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We study the viscous spatial linear stability characteristics of the time-averaged
flow in turbulent subsonic jets issuing from serrated (chevroned) nozzles, and
compare them to analogous round jet results. Linear parabolized stability equations
(PSE) are used in the calculations to account for the non-parallel base flow. By
exploiting the symmetries of the mean flow due to the regular arrangement of
serrations, we obtain a series of coupled two-dimensional PSE problems from the
original three-dimensional problem. This reduces the solution cost and manifests the
symmetries of the stability modes. In the parallel-flow linear stability theory (LST)
calculations that are performed near the nozzle to initiate the PSE, we find that the
serrated nozzle reduces the growth rates of the most unstable eigenmodes of the jet,
but their phase speeds are approximately similar. We obtain encouraging validation
of our linear PSE instability wave results vis-a-vis near-field hydrodynamic pressure
data acquired on a phased microphone array in experiments, after filtering the latter
with proper orthogonal decomposition (POD) to extract the energetically dominant
coherent part. Additionally, a large-eddy simulation database of the same serrated jet
is investigated, and its POD-filtered pressure field is found to compare favourably
with the corresponding PSE solution within the jet plume. We conclude that the
coherent hydrodynamic pressure fluctuations of jets from both round and serrated
nozzles are reasonably consistent with the linear instability modes of the turbulent
mean flow.
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1. Introduction

Jet noise is a concern for the continued expansion of aviation, and several passive
and active control techniques are being researched to address the issue. One such
solution that has been actually deployed on production aircraft is the addition of
serrations called chevrons at the nozzle trailing edge (see figure 1). The chevron tips
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FIGURE 1. (Colour online) Round (a) and serrated (b) nozzles (among many) evaluated
in experiments by Bridges & Brown (2004).

impinge on the jet shear layer and generate streamwise vortices that enhance mixing
and shorten the potential core (Bridges & Brown 2004; Alkislar, Krothapalli & Butler
2007). In fact, the time-averaged jet cross-section becomes serrated corresponding to
the chevrons on the nozzle. The nozzle serrations reduce the low-frequency mixing
noise at aft angles (the loudest component of jet noise), but typically increase
high-frequency noise at all angles (Bridges & Brown 2004).

The low-frequency aft-angle mixing noise in round jets has been linked with
the kinematics of large-scale coherent structures within the turbulent jet plume, as
reviewed recently by Jordan & Colonius (2013). The convecting coherent fluctuations
appear as wavepackets in narrow-band-frequency-filtered two-point cross correlations,
especially in the irrotational near pressure field, as observed first by Mollo-Christensen
(1967). The low-frequency wavepackets display significant coherence over streamwise
domains that are several times the nozzle exit diameter. Such observations have
since prompted many attempts at modelling turbulent coherent structures as linear
instability modes of the time-averaged flow field — the Kelvin—Helmholtz instability.
As examples, we cite the works of Crighton & Gaster (1976), Mankbadi & Liu (1984),
Tam & Burton (1984) and Goldstein & Leib (2005). Recent rigorous validations, made
possible by the current availability of detailed experimental data and well-validated
large-eddy simulation (LES) databases, have leant renewed credence to the linear
stability model (Jordan & Colonius 2013). Cavalieri et al. (2013) also provide
empirical support for the assumption of linearity of the low-frequency low-azimuthal
mode turbulent fluctuations, which are responsible for most of the mixing noise due
to their high coherence.

The models for coherent fluctuations in round jets have been constructed both from
the classical parallel-flow linear stability theory (LST) (e.g. Suzuki & Colonius 2006)
and the parabolized stability equation (PSE). PSE represents an improvement over
LST whereby mildly non-parallel base flows in convectively unstable flows (like jets)
can be addressed at little additional computational cost (Herbert 1997). The instability
wave ansatz is allowed to have slow streamwise variations in shape, growth rate
and phase speed of the order of the variations in the mean flow. Suitable numerical
considerations (Li & Malik 1997) then allow the solution to be marched downstream.
Linear PSE has been applied successfully to predict the coherent wavepackets
extracted from data of round jets, both subsonic and supersonic (Gudmundsson
& Colonius 2011; Cavalieri et al. 2013; Sinha et al. 2014).



38 A. Sinha, K. Gudmundsson, H. Xia and T. Colonius

Based on the previous modelling success in round jets, we pursue herein the
modelling of the low-frequency low-azimuthal mode coherent wavepackets observed
in turbulent jets issuing from serrated nozzles with PSE. These calculations are
initiated near the nozzle with the LST solution, so that the latter are also described.
The LST problem for round jets is one-dimensional — only the radial direction is
inhomogeneous. The major point of difference of the LST problem for jets issuing
from serrated nozzles is its two-dimensionality, given that the azimuthal direction is
also inhomogeneous. Kawahara et al. (2003) studied the inviscid temporal LST for
a corrugated vortex sheet with application to boundary-layer stability. Gudmundsson
& Colonius (2007) were the first to solve the inviscid spatial LST problem for
serrated jets, wherein they explicitly used the azimuthal regularity of the serrations
to substantially simplify and elucidate the theory. In particular, they showed that the
two-dimensional eigenproblem reduces to a set of coupled Rayleigh equations in one
(radial) dimension. Our approach in LST hews closely to this earlier work, but we
extend it to the viscous problem. The same framework is also extended to the PSE
calculations for tracking the downstream evolution of the unstable wavepackets. In
particular, the normally three-dimensional PSE problem for serrated jets is simplified
to a coupled set of two-dimensional ones. Recently, Uzun et al. (2015) revisited the
two-dimensional version of the inviscid LST and the three-dimensional version of
the inviscid PSE problem for serrated jets. Our formulation here allows significant
simplification but is otherwise equivalent, except for viscous effects. The closeness of
our mutual stability results reflects the minor role that viscosity plays in the problem.

