
RESEARCH ARTICLE

Reduced-order modeling of high-speed jets controlled by arc
filament plasma actuators

Aniruddha Sinha • Andrea Serrani •

Mo Samimy

Received: 18 March 2012 / Revised: 15 November 2012 / Accepted: 7 December 2012 / Published online: 19 January 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Arc filament plasma actuators applied to high-

speed and high Reynolds number jets have demonstrated

significant mixing enhancement when operated near the jet

column mode (JCM) frequency. A feedback-oriented

reduced-order model is developed for this flow from

experimental data. The existent toolkit of stochastic esti-

mation, proper orthogonal decomposition, and Galerkin

projection is adapted to yield a 35-dimensional model for

the unforced jet. Explicit inclusion of a ‘‘shift mode’’ sta-

bilizes the model. The short-term predictive capability of

instantaneous flow fields is found to degrade beyond a

single flow time step, but this horizon may be adequate for

feedback control. Statistical results from long-term simu-

lations agree well with experimental observations. The

model of the unforced jet is augmented to incorporate the

effects of plasma actuation. Periodic forcing is modeled as

a deterministic pressure wave specified on the inflow

boundary of the modeling domain. Simulations of the

forced model capture the nonlinear response that leads to

optimal mixing enhancement in a small range of frequen-

cies near the JCM.

Abbreviations

JCM Jet column mode

LAFPA Localized arc filament plasma actuator

POD Proper orthogonal decomposition

ROM Reduced-order model

SLSE Spectral linear stochastic estimation

1 Introduction

High-speed turbulent flows represent nonlinear, infinite-

dimensional systems that pose one of the frontiers of

feedback control today. The development of reduced-order

models (ROM) for approximating the dynamics of such

flows is still in its infancy. Although useful linear models

have been proposed for some flow control problems (e.g.,

Rowley 2005), nonlinear effects cannot be neglected for

most flows. The majority of research in the latter category

has focused on flows dominated by oscillations at a few

discrete frequencies—for example—vortex shedding from

bluff bodies and airfoils, cavity tones (e.g. Caraballo et al.

2008; Noack et al. 2010). Modeling is rendered consider-

ably more difficult if the flow is characterized by large-

scale structures with broadband frequency content. The

most relevant flows in this class are turbulent planar shear

layers, jets, and high-speed boundary layers. Pioneering

work in reduced-order modeling of flows was in fact aimed

at isolating and analyzing the essential dynamics of the

turbulent near-wall flow in an open channel (Aubry et al.

1988). Notable advances have also been made in the

modeling of unforced axisymmetric jets (e.g., Zheng and

Glauser 1990; Schlegel et al. 2012; Kerherve et al. 2012)

and planar shear layers (e.g., Ukeiley et al. 2001).

One of the consequences of turbulent interactions in the

jet shear layer is noise. Although jet noise is a mature

research area with a history spanning six decades, there is

still a lack of consensus on the fundamental mechanisms
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involved. However, it is commonly recognized that the

large-scale coherent structures in the jet mixing layer play

an important role, especially near the end of the potential

core. Apart from jet noise mitigation, research effort is also

focused on enhancing mixing in jets. The rate of dissipa-

tion is correlated with the dynamics of the large-scale

structures in the jet shear layer. Affecting the turbulence

characteristics of flows by manipulating large-scale struc-

tures is within the realm of flow control, which is therefore

appropriate for both these applications.

Localized arc filament plasma actuators (LAFPA) have

been developed and continuously improved for flow con-

trol applications in the gas dynamics and turbulence labo-

ratory (GDTL) at the Ohio State University. LAFPAs are

capable of generating high-amplitude and high-bandwidth

control signals, which are crucial actuator characteristics

for manipulating high-speed and high Reynolds number

flows. These actuators provide intense but controlled

localized Joule heating to manipulate the large-scale

structures in the mixing layer by exciting the natural

instabilities of the jet. Operation of the LAFPAs near the

jet column mode (JCM) frequency (Crow and Champagne

1971) results in maximum mixing enhancement with sig-

nificant reduction in the potential core length, and increase

in turbulence (Samimy et al. 2007a; Kearney-Fischer et al.

2009; Samimy et al. 2010). Plasma actuation at higher

frequencies attenuates far-field noise up to *2 dB over a

range of practical operating conditions (e.g., Samimy et al.

2007b).

Optimal actuator parameters for a certain application

exist in a limited region of the parameter space. Moreover,

as in any control system, the optimal parameters in open-

loop are functions of the jet operating conditions (e.g.,

Mach number and exit temperature) which are subject to

variations and uncertainties in flight. Thus, a natural

advancement toward practical implementation is to incor-

porate feedback control, which may guarantee robustness

in the presence of such uncertainties.

Development of feedback controllers for high-speed jets

forced with LAFPAs is an ongoing effort at GDTL. A

preliminary attempt was a model-free extremum-seeking

technique developed and implemented in experiments

(Sinha et al. 2010a). Although the simplicity of model-free

controllers is attractive for flow control, their responsive-

ness is generally slowed by the necessity of neglecting the

system dynamics. The first step in model-based feedback

control for improved responsiveness is the design of a

sufficiently accurate model of the unforced jet. Such a

ROM was built using stochastic estimation, proper

orthogonal decomposition (POD), and Galerkin projection

for use with data that can be feasibly measured in experi-

ments (Sinha et al. 2010b). An indispensable tool for the

development and validation of the modeling strategy was

the direct numerical simulation (DNS) data of a low Rey-

nolds number Mach 0.9 jet created by Freund (2001). The

outcome was a technique that is hereby applied to the much

reduced information contained in the experimental data.

Although the general validity of the POD–Galerkin

approach for modeling turbulent fluid dynamics is a matter

of debate (see e.g. Rempfer 2000), its suitability for the

present problem was established by Sinha et al. (2010b)

and further reinforced here.

The design of feedback laws requires the ROM to

explicitly incorporate the effect of actuation. A mathemat-

ically rigorous option for linear models is balanced POD

(Rowley 2005). For nonlinear flows, availability of time-

resolved empirical data allows the application of standard

system identification techniques. High-speed flows of

present interest do not satisfy either of the above require-

ments, and phenomenological approaches are necessary.

Flow control actuators can be broadly divided into two

categories based on the nature of their coupling with the

flow; strategies for modeling them differ likewise. Actua-

tors can produce a body force, for example, AC dielectric

barrier discharge (AC–DBD) plasma actuators. Since the

body force appears as an additive term in the Navier–

Stokes equation, the incorporation of its amplitude in the

reduced-order model is particularly straightforward (e.g.,

Rowley 2005). On the other hand, the majority of actuators

studied inject momentum into the flow at a physical

boundary, for example, zero net mass flux devices, steady

or pulsed blowing and/or suction, and boundary movement.

