eqn. (8) over the spatio-temporal lags (i.e., over
η and τ ) to arrive at

Sp(x, ω)

(γp∞)2
= 2π3/2

∑
n∈N

∫ ∣∣π̂n
g (x|xs;ω)

∣∣2σn(xs;ω,x)dxs,

σn := Anlxlylzτs
e−0.25ω2(l2x cos2 Θ+l2y sin2 Θ)/a2

∞

1 + ω2τ2s (1− ux cosΘ/a∞)2
.

(12)

Here, Θ is the polar angle of the observer measured w.r.t. the
jet downstream axis, and the local length scales are replaced
by their frequency-dependent counterparts.

In the present work, we evaluate the following two
alternate approaches to obtaining the necessary inputs to this
noise prediction technique, which are the turbulent length
and time scales.

A. Source Model 1
As mentioned at the outset, we are using an LES database

of two supersonic round jets. In this first approach, we
start out by calculating the local spatio-temporal cross-
correlations of axial velocity fluctuations in the two jets.
Then, we obtain the local length scales and time scales
of an individual jet by fitting its spatio-temporal cross-
correlation with the Gaussian-exponential ansatz of eqn. (9).
Specifically, the local time scale τs(x) is determined by
fitting with an exponential the peaks of the local two-point
two-time cross-correlation data (i.e., ηy = 0 and ηz = 0,
and ηx assumed to be uxτ ). The local axial length scale
ℓx(x) is determined by fitting with a Gaussian the local
cross-correlation data at finite streamwise separation and no
separation in other coordinates (i.e., τ = 0, ηy = 0 and
ηz = 0). Following the literature, the cross-stream length
scales are assumed to be one-third of the streamwise length
scales at all locations:

ℓy(x) = ℓz(x) = ℓx(x)/3 . (13)

Finally, the local velocity scale is determined from the local
mean turbulent kinetic energy computed from the LES data
again:

us(x) = cu

√
2K(x)/3. (14)

The free parameters for this model are cu seen above,
cf appearing in eqn. (10) (and set as mentioned in its
discussion), as well as the two amplitude constants B0 and
B>0 present in eqn. (9). These last two are determined by
best-fitting the noise data across the two jets (see Section III).

B. Source Model 2
In the second approach, we start by computing the local

time-averaged values of turbulent kinetic energy K(x) and
dissipation ϵ(x) from the LES database. Then, the turbulent
length and time scales are modeled as [5–8, 11]:

ℓx = cℓ
(K)3/2

ϵ
, τs = cτ

K

ϵ
, us = cu

√
2

3
K (15)

where, cℓ, cτ and cu are constants. At each point within the
jet plume, the cross-stream length scales are estimated from
the streamwise one using eqn. (13) as before. Apart from
these constants, cf , B0 and B>0 also have to be set, just as
in the first source model described above.

III. RESULTS AND DISCUSSION
A steady RANS solution is enough to predict the far-

field jet noise using the model explained in the previous
section. However, if we want to validate such a model, then
we need an independent prediction of the noise, which is
impossible with the RANS data. So, instead of using a steady
RANS solution, the LES results of Brès et al. [12] are used,
and the required input parameters are computed from it as
described above for the two source models. The database
comprises of an isothermal ideally-expanded round jet (case
B118) and a heated ideally-expanded round jet (case B122),
summarized in Table 1. The unstructured LES grid had 42
million control volumes; for the current analysis, this data
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Table 1: Test cases used from LES database of Ref. [12].

LES Case Mjet Tjet/T∞ Ma Rejet
B118 1.5 1.0 1.5 300,000
B122 1.5 1.74 1.98 155,000

(a)

(b)

(c)

Figure 1: Comparison of computed and fitted contours of
the mean values of (a) streamwise velocity ux, (b) TKE
K, and (c) dissipation ϵ, all for the B118 jet.

was interpolated to a cylindrical structured grid having about
1.3 million points.

Although the LES used a larger computational domain,
for the present work we restricted the streamwise extent to
20Dj and the radial extent of 3.5Dj . The calculation of
the Green’s function requires the mean streamwise velocity
ux and density ρ. Contours of the former are shown in
fig. 1(a) for the isothermal B118 jet. Since radial derivatives
of this are needed, we fit each radial profile of ux with a
truncated Gaussian function of the form proposed originally
in Ref. [15], and in turn smooth the Gaussian function’s fit
parameters with cubic splines [16]. As shown in the same
figure, the fitted result matches well the original. Similar
smoothing is pursued for the mean density field as well.

Using ux and ρ as input, the vector Green’s functions
of the LEE are computed with a code written in MATLAB
following the theory laid out in the preceding section.

Source model 2 needs the mean TKE and dissipation
fields; these are shown in Figures 1(b) and 1(c) for the B118
jet. To avoid spurious artifacts, these are also smoothed, this
time using dual Gaussian functions at each axial station. The
same figures demonstrate that negligible information is lost

(a)

(b)

(c)

(d)

Figure 2: Comparison of length scales computed for the
B122 jet using (a) cross-correlations (i.e., source model
1), and (b) K − ϵ (i.e., source model 2). Comparison of
time scales computed for the B122 jet using (c) cross-
correlations (i.e., source model 1), and (d) K − ϵ (i.e.,
source model 2).

in this process.
The length and time scales computed using the first

source model (i.e., from the cross-correlation data) are
presented in figs. 2(a) and 2(c) respectively for the heated
B122 jet. Equation (9b) shows that the noise source itself
vanishes in regions where the velocity scale (and so the
TKE) vanishes, which happens outside the shear layer. Thus,
the turbulent scales are not computed in these regions; hence,
they appear uniformly deep blue in the filled contour plots
of fig. 2. The shear layer starts out being very thin near the
nozzle exit and thickens as one moves downstream. Because
of this, the turbulent structures are also increasing in size as
one progresses downstream, which is in turn reflected in the
length scales shown in fig. 2(a). Since larger structures have
greater temporal persistence, the time scales also increase as
one goes downstream, and especially near the outer edge of
the shear layer.