Apart from the above-mentioned theoretical advances made in the present work,
the other major contribution is a detailed validation of the model predictions using
empirical data. The time-averaged flow data for the stability calculations come from
the parametric experiments of Bridges & Brown (2004), who also acquired the
near-field hydrodynamic pressure on a phased array since it reveals the wavepacket
nature of the shear-layer fluctuations most clearly (Suzuki & Colonius 2006; Jordan
& Colonius 2013). Following Gudmundsson & Colonius (2011), the pressure data
is filtered with proper orthogonal decomposition (POD) to extract the coherent
wavepackets existing in the turbulence, which are then used to validate the stability
results. Another novel comparison pursued here is with an LES database of the
same serrated jet (Xia, Tucker & Eastwood 2009; Xia & Tucker 2012). The pressure
component of this data (extracted in a cylindrical domain containing the jet plume)
is also POD-filtered to identify the wavepacket structure within the shear layer.
Reasonable agreement is demonstrated in both validation exercises, which lends
confidence to the proposed PSE-based model for coherent wavepackets in serrated
jets.

2. Linear parabolized stability equations for serrated jets

The flow field of the jet is described in cylindrical coordinates x = (x, r, 6) by
q = (uy, u,, ug, p, £)T, which respectively denote the axial, radial and azimuthal
components of velocity, pressure, and specific volume. Length dimensions are
non-dimensionalized by the nozzle exit diameter D, velocities by the ambient speed
of sound c., and pressure by ,ooocio (P 1s the ambient density). PSE starts by
decomposing ¢ into a time-invariant base flow (herein the turbulent mean flow) ¢,
and the residual fluctuations ¢’. The set of five non-dimensional governing equations
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for the viscous compressible flow linearized about ¢, are compactly represented in
matrix form as
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The 5 x 5 coefficient matrices L are linear functions of g, and are parametrized by
the Reynolds number, Mach number and Prandtl number of the flow.

Since L’s are time invariant, the solution is separable into its frequency components
(normal modes). Moreover, ¢ is assumed to have gradual variations in the axial
direction. With this, the preliminary PSE ansatz for ¢’ in the serrated mean flow
field is

q/(x7 t) zqw(x)e—iwt +c.c., qw(x) — %w ei f:() oy (§)dé§ Z qw,m(_x’ r)eimQ. (22)

= Xo m=-00

Here, the symbol m is the Fourier azimuthal mode. The frequency w will be reported
subsequently in terms of the Strouhal number St based on the nozzle exit velocity U;
and diameter D. Further, g, ,, is the wavepacket shape function and «,, is its complex
axial wavenumber, both assumed to have mild axial variation (commensurate with the
mildly non-parallel base flow), on scales that are significantly longer than the modal
wavelength. The real and imaginary parts of «,, denoted o’ and o/, signify the local
wavenumber and growth rate, respectively. For later convenience, we denote the wave
part of the solution by y,. The complex amplitude of the wavepacket is set by 4,.

The nozzles typically have L chevrons distributed uniformly around the azimuth
(e.g. L =6 for SMCOO1 in figure 1). The resulting mean flow field has an L-fold
rotational symmetry so that the mth azimuthal Fourier mode of ¢ (denoted ém)
vanishes for all m that are not integer multiples of L:

qlx. r.0) = qpx, e (2.3)
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Substituting the foregoing ansatz in the linearized governing equations (2.1), we
obtain
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Here, im is the mth azimuthal Fourier mode of the corresponding L, and it inherits
the sparsity of g indicated in (2.3). The neglect of 3%g/dx*> (with the assumed slow x-
variation of ¢ in PSE) renders the equations approximately parabolic for convectively-
unstable flows such as the jet under consideration (Li & Malik 1997).
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Equation (2.4) indicates that a given azimuthal mode, say g, . is only coupled with
other azimuthal modes in the set {g,,,_;,};°_... Evidently, there are only L unique sets
of this kind, each of which represents a separable solution of (2.4). We index these

sets by the lowest azimuthal mode appearing in them; i.e. QZ] =g, m_1}o_ o TOr

—L/2 <M< L/2. The set QM is termed the Mth ‘azimuthal order’ of the PSE solution.
These azimuthal orders also represent the L separable normal mode solutions:

Q(x,r, 0) = Bl o 0% Z G- x, P (2.5)

=M l=—00
The dense m-coupling implied by (2.2) is thus clarified to be a set of sparse couplings,
with separate axial wavenumbers o (x). Moreover, the chevrons are usually mirror
symmetric about their tip (and root) centre planes. These symmetries of g bestow
corresponding symmetries to the stability solutions as delineated in appendix A.

The decomposition in (2.2) is ambiguous since the axial variation can be subsumed
in either ¢ or «. Following Herbert (1997), the following constraint is prescribed

/ quM y q‘“z Updr=0, # :=diag(l,1,1,0,0), (2.6)

where (-)" denotes the complex-conjugate transpose. This aims to remove any
exponential dependence on x from ¢ (in the sense of a turbulent kinetic energy
norm).

The infinite sums in the azimuthal modal domain indicated above must be truncated
in the computation. We assume that the azimuthal complexity of g (and hence L’s) is
such that the summation in (2.3) can be truncated to &J. The summation in (2.5)
(and hence the degree of azimuthal coupling in (2.4)) is also truncated to £N (=J),
mirroring the usual azimuthal discretization invoked in solving (2.1).

Since the mean flow loses its serrated character far enough away from the chevrons,
the boundary conditions in the radial direction carry over from those in the round
jet. These, and other details of the PSE implementation (e.g. radial discretization and
iterative axial marching scheme), have been described by Gudmundsson & Colonius
(2011) and Sinha et al. (2014).