Since boundary effects are local in time and space whereas

low-dimensional spatial bases are global in space, indirect

methods are required for modeling such actuators (e.g.,

Caraballo et al. 2008). LAFPAs may be categorized as

boundary actuators that excite instabilities in the flow. Due

to experimental constraints that would become clear below,

the domain of the empirical model of the jet cannot include

the site of introduction of the plasma perturbations. As a

workaround, a phenomenological model of actuation is

proposed in this work.

Large–eddy simulation (LES) has been able to replicate

most of the qualitative features of LAFPA forcing as well

as many of the relevant statistical trends (Gaitonde and

Samimy 2011). The actuators are modeled as local tem-

perature pulses at the lip of the nozzle. The operating

conditions mimicked the Mach 1.3 jet at GDTL. The

computations have provided a wealth of physical insight

into the mechanism of the actuation. In addition to exper-

imental data, this LES database informs the development

of the ROM described herein.

Forcing the jet near the JCM frequency for mixing

enhancement organizes the large-scale structures, which

facilitates the low-dimensional description of the dynam-

ics. Forcing at the higher frequencies required for noise
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attenuation has the opposite effect on the coherent struc-

tures, and many more modes would be needed for suc-

cessful modeling. The present article focuses on the first

problem as a feasible test bench for the modeling

paradigm.

The formulation of the ROM for unforced jets is briefly

revisited in Sect. 2. This motivates the design of the

experiments discussed in Sect. 3. Results of applying the

modeling technique to the experimental data are presented

in Sect. 4. The phenomenological model of LAFPA actu-

ation is described and validated in Sect. 5. Conclusions are

discussed in Sect. 6.

2 ROM of unforced jet

A brief description of the technique for modeling unforced

jets using empirical data is provided below; the details can

be found in Sinha et al. (2010b). It is noted at the outset

that an assumption of incompressibility has been shown to

be appropriate (Sinha 2011). In particular, a compressible

POD–Galerkin model [following Gloerfelt (2008)] derived

from the DNS database was found to be no more accurate

than the incompressible model. In any case, it is infeasible

to acquire the data required for deriving a compressible

ROM in the present experiments.

A cylindrical modeling domain of the unbounded axi-

symmetric jet encompassing the shear layer in the vicinity

of the end of the potential core is chosen since it is most

pertinent for the control objectives at hand (see Fig. 1). All

velocities and linear coordinates are normalized by the

nozzle exit velocity Uj and diameter D, respectively. Time

and pressure are normalized respectively by the flow

timescale D/Uj and the jet dynamic head qj Uj
2, where qj is

the nozzle exit density. With kinematic viscosity at the exit

denoted by mj, the pertinent Reynolds number is

Re: = UjD/mj. Frequencies f are normalized by the reci-

procal of the flow timescale to obtain the Strouhal number

StD = fD/Uj.

In cylindrical coordinates (x, r, h), the modeling domain

is X :¼ ½X1;X2� � ½0;R� � T: Here, X1 and X2 are the

upstream and downstream bounds of the axial domain, R is

the radial extent of the domain, and T is the circle group.

The velocity is U :X�R!R
3;U : ðx;r;h;tÞ7!ðUx;Ur;UhÞT:

With stationarity and axisymmetry assumed, the mean

velocity is Uðx;rÞ :¼E 1=ð2pÞ
R p
�p Uðx;r;h;tÞdh

� �
t
; where

the expectation operator E �½ �t signifies average over time t.

The fluctuating velocity is uðx;r;h;tÞ :¼Uðx;r;h;tÞ�
Uðx;rÞ: The corresponding Reynolds decomposition for

pressure P is written as p :¼P�P:

The POD along the homogenous and periodic azimuthal

direction is equivalent to an azimuthal Fourier transform,

and it is performed first:

uðx; r; h; tÞ ¼
XM

m¼�M

ûðx; r; t; mÞeimh;

ûðx; r; t; mÞ :¼ 1

2p

Zp

�p

uðx; r; h; tÞe�imhdh: ð1Þ

Here, m is the azimuthal mode, and M is the highest mode

retained. The domain of Fourier quantities is X̂ :¼
½X1;X2� � ½0;R�: The pressure field may also be decom-

posed similarly.

The velocity vector field û belongs to the function space

L2

X̂;m
(defined in the Appendix—Sect. 7.1). The associated

inner product (also defined in the Appendix) is such that

the square of the induced norm �j jj jX̂;m is the azimuthal

modal turbulent kinetic energy (TKE) integrated over the

domain. The goal of POD is, given an ensemble of data for

û 2 L2

X̂;m
; to find a subspace Sm � L2

X̂;m
of fixed dimension

Nm, such that the error E kû� Psm
ûk2

X̂;m

h i

t
is minimized

(Rowley 2002). Here, PSm
is the orthogonal projection onto

the subspace Sm. The classical POD requires the empirical

data in the form of two-point correlations over the entire

domain. This is onerous to obtain experimentally in the

present configuration. The alternative snapshot POD is

used instead. To emphasize the availability of velocity field

snapshots at discrete time instants tj, the notation may be

modified as û jðx; r; mÞ :¼ ûðx; r; tj; mÞ: Then, the POD

problem setup is

Fig. 1 Schematic of the

axisymmetric jet indicating the

modeling domain with the

inflow and outflow planes where

pressure is to be specified
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Ûnðx; r; mÞ :¼
X

j

bn
j ðmÞû j; ðx; r; mÞ;

X

j

û j; ûk
� �

X̂;mbn
j ðmÞ ¼ KnðmÞbn

kðmÞ: ð2Þ

Here, Kn and Ûn are respectively the eigenvalue and ei-

genfunction for the nth POD mode, and bn
k is the coefficient

of the kth snapshot toward Ûn: For later reference, the

components of Ûn in cylindrical coordinates are

ðÛn
x ; Û

n
r ; Û

n
hÞ:

The POD mode number n indexes the eigenvalues in

descending order. Then, the first Nm eigenfunctions form

the desired optimal basis for the subspace Sm. This allows

the following approximate change of coordinates for each

azimuthal mode m:

ûðx; r; t; mÞ �
XNm

n¼1

ânðt; mÞÛnðx; r; mÞ;

ânðt; mÞ ¼ hûð�; �; t; �Þ; ÛniX̂;m
.
kÛnk2

X̂;m: ð3Þ

The direct sum of the subspaces Sm � L2

X̂;m

n oM

m¼0

creates the subspace S � L2
X wherein the low-

dimensional kinematics is defined. Note that symmetry

considerations imply that the negative azimuthal modes are

not independent from the positive ones, so that the

dimension of S is NM :¼
PM

m¼0 Nm: The incompressible

Navier–Stokes equations governing the flow can be

formally written as _U ¼ NðUÞ; where N is an operator

on L2
X: The goal of reduced-order dynamics modeling is to

determine a dynamical system that evolves on S and

approximates the original dynamics in some sense (Rowley

2002). Galerkin projection specifies the new vector field on

S as the orthogonal projection of N onto S, yielding

_̂anðt;mÞ¼
X

n0
GLðn;n0;mÞân0 ðt;mÞ

þ
X

m0;n00;n0
GQðn;n0;n00;m;m0Þân0 ðt;m0Þân00 ðt;m�m0Þ

þdm;0GCðnÞ�2p
ZR

0

p̂ðx;r; t;mÞ Ûn
xðx;r;mÞ

� �H
rdr

�
�
�
�
�
�

�
�
�
�
�
�

X2

x¼X1

:

ð4Þ

Here, d is the Kronecker delta, and �ð ÞH denotes the Her-

mitian transpose. The terms in the equation are explained

in the Appendix—Sect. 7.2. The pressure term is negligible

for unforced jets (Sinha et al. 2010b), but will be important

for incorporating actuation effects in forced jets. The

dimensionality of S confers the nomenclature ‘‘NM-D

ROM’’ on the above model.