Importantly for the purposes of the present work, a
comparison of figs. 2(a) and 2(b) confirms that the two
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Figure 3: Comparison of the far-field noise predicted with
the FW-H results (B118).

source models predict qualitatively similar length scales
having the same order of magnitude, although there are
some subtle differences. Similarly, a study of figs. 2(c)
and 2(d) confirms that the time scales obtained from the
two approaches are also similar. To obtain the length and
time scales from source model 2, we need to specify the
corresponding coefficients. To obtain the match seen in these
figures, these were chosen as

cℓ = 1.2, cτ = 0.18. (16)

Note that both these are three times higher than the values
used in Ref. [11].

Of course, source model 2 is the only one that is
applicable when the input data is a steady RANS solution. Its
agreement with the results from the source model 1 shown
here, independently validates it using the greater wealth of
information available in the present LES database.

The far-field noise is quantified using the sound pressure
level (SPL) spectra at various polar angles. The polar radii
of these observer positions are chosen to match the location
of microphones in the reference experiments of Ref. [17],
wherein a rectilinear array was used. The reference noise
spectra figs. 3 and 4 for the two jets are calculated directly
from the time-resolved flow field fluctuation data available in
the LES solutions of Ref. [12]. For this, the Ffowcs Williams
and Hawkings (FW-H) method [18] is used, as was done in

Figure 4: Comparison of the far-field noise predicted with
the FW-H results (B122).

Ref. [12]. The authors reported excellent match with the
reference spectral data from the experiments of Ref. [17],
which validated their LES simulations.

Results from our two different source models are juxta-
posed with the reference spectra in figs. 3 and 4, and they
are essentially identical. Moreover, the comparison with the
reference spectra is excellent, except at high frequencies.
It is evident that our severely approximate models perform
very satisfactorily vis-à-vis the much more input-heavy
reference approach. To obtain these spectral agreement, we
consistently set the remaining parameters that are common
to our two models. That is, only one value was used for each
parameter across both the jets, and definitely in calculations
across all observer locations. These values were

B0 = 0.451, B>0 = 4.51, cu = 1. (17)

The first two values are about twice of those reported by
Ref. [11]; the last one matches the reference.

IV. CONCLUSIONS
This paper explains an existing methodology for the

prediction of jet noise based on steady RANS data. The Euler
equations are rearranged into a noise propagation operator
and noise sources. The propagation operator is simplified to
a third-order partial differential equation (PDE) of a single
variable – the Lilley’s operator – based on the locally-parallel
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mean flow assumption. The scalar Green’s function of Lil-
ley’s operator is computed numerically using the adjoint
approach. Subsequently, the vector Green’s functions of the
LEE are recovered from the Lilley’s Green’s function.

On the source side, two noise source models are used in
this work. One uses the local values of the mean turbulent ki-
netic energy K and dissipation ϵ; these quantities area read-
ily available from steady K − ϵ RANS simulations. Results
from this are compared with another source model that relies
on knowledge of the spatio-temporal cross-correlation of the
streamwise velocity – information that can only be found
from an LES or a DNS database. To enable a comparison of
the two models, we used the well-validated LES database
of Ref. [12] comprising of an isothermal and a heated
Mach 1.5 jets. This work validates the former low-input-
burden noise source model against the latter high-input-
burden model results using this LES database. Specifically,
the turbulent length and time scales computed from the
two models demonstrate very similar spatial trends – both
qualitatively and quantitatively.

The similarity of the outcomes from the two source
models in the near-field region is reflected in the equivalence
of their far-field sound predictions also. Moreover, both
models show very encouraging agreement with the much
more high-input burden FW-H results that required the time-
resolved LES solution itself.

NOMENCLATURE
p Pressure
u Velocity vector
a Local speed of sound
t Time
γ Specific heat ratio
f0 Unsteady dilatation
f Unsteady force vector per unit mass
x Position vector
ω Radial frequency
δ Dirac delta function
δij Kronecker delta function
LL Lilley’s operator
ĝ Green’s function of LL

Sp Spectral density
τ Time lag
η Spatial lag vector
R Polar radius of the observer
Θ Polar angle of the observer
Bn Amplitude constants for various n
St Strouhal number
Dj Jet diameter
Uj Jet exit velocity
τs Turbulent time scale
ℓi Turbulent length scale
us Turbulent velocity scale
K Turbulent kinetic energy
ϵ Dissipation
(·) Time-averaged quantity

(·)′ Perturbation quantity
(̂·) Temporal Fourier-transformed quantity
(·)∗ Complex conjugate
(·)∞ Freestream quantity
(·)s Source quantity
⟨(·)⟩ Ensemble average
(·)ng nth component of vector Green’s function
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