An upstream condition (akin to the initial condition for time marching) is required
to begin the axial march at x =x,. For this the classical parallel-flow LST problem
is solved based on the mean flow profile close to the nozzle exit, and the Kelvin—
Helmbholtz eigensolution is retrieved as the upstream condition. For the LST, (2.4)
is modified in the following ways. The last term in braces is neglected since the
wave shape is assumed to be unchanging in x. The second last term in braces is also
neglected owing to the unimportance of the o’ term in the high Reynolds number
jets considered (Khorrami & Malik 1993; Li & Malik 1997), and the constancy of
a in x. Finally, the radial and azimuthal components of mean velocity are neglected
in the operators, as in the classical parallel-flow theory. The other viscous terms are
retained to avoid special treatment of the critical layer (Lin 1955). The resulting matrix
eigenvalue problem is solved with the Arnoldi algorithm using the parallel computing
version of ARPACK (Lehoucq, Sorensen & Yang 1998). The solution of sparse linear
systems arising in both LST and PSE are done using the MUMPS package (Amestoy
et al. 2001).
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FIGURE 2. (Colour online) (a—c) Contour plots of mean axial velocity in the serrated jet
(SMCO001) at selected axial stations; contour levels are equally spaced between 0.1 and
0.9U;. (d-f) Non-trivial azimuthal Fourier modes (indicated by the numbers in the legend)
at these stations. The radial profiles of the round jet (SMCO000) at these axial locations
are also depicted in (d—f). (a,d) x=0.5, (b,e) x=2.0, (c,f) x=5.0.

3. Experimental data and its analysis

Bridges & Brown (2004) performed a systematic parametric study of the effect of
nozzle chevrons on single flow jets in the Small Hot Jet Acoustic Rig (SHJAR) at
the NASA Glenn Research Center. The jets considered here are from this database;
they were operated at acoustic Mach number M, =0.9 and temperature ratio 7;/T =
0.84 (the SP7 set-point of Tanna (1977)). The Reynolds number was Re;=1.5 x 10°.
Of the several nozzles that were tested by Bridges & Brown (2004), we restrict our
study to the round nozzle (code SMC000) and the baseline chevron nozzle (SMC001)
(see figure 1). The latter had 6 isosceles chevrons distributed uniformly around the
periphery that tapered into the flow at 5° resulting in a radial penetration of 0.985 mm.
This nozzle combined the benefit of aft angle low-frequency noise reduction with
a low noise penalty at sideline angles and higher frequencies. Both nozzles had a
nominal exit diameter of 50.8 mm.

3.1. Velocity measurements and their processing

The three components of jet velocity were measured using stereoscopic particle
image velocimetry (PIV) at 12 different cross-stream planes. The set-up of the
PIV system has been documented by Opalski, Wernet & Bridges (2005). A total
of 200 image pairs were recorded at each cross section, and we extracted the
ensemble-averaged axial velocity fields, u,. Figure 2(a—c) depicts these fields for the
SMCO001 nozzle at representative axial stations. The ensemble-averaged u, and uy
fields were approximately 100 times smaller in maximum magnitude compared to #,,
and hence were neglected in the stability calculations.



42 A. Sinha, K. Gudmundsson, H. Xia and T. Colonius

The PSE formulation requires the mean velocity in polar coordinates, u(x, r, 9).
The first step to obtain this was to shift the %, data so that the axis of the polar
coordinates matches best with the geometric centre of the velocity profiles (see
Gudmundsson & Colonius 2011). Subsequently, u, was transformed from the original
Cartesian grid to a polar grid using 2-D cubic-spline interpolation in MATLAB®.
After azimuthal Fourier transform of the u, data, the modes that are not integer
multiples of the chevron count (6 for SMCO001) were indeed found to be close to
zero. The remaining non-trivial azimuthal modes are shown in figure 2(d—f) at the
axial stations corresponding to figure 2(a—c). As expected, the azimuthal complexity
J decreases with downstream distance from the nozzle exit. In fact, at x =5, only
modes 0 and 6 show significant values. Even at the most upstream station considered
in this work (x = 0.5), the only non-trivial azimuthal modes are 0, 6, 12 and 18.
The axisymmetric mode of the mean flow in the SMCO000 case is also presented in
figure 2(d—f). At all the axial stations depicted, higher radial gradients are displayed
by the round jet compared to the m =0 serrated jet mode.

To facilitate PSE calculations, the SMCO001 %, profiles (in the azimuthal Fourier
domain) were fitted with smoothing functions consisting of two (possibly truncated)
Gaussian curves (see appendix B). The fit coefficients were, in turn, linearly
interpolated to the desired axial stations in the PSE calculations to recreate the
u, thereat. The Crocco-Busemann relation along with the ideal gas law (applied to
the mean flow quantities) were used to calculate the mean specific volume ¢ (which
was not available from the experiments).

3.2. Pressure measurements and their processing

Pressure data were acquired on a 78-microphone phased array at SHJAR that was
specifically designed to detect instability waves in the hydrodynamic near field of the
jet (Suzuki & Colonius 2006). The microphone tips form a cone with a half-angle
of 11.3° that intercepts the x =0 plane at r =0.85. Six microphones were uniformly
distributed around the azimuth on each of thirteen axial planes spaced 0.625D apart,
starting from x = 0.125. This allowed the detection of the most energetic azimuthal
modes of near-field pressure, viz. m=0, 1 and 2.