The empirical flow information required is a statistically

significant sample of instantaneous snapshots of the flow

variables over the entire domain. An approximation of such

snapshots may be obtained using stochastic estimation

(Tinney et al. 2008b). This involves two main steps: (1)

determining the correlation between pressure at a fixed

location in the irrotational near field and the velocity on a

fine-enough grid of points in the desired domain, and (2)

using the above correlations and the pressure record to

estimate a snapshot of the velocity over the entire domain.

The experimental complexity is reduced substantially by

performing plane-wise measurements of the velocity field

on discrete cross-stream sections as shown in Fig. 1 (Tin-

ney et al. 2008a). The accuracy of approximation is

enhanced by employing the spectral variant of linear sto-

chastic estimation (SLSE) owing to the disparity in the

spectra of the pressure and velocity fields as well as the

convective time lag between the two fields (Tinney et al.

2006, 2008b). The use of the linear array in addition to the

azimuthal array of pressure sensors further improves the

estimation (Sinha et al. 2010b).

3 Experimental setup

All experiments have been conducted at GDTL. The jet is

created using compressed air discharging horizontally

through a thick-lipped axisymmetric converging nozzle

into an anechoic chamber before exhausting outdoors (see

Fig. 2a). The nozzle exit diameter is D = 25.4 mm, the

Mach number is 0.9, and the jet is not heated. The Rey-

nolds number is Re * 6.7 9 105.

Each LAFPA consists of a pair of 1 mm diameter

tungsten electrodes connected to a high-voltage (*kV)

source through a high-frequency switching circuitry. A

boron nitride nozzle extension, with 25.4 mm inner diam-

eter and 15 mm thickness, is used to hold 8 LAFPAs dis-

tributed uniformly around the azimuth 1 mm upstream of

the exit. The center-to-center distance between the two

electrodes in a LAFPA is 3 mm. When the switch to a

LAFPA is closed, the voltage across the electrodes ramps

up to the breakdown voltage (*10 kV) in less than 10 ls.

The air between the electrodes is ionized, and an electric

arc is established. Immediately afterward, the voltage

across the electrodes drops to a few hundred volts and

remains at that level until the switch is opened. The com-

puter-generated signal that manipulates the switching cir-

cuitry is a rectangular pulse train with independent control

of frequency, phase, and pulse width. The bandwidth of the

actuators is 200 kHz, and the forcing frequency fF is nor-

malized to define the forcing Strouhal number StDF = fF D/

Uj. The relative phases of the eight actuators is controlled,

and forcing can be achieved at azimuthal modes mF = 0–3

as well as modes ±1, ±2, and ±4. The optimal pulse

width is *7 ls (Hahn et al. 2011), and this is used in the
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experiments. Note that the amplitude of excitation cannot

be controlled independently. More details of LAFPAs can

be found in previous publications from GDTL (Utkin et al.

2007; Samimy et al. 2007a, b, 2010).

A LaVision 3-component PIV system is used for

velocity measurements on the cross-stream plane of the

unforced jet at discrete streamwise locations between

x = 5.0 and 7.75 (Dx ¼ 0:25). The PIV is also performed

at x = {5, 6, 7} for 3 forcing cases near the JCM—viz.

StDF = 0.25, 0.3, and 0.35; mF = 0. A Spectra Physics

model SP-400 dual head Nd:YAG laser is used as the light

source. The two 4 MP cameras are placed downstream of

the jet exit outside windows in the anechoic chamber and

obey the Scheimpflug principle (see Fig. 2a). The jet plume

is seeded with diethylhexyl sebacate droplets atomized by a

four-jet LaVision atomizer. A 381 mm diameter duct is

placed co-axial with the jet to generate a very low-speed

(*0.01 Uj) entrained co-flow seeded by a fogger. The

average droplet size is 0.7 and 0.25 lm for the jet flow and

co-flow, respectively. Image pairs are separated in time by

1.4 ls, and 1,000 vector maps are recorded at 2 Hz on each

plane.

The resolution of the PIV images is *0.1 mm. Post-

processing using a three-pass correlation in the DaVis

software results in a resolution of *0.06D for the velocity

maps. Triangle-based linear interpolation is used to trans-

form the velocity maps to a polar grid. The radial grid has

Dr ¼ 0:0625 ending at 2D, and 80 grid points are placed in

the azimuth. The suitability of these parameters has been

established by Tinney et al. (2008a).

The pressure in the near irrotational field is measured

using a combination of an azimuthal and a linear array (see

Fig. 2b). The uniform azimuthal array has 16 sensors with

their tips placed at x = 3 and r = 1.5. The linear array has

4 sensors at x = 2.5, 3.0, 3.5, and 4.0 on a meridional plane

with their tips forming a line inclined at 8.6� to the jet axis;

the second sensor is actually common with the azimuthal

array. All 19 sensors are 1/4 in. B&K 4939 microphones

paired with B&K 2670 pre-amplifiers. The microphone

signals are band-pass filtered between 20 Hz and 100 kHz

and amplified by B&K 2690 amplifiers before being

simultaneously acquired using National Instruments A/D

boards and LabView software. Blocks of data are collected

at 100 kHz with 4,096 data points per block, resulting in a

spectral resolution of 24.4 Hz.

The auxiliary triggering capabilities of DaVis are used

to ensure that each PIV snapshot is taken approximately in

the middle of each pressure data block for computation of

the cross-spectra. The Q-switch trigger signal for the laser

is acquired simultaneously with the pressure so that the

relative temporal location of the snapshot can be pin-

pointed for each block in post-processing. The LAFPAs are

triggered by a rectangular pulse train with very low on-

percentage, which complicates the determination of phase

from digital samples. Instead, the control signal for the first

LAPFA is also fed to an Agilent 3320A 20 MHz waveform

generator where each rising edge triggers a ramp signal.

The signal thus derived is acquired simultaneously with the

pressure and decoded in post-processing to infer the phase.

Additionally, 2-component PIV is performed on a

meridional plane for the unforced jet and the jet forced at

StDF = 0.3, mF = 0. This reuses much of the equipment

and processing described above; the setup is depicted in

Fig. 2a. The resulting vector map has spatial resolution of

0.093D and covers the entire jet plume over the axial

domain between 0.3 and 12D. For ensemble-averaged

statistics, 1,000 image pairs are recorded at about 5 Hz. In

addition, sets of 250 image pairs locked to 8 equally-

spaced phases of the actuation signal are acquired for the

forced case.

Fig. 2 Schematic of a jet

experimental facility, and

b near-field pressure sensing

setup
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4 Results for unforced jet ROM

The axial domain of the ROM is in the range

5 B x B 7.75, that is spanned by the cross-stream PIV

sections. The model aims to capture the essential changes

in the jet dynamics due to forcing in real time. For this, the

domain must be just long enough to contain the largest of

the relevant convecting coherent structures. The axial

wavelength of structures generated by forcing near the

JCM is *2D in the above axial range (see below and

Kearney-Fischer et al. (2009)). Lengthening the axial

domain makes reduced-order modeling more difficult since

the POD modes converge more slowly (Kastner et al.

2009). This justifies the choice of the axial extent of the

domain. Furthermore, setting the upstream limit of the

domain at x = 5 is necessitated by the need to encompass

the end of the potential core at x & 6. Although not pur-

sued in this article, this is relevant for modeling the dom-

inant noise sources (Hileman et al. 2005).

4.1 Stochastic estimation

The modeling process begins with the construction of an

ensemble of approximate flow-field snapshots from

experimental data using SLSE. Tinney et al. (2008b)

developed this technique and applied it to the experimental

data from a Mach 0.85 cold jet. Subsequently, Sinha et al.

(2010b) have evaluated various configurations of pressure

measurement and strategies for velocity pre-processing

using the DNS data of Freund (2001). The procedure

established therein is employed in the present work; hence,

the details are omitted. The following discussion focuses

on the assessment of the fidelity of reconstruction.

The velocity field was acquired as snapshots on cross-

stream slices. Denoting the corresponding reconstructed

field as urec, the following reconstruction fidelity metrics

are proposed

Ârec

i ðx;mÞ :¼
E ûrec

i ; ûi

� �
X̂x;m

h i

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E kûrec
i k

2

X̂x;m

h i

t
E kûik2

X̂x;m

h i

t

r ;

.̂rec
i ðx;mÞ :¼

E kûrec
i k

2

X̂x;m

h i

t

E kûik2

X̂x;m

h i

t

: ð5Þ

The first metric represents the alignment of the recon-

structed field with the measured one for a particular com-

ponent i 2 fx; r; hg and an x–m pair. The second is the ratio

of the reconstructed energy to the measured energy.

The alignment metric is presented for the axial com-

ponent of velocity in Fig. 3a. SLSE is biased toward larger

scales that are better correlated, and this is evident in the

improved accuracy at lower azimuthal mode numbers.

Reconstruction fidelity is also seen to reduce with down-

stream distance owing to diminishing correlations with the

fixed pressure sensing rig at the upstream location. Overall,

the SLSE-reconstructed field appears to be approximating

the larger scales quite adequately, and this is borne out by

subsequent results.

The energy ratio metric presented in Fig. 3b highlights

the fact that, without further modification, the derived POD

modes would be biased toward lower values of m and x.

Moreover, the modal energies from the empirical data enter

into the ROM through the eddy viscosity (see the Appen-

dix—Sect. 7.2), and their incorrect approximation would

destabilize the ROM. Thus, the following ad hoc energy-

scaling transformation is proposed to revert the energy of

the estimated field to that found in the PIV

ûrec
i ðx; r; t; mÞ ! ûrec

i ðx; r; t; mÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
.̂rec

i ðx;mÞ
q

: ð6Þ

This is applied to the database of approximate snapshots

for all the results presented here, since the ROMs per-

formed much worse otherwise.

Fig. 3 Axial components of local modal SLSE reconstruction fidelity metrics. a Reconstruction alignment, b reconstruction energy
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4.2 Proper orthogonal decomposition

The PIV measurements are performed with Dx ¼ 0:25; but

the SLSE-reconstructed approximate snapshots are inter-

polated on a grid with Dx ¼ 0:0625: The centerline is

avoided since it is a singularity for the cylindrical coordi-

nate system, and the radial domain starts from r = 0.0625

instead. POD is performed on 700 independent snapshots,

and the eigenspectrum is shown in Fig. 4. For m = 0, the

eigenvalues are doubled to account for the negative modes.

The eigenvalues are expressed as a percentage of the total

energy measured in PIV (integrated over its corresponding

coarser axial grid). Previous slice-POD results have indi-

cated that, although m = 3 or 4 is the most energetic azi-

muthal mode at x = 5, the spectrum shifts to lower m’s by

x = 8 (e.g., Tinney et al. 2008a). The POD here integrates

over this axial domain, and Fig. 4 demonstrates the dom-

inance of m = 1. The paired energetic modes in m = 1 and

2 indicate a wave-like character in these modes. The 34

most energetic modes are indicated by dots and constitute

41 % of the fluctuation energy; these are used subsequently

in the ROM. The high turbulence level is responsible for

the slow convergence of POD modal energy.

The first few POD eigenfunctions of the axial compo-

nent of velocity are examined in Fig. 5. The phase-shifted

structure of the first pair of POD modes in m = 1 and 2 is

readily observable. With increasing azimuthal mode, the

locus of energy shifts from the high-speed side of the shear

layer to the low-speed side (Tinney et al. 2008a), and this

is demonstrated here too. Note that, without the transfor-

mation in Eq. 6, the structures at downstream locations

would have much poorer resolution.

According to Noack et al. (2010), a ‘‘shift mode’’

encapsulates the primary mean flow dynamics, and its

inclusion is crucial for stability and fidelity of the ROM.

The model developed herein is designed to simulate forc-

ing around the JCM. Thus, one candidate for the shift mode

is the difference in the mean velocity fields obtained

without forcing and with forcing near the JCM in experi-

ments. The axial component of this differential mean

velocity field is shown in Fig. 6. The potential core is

shortened and the shear layer is spread due to forcing.

The unforced flow is axisymmetric in the mean. More-

over, in the forcing regime under consideration, all LAF-

PA’s are operated in phase to simulate axisymmetric

forcing. Thus, the shift mode is an m = 0 mode. To include

it in the ROMs, Gram–Schmidt orthonormalization is

applied to all m = 0 POD modes, with the shift mode as

the first vector field. Since the Fourier azimuthal modes of

velocity are mutually orthogonal, the m = 0 modes are not

affected by this inclusion. The shift mode accounts for 0.2

% of the flow energy; in comparison, the first POD mode in

m = 0 captures 1.0 % of the energy (see Fig. 4).
Fig. 4 Eigenspectrum with modes selected for the 35-D ROM

indicated by dots

Fig. 5 First few Ûx modes. Contour levels are equi-spaced but arbitrary in absolute value. Positive and negative levels are black and gray
respectively, but the sign is again arbitrary
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The inclusion of the shift mode is indeed found to sta-

bilize the otherwise unstable ROMs. As a result, the tra-

jectories remain bounded in simulations up to 5,000 flow

time steps from 40 arbitrary initial conditions for ROMs of

various dimensions from 15 to 40.