The microphone signals were simultaneously sampled at 50 kHz for 10 s. This
time series is divided into 2976 contiguous segments, each with 168 samples.
The consequent frequency resolution in temporal Fourier transform is ASt = 0.05.
Azimuthal Fourier transform is also applied to this data, so that 2976 realizations
of complex pressure fluctuations are obtained in the St—m domain, each realization
having information simultaneously at all axial stations. In each St—m mode, the
pressure amplitude (whose dimensional unit is Pa Hz™'/?, but is herein reported in
non-dimensional form) is computed as the root mean square of the realizations.

4. LES database

The LES database used in this work was developed to simulate the jet issuing from
the SMCO001 chevron nozzles at the same operating conditions as in the experiments
reported in §3. The numerical scheme was a hybrid of implicit LES coupled with
Spalart—Almaras near-wall RANS modelling. The flow solver, FLUXp, was based on
a cell-centred finite-volume discretization for arbitrarily unstructured meshes. However,
hexahedral body-fitted meshes with conformed multi-block structured topologies were
used to avoid excessive cell skewness around the challenging chevron geometry.
The time integrator consisted of a three-step backward Euler implicit scheme for the
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physical time and a three-stage Runge—Kutta scheme for the pseudo time. The original
calculation (Xia et al. 2009) was performed on a 12.5 million cell mesh. Following
the subsequent success in simulating the SMCO006 chevron case on a 20 million cell
mesh (Xia & Tucker 2012), the SMCO001 case was also rerun on a mesh having
20 million cells. The simulation time step was 5 X 107D/ U;, and it was run for a
flow time duration of 200D/U; beyond the initial transients.

Comparisons of the LES data with the experiments are presented in appendix C.
Overall, the statistics are replicated well. However, the LES displays a laminar
boundary layer at the nozzle exit that transitions to turbulence by x ~ 0.7, whereas
the experiments had a turbulent shear layer throughout. The discrepancies with
experiment are deemed acceptable given that (a) the LES database is only used to
validate the modelling approach, and (b) the base flow for this validation is the mean
of the LES data itself.

For the purpose of the present validation, the simulation data was extracted on a
structured cylindrical grid having 200 radial grid points in 0 < r <5, with clustering
near the lip line. The uniform azimuthal grid had 120 points. The axial domain in
0 < x < 10 was sampled at 130 planes. In a departure from the experimental data,
the mean radial and azimuthal components of velocity of the LES data were found to
be non-trivial (about 1/10th of the mean axial velocity in maximum). This difference
from experimental observation may be attributed to the initial laminar state of the
LES jet. The mean flow data was processed for PSE calculations using the smoothing
procedure described in appendix B.

The LES pressure fluctuation data must be transformed to the frequency domain
for comparison with the PSE solution. To obtain statistically significant results, the
LES time series (which was sampled at intervals of 0.02D/U;) was first divided into
75 %-overlapping Hann-windowed segments. For estimating the St =0.25 mode, each
segment length was chosen to be sufficient for resolving 1/4th of this frequency (i.e.
it was 16D/U; long). Thirty-four such segments were obtained from the available
data record, and they were considered independent realizations. Similar considerations
yielded 41 and 49 realizations of the St = 0.3 and 0.35 modes, respectively, and so
on. Further discussion of the data processing is deferred to §5.3.

5. Results
5.1. Modal solutions from parallel-flow LST applied to experimental data

The PSE calculations are initiated from the appropriate LST eigensolutions near the
nozzle exit. Thus, we start by describing the characteristics of the latter. The base
flow for the results presented in this sub-section come from the experimental database
discussed in § 3. Converged eigensolutions were found with 800 radial grid points and
N =8 (the degree of azimuthal modal coupling in (2.5)).

Figure 3 presents the unstable portion of the eigenspectra at three axial stations
for the representative St =0.35 mode. We observe significant differences between the
results for the round and serrated jets. The round jet has at most one unstable mode
in each St—m pair, as has been repeatedly shown earlier (e.g. Batchelor & Gill 1962).
The most striking difference in the serrated jet is the multitude of unstable modes in
several of the St—M pairs shown. At x=0.5, there are three unstable modes in M =0
but five each in M =1 and 2. On the other hand, at x =2 only the case of M =1
has more than one unstable modes. The eigenspectra at x =1 present an intermediate
picture. The M =3 results are omitted for brevity in this article.

Near the nozzle, the most unstable mode for each M in the serrated jet has a slightly
higher growth rate but lower phase speed than that in the round jet. At x=1 (the next
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FIGURE 3. (Colour online) Unstable portions of eigenspectra (growth rates —a' versus
phase speeds ¢, =w/a") for the round (SMCO000) and serrated (SMCO001) jets in St=0.35
mode, computed from experimental data. (a,d,g) M =0, (b,e,h) M =1, (cf,i) M=2. (a—)
x=0.5, (d-f) x=1.0, (g-i) x=2.0.

axial station for which mean flow data was available), the maximum growth rates of
the two jets are more comparable. By x =2 and beyond, however, the serrated jet
has significantly reduced instability compared with the round jet. The phase speeds
of unstable modes in the serrated jet exceed those in the round jet at x =2.

The rapid modification of the eigenspectrum with axial distance from the nozzle exit
reflects the rapidity of the mean flow changes in this region of the serrated jet. Since
the LST assumes a parallel flow, one is led to question the physical meaning of the
LST results in this zone of rapid change. We choose to initiate the PSE calculations
from x=1.0. Initiation from further downstream (where the instabilities grow milder)
stands to overlook the interesting effects of the serrated mean flow on stability.