4.3 Reduced-order model

The accuracy of ROMs obtained through POD and

Galerkin projection is not a monotonic function of the total

energy of the retained modes (e.g., Rowley 2002; Ilak and

Rowley 2008). Indeed, for the present flow, the ROM built

using the 35 most energetic modes out-performed the 25-

and 45-D ROM’s in terms of the metrics defined below.

Hence, the 35-D ROM will be studied exclusively herein.

The 35 most energetic modes are those indicated in Fig. 4

plus the shift mode. The values of Nm for the 35-D ROM

can be read off from the figure; for example, N2 = 7.

Moreover, the highest azimuthal mode retained is M = 5.

The reduced-order modeling strategy outlined in Sect. 2

has been validated for the low-Re DNS database that

consisted of time-resolved flow information (Sinha et al.

2010b). Such data are not available from experiments

directly, but SLSE applied on the time-resolved pressure

measurements is used to approximate a similar database.

The azimuthal component of instantaneous vorticity

(denoted as xh) is used to visualize the structures. The first

row of Fig. 7 depicts snapshots from the reconstructed

database at four successive time instants after t = s, an

arbitrary instant in the pressure record. The low-dimen-

sional representations of these fields shown in the middle

row are obtained by projection onto the 35-D subspace.

The 35-D ROM is simulated using Runge–Kutta (4, 5)

method, the initial condition being the projected field at

t = s. The resulting xh fields are presented at the corre-

sponding times in the bottom row. The simulated field is

found to track the projected field, with the size and

Fig. 6 The mean axial velocities with forcing at StDF = 0.3, mF = 0

minus that from the unforced case, proposed as the shift mode

Fig. 7 Snapshots of simulated azimuthal vorticity on the h = 0 plane

obtained from the 35-D ROM compared with the SLSE-reconstructed

field as well as its projection on the 35-D POD basis at corresponding

times. The times of each snapshot from the initiation of simulation are

indicated at the top of each column. The fields in the top row are

saturated at the indicated levels to aid visual comparison
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convection speed of the large-scale structures being

reproduced well for several flow time steps beyond initia-

tion of simulation.

Denoting the simulated velocity field by usim, the fol-

lowing metrics are defined for quantifying the fidelity of

ROMs:

EsimðTÞ :¼
E kusimðsþ TÞ � PSuðsþ TÞk2

X

h i

s

E kPsuðtÞk2
X

h i

t

; ð7aÞ

AsimðTÞ :¼ E
usimðsþ TÞ;PSuðsþ TÞ
� �

X

kPSuðsþ TÞkXkusimðsþ TÞkX

" #

s

: ð7bÞ

Here, T refers to the time from initiation of model simu-

lation, and the expectation is over different initiation

instants s. Recall that PSu denotes the projection of the

velocity field u (reconstructed from SLSE) onto the sub-

space S used to construct the ROM. The first metric rep-

resents the normalized mean square error in the simulated

field compared with the projected one. The second metric

measures the alignment of the simulated field with the

projected field and signifies fidelity in reproduction of the

large-scale structure dynamics.

Figure 8 presents the two metrics evaluated by averag-

ing over simulations from 20 independent initial condi-

tions, denoted in the definition by t = s. The bars depict

the ±1SD (over the different initial conditions) at repre-

sentative times. Although rapid degradation is observed

immediately after initiation, significant alignment can be

seen up to *2 flow time steps from initiation. The simu-

lation error reaches unity at T & 0.6.

Statistical analysis is performed on trajectories obtained

by simulating the ROM up to 1,000 flow time steps from 50

different initial conditions. The projected POD coefficient

corresponding to the shift mode has vanishing mean over

sufficiently large ensembles. However, the corresponding

mean from simulations is always found to be finite. It is

hypothesized that the truncation of the eigenfunction basis

is not fully counteracted by the eddy viscosity model,

resulting in this modification of the mean location of the

flow attractor in phase–space.

Figure 9 presents the mean square of the axial fluctu-

ating velocity field from the simulation at the centerline

and lip-line. These fluctuations are with respect to the

simulated mean field. Comparison with meridional PIV

measurements reveal that the centerline statistics are very

accurate. This is accounted for by the relative fidelity of the

SLSE-reconstructed m = 0 field (see Fig. 3a), which

dominates the centerline as observed in Fig. 5. The lip-line

energy is substantially overpredicted by the ROM, pre-

sumably because of inaccurate modeling of the higher

azimuthal modes that are active here. ROMs of dimen-

sionality lower and higher demonstrated poorer fidelity in

this comparison.

Further insight is afforded by a study of the azimuthal

modal content of the simulated field in Fig. 10. Compared

with cross-stream PIV data, the lower m’s are seen to be

modeled with sufficient accuracy. However, energies at

downstream stations and higher m’s are increasingly

overpredicted. This is a disadvantage of the scaling per-

formed in Eq. 6 to improve model fidelity. The truncation

of the spatial basis creates a barrier in the energy cascade

Fig. 8 Simulation fidelity metrics for 35-D ROM

Fig. 9 Local energies of ux from experiments and ROM near

centerline and lipline

Fig. 10 Radially integrated azimuthal modal energies of ux from

experiments and ROM at three axial stations
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causing a ‘‘pile-up,’’ which may also explain the increase

in energy with m.

The frequency domain character of the ROM is impor-

tant for reproducing the response of the jet to periodic

excitation, prompting the study of its power spectral den-

sity (PSD) in Fig. 11. The low-frequency parts of the

spectra are flat, indicating simulation of broadband turbu-

lence. The high-frequency roll-off rates are steeper than the

turbulent inertial subrange owing to the absence of the

smaller scales in the ROM. The jet preferred mode (Pet-

ersen and Samet 1988) is captured in the sharp peak at StD
& 0.3 near the centerline, although its relative amplitude

appears to be overpredicted (refer to Tinney et al. (2006)

for a comparison). In moving radially outward, the spectral

levels first increase and then decrease beyond the lip-line,

as reported in the literature (Tinney et al. 2006). Finally,

the shoulder-frequency starts off high near the centerline,

but reduces in traversing outward.

The statistics presented above from the long-time sim-

ulations of the ROM obtained from experimental data are

quite encouraging. They indicate that the essential

dynamics of the jet are being captured with sufficient

fidelity in spite of the many simplifying assumptions.