The geometrical structure of pressure fluctuations in the most unstable St = 0.35
eigenmodes at x =1 are shown in figure 4. The presentation is more intuitive in the
r — 6 space rather than the coupled azimuthal Fourier domain. The eigenfunctions of
the round jet have the expected monopole, dipole and quadrupole character in m =0,
1 and 2, respectively. Owing to coupling with higher-order azimuthal Fourier modes,
the results for the corresponding azimuthal orders in the serrated jet display greater
azimuthal complexity. (Although not shown here, the magnitudes of the pressure
eigenfunctions have the 6-fold azimuthal symmetries established in (A 1).) Since
the mean flow is axisymmetric away from the lip line, the higher-order coupled
m-behaviour of the pressure eigenfunctions is strongest only within the shear layer.
That is, the m = M mode dominates the centreline region as well as the far field.

Next we consider the different instability modes of the serrated jet (only modes (i)
to (iii) are depicted). Although modes (i) and (ii) differ in their radial extents and
relative azimuthal orientations, they display similar azimuthal complexity. Mode (iii)
(and the remaining instabilities that are not shown) have higher azimuthal complexities,
and typically display narrower radial support; these suffer rapid damping downstream
(see figure 3), and hence will not be discussed in further detail.
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FIGURE 4. (Colour online) Real parts of pressure eigenfunctions computed at x = 1
in St = 0.35 mode for the round jet SMCO000 (a—c) and serrated jet SMCO01 (d-I).
The dark solid lines are positive contours; light dotted lines are negative ones. Contour
levels are equally spaced between £0.95 of the maximum magnitudes of the respective
eigenfunctions. Azimuths of maxima are overlaid for reference. The chevron tips are in
the y = 0 plane. (ad,gj) M =0, (beh,k) M =1, (cfi,]) M = 2. With reference to
figure 3, where the unstable eigenvalues of the serrated jet are numbered, we present the
eigenfunctions of mode (i) (d—f), mode (ii) (g—i), and mode (iii) (j—I).
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FIGURE 5. (Colour online) Real parts of pressure eigenfunctions of most unstable St =
0.35 modes computed at x=2 for the serrated jet (SMCO001). The scheme of contour plots
follow figure 4. (a) M =0, (b) M=1, (¢c) M=2.

The relative azimuthal orientations of modes (i) and (ii) are significant since they
are with respect to the lobes in the mean flow. In the mean flow contours presented
in figure 2(a), two extremal azimuthal angles are depicted — 0° corresponds to a ‘lobe’
whereas the contours are relatively ‘flat’ around 30°. Of course, this pattern repeats
every 60°. The eigenfunctions in mode (i), which are the most unstable at x = 1,
are seen to reach their maxima (in absolute value) at the flats. Conversely, mode (ii)
eigenfunctions, which are significantly less unstable, have maxima at the lobes. This is
true for all azimuthal orders depicted in figure 4. The analysis in appendix D proposes
a tentative explication of the multiple instabilities.

The most unstable St = 0.35 eigenfunctions calculated at x = 2 are presented in
figure 5. The azimuthal orientations of the most unstable modes at x =2 resembles
those of mode (ii) at x = 1.0. Compared with the latter, the major difference is the
increase of radial support of the eigenfunctions, corresponding to the spread of the
shear layer. This result justifies the labelling of the unstable eigenmodes at x =2 in
figure 3.

In summary, the most unstable eigenmode near the nozzle, mode (i), displays peaks
at the flats of the mean flow contours. However, this eigenmode stabilizes by x = 2.
The other unstable eigenmode with broad radial support, mode (ii), has peaks at the
lobes, and has much lower growth rate near the nozzle. However, this mode doesn’t
decay very quickly, and in fact becomes the most unstable mode by x =2. The other
eigenmodes that are unstable near the nozzle have all stabilized by this axial station
(see figure 3).

The discussion of the eigenspectra of serrated jets is broadened to include other
St-modes in figure 6. The St-variation of the growth rates and phase speeds of the
unstable eigenmodes are shown for M =0 and 1 at two axial stations. These plots bear
out the statements made previously regarding the relative instabilities of the round and
serrated jets. In particular, the serrated jet is slightly more unstable near the nozzle (for
lower frequencies), but this scenario is inverted by x =2. The conclusions regarding
the relative phase speeds drawn from the St=0.35 result are also replicated at all the
St—M modes studied.

5.2. Comparison of PSE solutions with near-field pressure recorded in experiments

The PSE method is now applied to the experimental mean flow data. The PSE
formulation forces the solution to approach the most unstable LST mode at each
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FIGURE 6. (Colour online) (a—d) Growth rates and (e-h) phase speeds of the unstable
modes in the round (SMC000) and serrated (SMCO001) jets in M =0 (a,b,e.f) and M =1
(c,d,g,h) azimuthal orders and x=1 (a,c,e,g) and x =2 (b,dfh).

axial station in the downstream march. Since the mode (ii) has been found to be the
only unstable mode for x > 2, we initiate the PSE calculations from the mode (ii) LST
solutions computed at x = 1; the choice of this axial station has been explained above.
It is theoretically possible to consider multiple modes in nonlinear PSE (Herbert
1994), but the indeterminacy of their relative initial amplitudes as well as the closure
problem in the turbulent flow being considered make this approach unsuitable.

The near-field pressure signature predicted by PSE is compared with the microphone
array measurements described in §3.2. The phased microphone array, having six
microphones at each axial station, can resolve Fourier azimuthal modes up to m =2;
however, we restrict the study to m =0 and 1 since they are sufficient for clarifying
the trends.

The instability waves being modelled here are coherent over large domains.
However, the pressure record contains fluctuations over a range of spatial scales.
Thus, the two are not directly comparable. Proper orthogonal decomposition is
a filtering tool for extracting the energetically-dominant coherent fluctuation modes
from turbulent flows. Gudmundsson & Colonius (2011) have described the application
of the technique to the round jet’s near-field pressure data sampled on the conical
surface formed by the microphone array; the filtered signature is termed ‘cone-POD’
mode herein. These authors demonstrated superior match of the instability waves
(predicted using PSE) with the first (most dominant) cone-POD mode rather than the
unfiltered pressure signals. The POD filtering is no different for the serrated jet; it is
described briefly in appendix E. For reference, A, and 17/[1()'3,! respectively denote the
first cone-POD eigenvalue and corresponding pressure eigenfunction in the Fourier
mode pair w-m.