5 Incorporating the effect of LAFPAs in the ROM

Detailed modeling of the plasma actuation is very difficult

due to the paucity of measurements in the challenging

experimental environment as well as the complexity of the

physics and the wide separation of scales. The available

observations were used to inform a quasi-1D arc filament

model in quiescent conditions (Utkin et al. 2007). It pre-

dicted a rapid diminution of the initial thermal effect but a

much longer persistence of the generated compressive pulse.

Compression waves have indeed been observed in schlieren

imaging (Hahn et al. 2011) and near-field pressure signals

(Sinha et al. 2010a) in the forced jet. This justifies the neglect

of thermal effects of actuation at the downstream modeling

domain. Instead, the model presented below incorporates the

actuation effect in the ROM within the constraints of the

necessary incompressible assumption.

5.1 Phenomenological model of LAFPA forcing

A study of the proposed ROM in Eq. 4 reveals that, once

the unforced jet has been modeled, actuation effects may

be incorporated in two main ways. The coefficients of the

ROM may have to be modified if the POD basis is

unsuitable for capturing the forced velocity fields. Other-

wise, the pressure at the ends of the modeling domain (see

Fig. 1) may incorporate the forcing information. A com-

bination of the two effects may also prevail.

The effect of actuation may fundamentally alter the

model of the unforced flow by rendering irrelevant the

POD basis derived thereof. Empirical data for the POD

must then be collected and merged from several open-loop

forcing experiments covering the range of interest (e.g.,

Caraballo et al. 2008). This is mostly an issue if very few

([10) modes are retained in the ROM and may cease to

matter when more modes are included for simulating

broadband fluctuations. The following describes a tech-

nique for rudimentary assessment of axisymmetric

(mF = 0) forcing effects on the POD basis functions.

Two-component PIV has been performed in the merid-

ional plane for the unforced jet as well as for the jet forced

near the JCM (StDF = 0.3, mF = 0). A very crude

approximation of the m = 0 mode of axial velocity fluc-

tuations may be obtained by averaging the fluctuations

from the two sides of the centerline in any snapshot. The

mean velocity from the unforced jet data is used in the

Reynolds decomposition of both unforced and forced jet

data. The POD for the forced jet is performed in the

standard manner. For the unforced jet, the shift mode

computed with the forcing case is included as before. Half

of the forced jet field snapshots form the input for POD,

and the remaining are used for assessing the reconstruction

fidelity. The energy of residual error in POD reconstruction

is determined for increasing number of POD basis func-

tions, N0. In each case, the reconstruction is also performed

using the POD basis from the unforced case. The difference

in the energy of the reconstruction error is found to be less

than 2.2 % of the total fluctuation energy for N0 2 ½1; 10�:
Consequently, the effect of actuation near the JCM cannot

be incorporated in the ROM through a modification of the

coefficients linked to a changing POD basis.

Instead, it is proposed to model the pressure fluctuations at

the inflow and outflow boundaries of the modeling domain

by a deterministic function of the forcing parameters. We

have noted in the introduction to this section that the plasma

actuation indeed manifests as a periodic compressive pulse at

downstream stations, with minimal thermal modification. A

Fig. 11 PSD of ux at x = 6 from ROM
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phase-resolved description of the velocity fluctuations on the

relevant cross-sections is available from experiments with

forcing near the JCM. Additionally, an LES of this forcing

case (albeit for a Mach 1.3 jet) is also available from Gait-

onde and Samimy (2011). A technique is presented below to

employ these building blocks to arrive at the desired func-

tional relation for the pressure.

Lau et al. (1972) showed that a local phase relation

exists between the hydrodynamic pressure and the axial

and radial velocity in a low-Re jet owing to the presence of

large-scale vortical structures in the mixing layer. Pressure

fluctuations are in phase with axial velocity fluctuations in

the entrainment region, whereas they are in anti-phase in

the core region. Within the mixing layer, the correlation

switches sign. Pressure fluctuations are in quadrature with,

and lead, the radial velocity fluctuations in all three

regions. Numerous experiments have established that

quasi-periodic large-scale vortical structures also exist in a

high-Re jet forced with LAFPAs near the JCM (e.g., Sa-

mimy et al. 2007a; Kearney-Fischer et al. 2009). Thus, the

phase of the periodic part of the hydrodynamic pressure

can be determined from knowledge of the phase-resolved

velocity fluctuations at the same position.

The vortex model is insufficient for determining the

amplitude of the pressure field, and thus use is made of the

JCM forcing case from the LES database. Figure 12a–c

demonstrate that the phase relations, as captured in the

relevant cross-correlations from the LES data, agree clo-

sely with the vortex model. The correlation coefficients are

highly periodic, and the amplitudes are almost unity, due to

the generation of periodic coherent vortices that dominate

the hydrodynamic field. In experiments, although the PIV

snapshots are at uncorrelated times, the simultaneous

acquisition of the actuation phase allows the computation

of the phase-resolved velocity correlations shown in

Fig. 12d. The contour map is similar to its time-resolved

counterpart observed for the LES data in Fig. 12c, in spite

of the large difference in Mach numbers. The strength of

these correlations again demonstrates the degree of orga-

nization attained with LAFPA forcing near the JCM for the

high-Re jet.

The pressure–velocity correlations in the LES data will

be employed to estimate the pressure field at the inflow and

outflow boundaries of the ROM for experimental data.

Ideally, one would prefer to use both axial and radial

velocity components in the estimation, owing to the joint

Fig. 12 Computational and experimental cross-correlation coeffi-

cients of m = 0 mode of pressure and velocity at x = 5 for forcing

with StDF = 0.3, mF = 0. Here, r denotes the root mean square at a

specified x and r, and TF (= 1 / StDF) is the forcing period. a

E ûH
x ðt þ t

0 Þp̂ðtÞ
� �

t
=ðrûx

rp̂Þ from LES. b E ûH
r ðt þ t

0 Þp̂ðtÞ
� �

t
=ðrûr

rp̂Þ
from LES, c E ûH

x ðt þ t
0 ÞûrðtÞ

� �
t
=ðrûx

rûr
Þ from LES, d E ûH

x ðt þ t
0 Þ

�

ûrðtÞ�t=ðrûx
rûr
Þfrom experiment
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correlations. However, detailed comparison of the radial

variations of the ux-ur correlation profiles in Fig. 12c, d

reveals certain differences. The reason can be traced to

differences in the location of the axial station relative to the

end of the potential core, the precise jet width, as well as the

typical center of the passing vortices. The ux-p correlations

switch sign within the mixing layer, and mismatches in the

position of this switch introduces errors in the estimate. On

the other hand, the ur-p correlations maintain a uniform

phase relation throughout the radial domain.