The significance of the cone-POD modes is established in figure 7, which displays
the relative energy (a fraction between 0 and 1) represented by the first POD mode
in the two jets for salient St—m modes. A fast POD-spectral decay, reflected in a
larger value for A% /> A% . indicates greater coherence in the data. Conversely, a
randomly composed data set will show a flat spectrum, and thus a small value for
this fraction. In general, the round jet is more coherent than the serrated one. Thus,
the impingement of the nozzle chevrons on the shear layer makes this turbulent jet
measurably more ‘complex’. The decrease in coherence at higher frequencies is due
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FIGURE 7. (Colour online) Coherence of the near-field pressure in the round (SMCO000)
and serrated (SMCO001) jets in m =0 and 1 over a range of Sr-modes. Coherence is
measured as the fraction of the pressure fluctuation energy accounted for by the first POD
mode, ie. AJ), />, A0 .

to the narrowness of the energetic portion of the corresponding wavepacket (which we
discuss later) compared to the microphone spacing and array extent. The minimum in
coherence of the serrated jet around St = 0.15 is unexplained at this time. Overall,
however, we conclude that the first POD modes represent a substantial portion of the
near-field pressure dynamics even in the serrated jet.

The PSE model in (2.4) being linear and homogeneous, neither depends on nor
determines the complex amplitude £ of the wavepackets (see (2.5)). These are now
determined from a least-squares fit with the data (specifically the first pressure POD

mode) as

7)) Am
( w,Man;)Cone' (51)
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We have used the azimuthal sparsity of the microphone array to retain the lowest-order
azimuthal mode of the PSE wavepacket in the solution. Also, the inner product and
norm are per the definition in (E 1), with the PSE pressure solution p (defined as in
(2.5) but with arbitrary amplitude) extracted at the microphone array.

The real parts of the PSE solution in various St—M modes are compared with
the real parts of the corresponding first POD modes of the data for both round and
serrated jets in figure 8. The results from both the experiments and the model are
interpolated for presentation. Several differences are observed in the pressure data
between the two jets in figure 8 that will be discussed now; the validity of the model
will be addressed subsequently. In general, the round jet displays lower levels near
the nozzle but retains larger amplitudes further downstream. This effect is linked to
the corresponding differences in the streamwise evolution of turbulent kinetic energy
in the two jets that have been noted by several researchers (e.g. Bridges & Brown
2004; Opalski et al. 2005; Xia et al. 2009). A related observation is the gradual
amplification in the round jet vis-a-vis the more abrupt rise in the serrated jet. This
is due to the outward jetting effect of the flow through the gaps in between the
serrations of the nozzle. An observation of interest is the overall similarity of the
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FIGURE 8. (Colour online) Real part of (Fourier-transformed) pressure along the NASA
microphone array for the round (SMC000; a—c, g—i) and serrated (SMCO001; d—f, j—I) jets
in azimuthal orders (a—f) M =0, and (g-/) M = 1. The first POD mode of the data and
the PSE predictions are shown for selected Strouhal numbers. (a.,d,g,j) St=0.25, (b,e,h.k)
St =0.35, (c.fii,l) St=0.5.

phase speeds (proportional to the wavelengths) in the round and serrated jets, although
the latter displayed slightly higher phase speeds at x =2 in figure 6.

An aspect of the pressure evolution curves shown in figure 8 that is an artefact
of the geometry of the phased-array measurement system, is the oscillation of
amplitudes recorded on alternate axial rings for M =1, as evidenced by the localized
spikes. Figure 9 shows that the azimuthal position of the microphones relative to
the turbulence is different in the two jets. For the serrated jet, all six microphones
come equally close to the lobes at x = 2, so that they yield an overestimate of
the pressure fluctuations that would be measured had there been more sensors in
between. Conversely, at the previous and next rings, the microphones are located
near the troughs of the contours, and thus deliver underestimates. The oscillations
are strongest near the nozzle since the lobes of the jet are most pronounced thereat.
Actually the oscillations are more pronounced in the original data prior to POD
filtering (not shown), and also appear in the unfiltered M =0 amplitude envelopes.

We now turn to the comparison of prime interest in this work, which is the
validation of the PSE predictions for the serrated jet. Considering the St = 0.35,
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FIGURE 9. (Colour online) Contours of total turbulence amplitude (normalized by c,) for
the (a) round (SMCO000) and (b) serrated (SMCO0O01) jets, along with the microphone ring
at x="2. The circles on the ring denote its six microphones while the stars denote those
on an adjacent ring. Five contour levels are equally spaced between 0.04 and 0.2.

M =0 mode, the match between the model and the first POD mode is noteworthy in
figure 8. The significantly earlier saturation of the instability waves in the serrated
jet (compared to those in the round jet) is faithfully replicated by the model. The
phase variations of the wavepacket are also captured well. The match is good in
these respects for the St =0.5, M =0 wavepacket too, although minor discrepancies
are apparent in the downstream decaying portion. However, the model reproduces the
faster decay of the wavepackets, compared to those at St = 0.35. The model is less
successful for the lower frequency of St =0.25, M =0 — a trend that carries over
from the round jet model; see discussion below.