The foregoing discussion motivates the following esti-

mation model:

p̂ðx; r; t; mFÞ

� 1

TF

ZTF=2

�TF=2

L̂
Hðt0; x; r;mFÞûrðx; r; t þ t0; mFÞdt0; ð8Þ

where the coefficients L̂ remain to be determined. Only the

pressure field in m = mF is assumed to be organized

enough to be modeled in this fashion. Moreover, the

periodicity imposed by LAFPA forcing is exploited to limit

the time-dependency horizon. This is recognized as a linear

stochastic estimation problem with finite time delays.

The temporal periodicity of the model implies that the

solution is more efficient in Fourier space, so that the

spectral variant (Tinney et al. 2006) is actually invoked for

determining L̂: Indeed, only the fundamental and the first

harmonic of the forcing frequency are sufficient, and these

are used for the approximation shown in Fig. 13a. The

radial and temporal variation of the pressure field obtained

directly from LES in Fig. 13b is quite comparable. The

absolute amplitude is about 2.5 times higher in the LES,

but this can be explained in part by the increased Mach

number. Indeed, a virtual pressure probe placed at the same

location in the computational domain as the azimuthal

microphone array in experiments measured an amplitude

about twice that observed in experiments.

This completes the approximation of the pressure field at

x = 5, the inflow plane for the model. The outflow plane at

x = 7.75 has not been discussed. Both the phase-averaged

ur fluctuations in experiments and the pressure fluctuations

in LES are much reduced at this station and so are profit-

ably neglected. Thus, the approximate axisymmetric pres-

sure field presented in Fig. 13a is adequate for computing

the ‘‘forcing term’’ in the ROM of Eq. 4.

The LAFPA model has been developed from empirical

data (both experimental and numerical) of the jet forced at

StDF = 0.3, mF = 0 exclusively. However, the validity of

the model is expected to extend to a neighborhood of the

parameter space. In particular, the phase variations of the

pressure term can be imposed over varying forcing periods

to simulate different StDF’s, and this is pursued in the

following. Extension of the above pressure pattern to other

mF’s may be more difficult, but the modeling technique

described here can be easily reused with appropriate

empirical data.

5.2 Validating the model of the forced jet

The 35-D ROM is simulated with forcing at StDF = 0.3,

mF = 0 over 75 forcing periods starting from 20 different

initial conditions of the unforced jet. The first 25 forcing

periods are neglected in the computation of statistics. Note

that the trajectories did not diverge in simulations over

5,000 flow time steps. A triple decomposition (Reynolds

and Hussain 1972) is performed on the simulated velocity

field, and the axisymmetric mode of the phase-averaged

velocity field is denoted by ~U: The azimuthal component of

vorticity computed from this field (~xh) is presented in

Fig. 14a for an arbitrary phase. For comparison, the cor-

responding field from phase-locked meridional PIV is

shown in Fig. 14b. The shapes and intensities of the

structures match quite closely, although the wavelength is

somewhat under-predicted (to be quantified below).

Fig. 13 Experimental and computational phase-resolved m = 0 pressure field at x = 5 for forcing at StDF = 0.3, mF = 0. a Estimated from

experiments, b directly from LES. Note that the color-scales are different
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The vorticity contours presented in Fig. 14 aid in visuali-

zation of structures, but ~u ¼ ~U� E ~U
� �

t
being numerically

more accurate, are used in quantitative comparisons of the

phase-averaged structure pattern now. The wavelength is

calculated from the axial separation of the peaks of the ~ux

auto-correlation (in x) at the centerline. Sixteen equally

spaced phases are extracted from the simulated data, and the

average wavelength is reported in Table 1. As described in

the previous section, the phenomenological LAFPA model is

simulated over a range of StDF’s in a neighborhood of the

JCM. Per our expectation, the wavelength decreases mono-

tonically with increasing StDF. Phase-resolved three-compo-

nent PIV at x = 5, 6, and 7 is used to estimate the wavelength

in experiments from phase lags of the cross-correlations. The

ROM under-predicts the wavelengths as well as the sharpness

of the decrease. Apart from the shift mode, only four other

m = 0 POD modes are included in the ROM, which explains

the limited range of wavelengths that can be represented.

Moreover, the axial extent of the domain, being 2.75 D, may

also be contributing to the discrepancy.

The amplitude of the wave pattern in the ~u field is

computed by extracting the fundamental from a Fourier

transform in phase. As presented in Table 1, the ROM

predicts a strong response at StDF = 0.3, and the much

reduced response at side StDF’s is indicative of resonance.

This is explained by the spectral peak at StD = 0.3

exhibited by the ROM of the unforced jet in Fig. 11.

Comparison with the corresponding amplitudes calculated

from experiments validates the optimal response behavior.

However, the strength of the response is under-predicted,

and the sharpness is overpredicted.

Figure 14 has depicted ~xh for a particular phase. The

peak absolute value appearing within the modeling domain

across all sixteen extracted phases is presented in Table 1

for the different StDF’s. The variation of vorticity magni-

tude with StDF is of direct interest for mixing enhancement.

The ROM is predicting that the maximum effectiveness of

forcing should occur in a narrow region of the forcing

parameter space near the JCM. This mirrors the ~ux ampli-

tude variations and has the same explanation. The peak ~xh

observed within the relevant domain in phase-locked PIV

at StDF = 0.3 is also noted in the table. The agreement with

the predictions from the ROM is very good, given the

modeling simplifications.

The hydrodynamic pressure in the near-field filters out

the smaller scales and thus provides a low-dimensional

description of the mixing layer fluctuations. The pressure

field has been extensively surveyed using the sensing rig

described in Sect. 3 and also discussed in depth by Sinha

et al. (2010a). The variation in the axisymmetric (m = 0)

mode of pressure reported in Table 1 reflects the optimal

Fig. 14 Phase-averaged azimuthal vorticity with forcing at StDF = 0.3, mF = 0. a From stimulation of 35-D ROM, b from phase-locked PIV in

experiments

Table 1 Quantitative results of mF = 0 mode forcing in 35-D ROM

and experiments

Metric Source Forcing Strouhal number, StDF

0.20 0.25 0.30 0.35 0.40

Wavelengtha ROM 2.41 2.18 2.09 2.05 1.98

Experiment – 3.08 2.54 2.20 –

Amplitudeb 910 ROM 0.13 0.32 0.85 0.23 0.13

Experiment – 1.11 1.40 1.31 –

Azimuthal vorticityc ROM 1.24 1.32 1.54 1.30 1.27

Experiment – – 1.48 – –

Pressured 91,000 Experiment 3.29 3.85 4.11 3.65 2.71

TKEe 9100 ROM 0.99 1.07 1.45 0.99 1.03

Experiment – – 1.33 – –

a From ~ux at r = 0.0625, normalized by D
b From ~ux at x = 6 and r = 0.0625, normalized by Uj

c Peak value of ~xh; normalized by Uj /D
d Root mean square of m = 0 mode in the near field at

x = 3, r = 1.5
e Averaged over x [ [5, 7.75] at r = 0.0625, using ux and ur
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response of the jet to forcing near the JCM and provides

useful validation for the 35-D ROM.

The centerline TKE has been used in the literature to

characterize mixing enhancement (e.g., Samimy et al. 2010).

Figure 9 has demonstrated that the ROM is able to reproduce

the centerline turbulent fluctuations in the unforced jet quite

closely. Table 1 presents the 2-component centerline TKE

(averaged over the axial domain of the ROM) for several

StDF’s. The corresponding value from experiments at

StDF = 0.3 does not represent a large discrepancy. Similar to

the wave amplitude and vorticity metrics, the ROM predicts

an optimal TKE for forcing near the JCM.

6 Conclusions

Plasma actuation of high-speed and high Reynolds number

jets near the JCM frequency generates robust coherent

structures which has application in mixing enhancement.

The present article describes the design of a feedback-

oriented empirical reduced-order model for this flow.

Stochastic estimation, POD, and Galerkin projection are

used in sequence to model the unforced jet from experi-

mental data. The inclusion of a specially designed ‘‘shift

mode,’’ encoding the dominant flow change between the

unforced state and the state of JCM forcing, stabilizes the

ROM. A detailed analysis is presented for the performance of

a 35-D model of the jet flow field near the end of the potential

core. It is compared with the acquired experimental data as

well as an approximation of time-resolved data derived

thereof. Feedback controllers sense the system state in real

time, thereby effectively shortening the required prediction

horizon. The ROM provides useful predictions over the first

few flow time step after initiation, beyond which simulated

trajectories quickly diverge from the actual. Since the plasma

actuators are frequency modulated, the long-term ensemble-

averaged and spectral statistics predicted by the ROM are

also important. In these respects, the model demonstrates

sufficient accuracy. Overall, the spectrum has the broadband

character typically measured in experiments. Due to its low

dimensionality, the ROM spectrum exhibits a strong peak at

the preferred mode, a diminished version of which is com-

monly observed in reality. The fluctuation energies in the

lower azimuthal modes as well as along the centerline are

accurately replicated.

The effect of plasma actuation is incorporated in the

ROM through a deterministic shaping of the pressure field

at the upstream boundary of the cylindrical modeling

domain. The pressure function is obtained using stochastic

estimation in conjunction with experimental measurements

and an existing numerical simulation database. This phe-

nomenological model of the pressure is designed to be valid

for axisymmetric forcing at frequencies in a neighborhood

of the JCM. Phase-averaged and ensemble-averaged sta-

tistics predicted by the ROM agree well with experimental

observations for forcing near the JCM frequency. More-

over, the highly nonlinear response of the jet, as reflected by

the narrow range of optimal forcing parameters for mixing

enhancement, is also captured with sufficient accuracy.

Considered all together, the results suggest that the 35-D

model for simulating LAFPA-induced mixing enhance-

ment in high-Re jets may be adequate for feedback control

design. The actual design of the feedback laws in this

challenging problem remains an open question.
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Appendix

Inner products

The Lebesgue space of square–integrable functions with

domain in X is denoted by L2
X: The appropriate inner

product for physical vector fields in L2
X is

hv;wiX :¼
ZX2

X1

ZR

0

Zp

�p

wTðx; r; hÞvðx; r; hÞrdhdrdx;

v;w 2 L2
X; v;w : X! R

3;

where �ð ÞT denotes transpose. The inner product for the mth

azimuthal Fourier mode of a vector field in L2

X̂;m
is

hv̂; ŵiX̂;m :¼
ZX2

X1

ZR

0

ŵHðx; r; mÞv̂ðx; r; mÞrdrdx;

v̂; ŵ 2 L2

X̂;m
; v̂; ŵ : X̂! C

3:

If vector fields in the azimuthal Fourier space are

defined at a single axial location only, say x, then the

domain becomes X̂x :¼ fxg � ½0;R�; and one defines

hv̂; ŵiX̂x;m
:¼
ZR

0

ŵHðx; r; mÞv̂ðx; r; mÞrdr; v̂; ŵ 2 L2

X̂x;m
;

v̂; ŵ : X̂! C
3:

These definitions can be readily modified to obtain the

corresponding scalar inner products that address a single
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component of the vector fields; the form of the arguments

would make the notation unambiguous. Finally, the

corresponding norms have the standard notation. For

example, kv̂kX̂;m :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv̂; v̂iX̂;m

q
.

Details of the ROM

The non-dimensionalized incompressible Navier–Stokes

equation in generic coordinates is

oU

ot
¼ 1

Re
r2U� U � rð ÞU�rP

¼:
1

Re
N LðUÞ þ N QðU;UÞ þ N FðPÞ:

Reynolds decomposition is applied to the velocity and

pressure fields, followed by azimuthal Fourier decomposition

and POD of the fluctuations. Subsequent Galerkin projection

onto the retained azimuthal Fourier and POD basis yields the

reduced-order model in Eq. 4. The static coefficients in Eq. 4

are

GCðnÞ :¼ 1

Re
N̂ L U

 �
þ N̂ Q U;U


 �
þ N̂ F P


 �
; Ûn

� 


X̂;m¼0

;

GLðn; n0; mÞ :¼ 1

Re
1þ dn;n0m

n
TðmÞ

� �
Gd

Lðn; n0;mÞ þ Gc
Lðn; n0; mÞ;

Gd
Lðn; n0; mÞ :¼ N̂ L Ûn0

� �
; Ûn

D E

X̂;m
;

Gc
Lðn; n0; mÞ :¼ N̂ Q U; Ûn0

� �
þ N̂ Q Ûn0 ;U

� �
; Ûn

D E

X̂;m
;

GQðn; n0; n00; m; m0Þ :¼ N̂ Q Ûn0 ðm0Þ; Ûn00 ðm� m0Þ
� �

; Ûn
D E

X̂;m
:

The accented operators N̂ refer to the azimuthal Fourier

transforms of the corresponding physical operators N ;
obtained by substituting q/qh with im when the supplied

argument has azimuthal mode m. Ensemble-average quanti-

ties are treated as m = 0 fields. All these coefficients are real

following the symmetry arguments presented by Sinha et al.

(2010b). The ‘‘forcing’’ term in Eq. 4 arises from

hN̂ Fðp̂ðtÞÞ; ÛniX̂;m through an invocation of Gauss’ diver-

gence theorem, and an additional assumption that Ûr

�
�
r¼R
� 0:

Following Cazemier et al. (1998), the modal eddy viscosity

factor is uniquely determined by requiring that the time

derivative of modal energy should vanish in ensemble average:

mn
TðmÞ¼max 0;�1� Re

Gd
Lðn;n;mÞKnðmÞ

(

Gc
Lðn;n;mÞK

nðmÞ
"

þ
XM

m0¼m�M

XNm0

n0¼1

XNm�m0

n0¼1

GQðn;n0;n00;m;m0Þ

E < ânðmÞð ÞHân0 ðm0Þân00 ðm�m0Þ
� �h i

t

)#

:
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