Apart from the ring-to-ring oscillations of the POD modes (which our model is not
intended to replicate), the agreement is also quite satisfactory for the wavepacket at
St=0.35, M =1. The POD wavepacket at St=0.5, M =1 is dominated by the artificial
near-nozzle oscillation described above, which degrades the overall match with the
PSE model. The instability wave model is also less accurate at St =0.25, M =1 as
in the axisymmetric mode discussed above.

Considering the round jet results, figure 8 demonstrates that the PSE model
predictions are generally in good agreement with the first cone-POD mode. The
model predictions at St = 0.25, particularly in m = 0, are less accurate; this trend
continues to lower frequencies. Gudmundsson & Colonius (2011) reported similar
deficiencies of the PSE model for the round jet instabilities, and Baqui et al. (2013)
observed the same behaviour for instability waves derived from linearized Euler
equations. The discrepancy is likely due to nonlinear effects on these modes, as
well as a possible inadmissibility of the mildly non-parallel assumption for these
long-wavelength wavepackets (Gudmundsson & Colonius 2011; Baqui er al. 2013;
Sinha et al. 2014).

To quantify the foregoing comparisons, we propose the following ‘alignment’ metric
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FIGURE 10. (Colour online) Alignment of the near-hydrodynamic pressure of the PSE
wavepackets with the first POD modes of the corresponding experimental data for the
round (SMCO000) and serrated (SMCO01) jets in azimuthal orders M =0 and 1 for various
St modes.

where the notation carries over from (5.1). The intent is to determine, for a
given w-M pair, the degree of closeness (in the vector alignment sense) of the
fundamental Fourier azimuthal mode (m = M) in the PSE pressure wavepacket with
the corresponding first cone-POD mode of the experimental pressure data. The result
is a number between 0 and 1, with 1 indicating perfect prediction and O representing
failure of the model. An analogous metric was considered by Sinha et al. (2014).

The alignment metrics are presented in figure 10 for a range of S-modes, computed
for both the round and serrated jets. A high degree of alignment (>0.84) is verified
in the serrated jet for 0.2 < St < 0.45, both for M = 0 and 1. This reinforces
the qualitative agreement of the model demonstrated in figure 8. Also, the model
predictions display similar accuracy in the serrated jet as in the round jets. However,
the relative accuracies in the M =0 and 1 are inverted in the two jets. This is due
to the artificial ring-to-ring oscillation that is prominent in the M =1 POD modes of
the serrated jet. This is most apparent in the St =0.5 case, which has been discussed
in the context of figure 8. The drastic degradation of accuracy of the serrated jet
model for St < 0.2 may be explained thus. The intense mixing generated by the
chevrons results in a quick growth of the shear layer. Compared to the round jet,
this further belies the mildly non-parallel base flow assumption for long-wavelength
low-frequency wavepackets in serrated jets.

Lastly, we note that the alignment metric for the low-frequency modes in the round
jet is not as low as the results in figure 8 may have led one to expect. Actually,
for a fairer quantitative comparison across frequencies, the axial domain of the inner
product should be modified to include a certain number of wavelengths for each modal
frequency being studied. However, the limited axial extent of the microphone array as
well as its axial resolution disallow this exercise.

5.3. Comparison of PSE solutions with pressure extracted from the LES database

We now investigate the degree to which the PSE wavepackets describe the flow
fluctuations within the turbulent shear layer. Time-resolved experimental data are
unavailable for this purpose, so we turn to the LES database of the serrated jet with
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FIGURE 11. (Colour online) (a) Growth rates and (b) phase speeds of unstable LST
eigenmodes of the serrated (SMCO001) LES jet evaluated at x=1 and 2.

(b)

FIGURE 12. (Colour online) Representative positive and negative isosurfaces of the real
part of pressure in the PSE solution for the serrated (SMCO001) LES jet for St = 0.3
corresponding to azimuthal orders (a) M =0, and (b)) M = 1. The chevron tips are in
the y =0 plane.

its space- and time-resolved flow information. It has been remarked in §4 that the
near-nozzle region of the flow observed in experiments is not replicated completely
by the LES database. This affects the LST eigenmodes that constitute the initial
condition of the PSE, as well as the PSE calculations themselves.

The LST eigenvalues computed from the LES mean flow field at x=1 and 2 are
presented in figure 11. The most prominent difference in the results is the presence
of only one unstable eigenmode at each S+—M condition in the case of the LES,
instead of the multitude found with experimental mean flow. Moreover, although the
trends with S, M and x are similar to the results for instability mode (ii) obtained
with experimental data (see figure 6), the growth rates are diminished. Both these
discrepancies may be attributed to the increased thickness of the shear layer in the
LES jet. The differences in the phase speeds between the two cases do not follow
any distinct pattern.

A depiction of the wavepacket nature of the PSE solution is presented in figure 12.
This clearly shows the serrated nature of the near-nozzle PSE solution that couples
higher-order azimuthal modes. The solution tends to lose the serrated character further
downstream, and resembles those computed in round jets.

The wavepacket structure embedded in turbulence is clearest in the pressure
fluctuation field (Sinha et al. 2014). To identify the wavepackets, ‘volumetric’ POD
filtering is performed on the pressure data extracted on the structured cylindrical grid

mentioned in §4 using the method described in appendix F. For reference, AM®
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FIGURE 13. (Colour online) Coherence of the pressure field in the serrated (SMCO001)
LES jet, measured as the fraction of the pressure fluctuation energy accounted for by the
first POD mode, i.e. AM® /%" AM®

and @M respectively denote the first volume-POD eigenvalue and corresponding
pressure eigenfunction in the frequency w and azimuthal order M.

The coherence of this data, as measured by AY- /3" AM-@ s shown in figure 13.
The M =0 and 1 fluctuations are more ordered than those in higher azimuthal orders,
an observation that carries over from supersonic round jets (Sinha et al. 2014). There
is also a monotonic decrease of coherence with frequency — a phenomenon that was
not observed in the supersonic round jets. The impingement of the nozzle serrations on
the jet shear layer appears to be selectively reducing the organization of the turbulent
structures at higher frequencies.

As in the case of near-field pressure comparisons in § 5.2, the complex amplitudes
of the PSE modes are fitted to the LES pressure data as follows

(Ba ™, Do) vt

V112
126 1o

(B v = (5.3)

Note that all the coupled azimuthal modes of the solution and data are considered in
the above. The inner product and norm are per the definition in (F1).

The real parts of the lowest-order azimuthal modes (i.e. m =0 in case of M =0
and m=1 in case of M =1) of pressure in the PSE solution are depicted in figure 14
alongside the corresponding first POD modes from the LES data. The wavelength (and
hence the phase speeds) of the predicted wavepackets are seen to resemble those in the
data in all cases. The amplitude of the wavepackets also display a fair match, although
the decaying zones are typically under predicted. This behaviour of stability-based
models has been discussed by Rodriguez et al. (2015). The m =1 mode comparisons
are better than those for m =0, an observation that carries over from PSE models of
round jets (Sinha et al. 2014).

The following ‘alignment” metric quantifies the comparison between the PSE
pressure solution and the corresponding first POD mode of LES (see also (5.2))
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FIGURE 14. Real parts of least-order azimuthal modes of pressure in PSE solution
(a,c,e,g,i,k) compared with corresponding components of first POD mode from LES
database (b,d.f,h.j,[) for St=0.2, 0.3 and 0.4 and azimuthal orders M =0 and 1 as labelled.
Contour levels are identical between each pair of (left and right panels), but not across
rows.

The calculated values of the alignment metric are presented in figure 15 for two
azimuthal orders over a range of frequencies. Overall, we demonstrate a high degree
of alignment, further justifying the use of PSE for predicting wavepackets that are
actually present in the turbulent serrated jet. The alignment is generally better in
case of M =1, as also noted from figure 14. The apparent inversion of this trend
in the near-field pressure results of §5.2 has been explained as an artefact of the
microphone array design.

The drastic degradation of alignment of the PSE solutions for frequencies beyond
St=0.4 can be explained with reference to the LST results at the initial axial station.
Figure 11 shows that these modes are close to stable already, and in fact they are
stable at the next axial step. Thus, these wavepackets start to decay very close to the
nozzle exit, and the PSE method is unable to replicate the decay behaviour well. In
the LST solution, the M =1 mode stabilizes at a lower frequency compared to the
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FIGURE 15. (Colour online) Alignment of the pressure component of the PSE
wavepackets with the first POD modes of the corresponding LES data for the serrated
(SMCO001) jets in azimuthal orders M =0 and 1 for various S¢ modes.
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FIGURE 16. (Colour online) Real parts of pressure in PSE solution (a—e) and first POD
mode of LES data (f—j) at various cross sections in the St =0.3, M =1 case. Contour
levels are equally spaced between £0.9 of the maximum value found in the entire domain.
(af) x=2.2, (b,g) x=2.6, (c,h) x=3.4, (d,i) x=3.7, (ej) x=4.0.

M =0 mode (see figure 11) — a fact that explains the corresponding poorer alignment
of the M =1 PSE solutions for St > 0.4 in figure 15.

A detailed picture of the azimuthal variation of a wavepacket is presented in
figure 16. The PSE pressure solution for the St = 0.3, M = 1 case is scaled by
the complex amplitude % found in (5.3), and its real part is compared with the
corresponding first pressure POD mode of the LES data at various cross sections.
The POD modes retain some uncertainty, which could have been reduced if a longer
time record were available. We note significant similarities in the rotational phase
variation and the radial shape. The quantitative comparison of these cross-sectional
shapes is a part of the alignment metric of (5.4).

6. Summary and conclusions

We solve the mildly non-parallel linear PSE for a natural turbulent jet issuing from
a nozzle with serrations (chevrons) distributed uniformly around the periphery. The
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time-averaged flow field, which displays corresponding serrations in its contour plots,
is used as the base flow for the stability calculations. The streamwise evolution of
linear perturbations of this base flow is intended to model the large-scale coherent
structures in the serrated jet. The PSE calculations are initiated near the nozzle from
eigensolutions of the classical parallel-flow linear stability theory (LST). In the past,
this approach has delivered a good match with experimental and numerical datasets
of turbulent round jets.

Unlike the 2-D (i.e. x—r) PSE of round jets wherein the Fourier azimuthal modes
(in addition to the frequency modes) are decoupled, the non-axisymmetry of the
serrated jets leads to a 3-D (i.e. x—r—0) PSE problem. However, we show here that
due to the regular arrangement of the serrations (say L in number), the corresponding
serrations of the mean flow field have an L-fold rotational symmetry. An additional
mirror symmetry exists in the mean flow since the individual serrations are typically
mirrored about a centre plane. These symmetries are exploited here to derive a series
of equivalent 2-D PSE problems, each with sparse coupling in the Fourier azimuthal
domain. Compared to the 3-D problem, the individual 2-D problems have reduced
dimensionality by a factor of L or L/2, depending on the particular member of
the series considered. Aside from the computational efficiency, an advantage of the
coupled 2-D PSE formulation is the clarification it provides regarding the geometrical
structure of the solutions. The LST problem, which is solved at the near-nozzle
cross section of the jet to initiate the PSE calculations, also has corresponding
simplifications.

We investigate the nominal (SMCO001) serrated jet and the corresponding (SMC000)
round jet that were operated cold at Mach 0.9 in experiments at NASA by Bridges
& Brown (2004). Using their ensemble-averaged velocity fields as base flows, the
LST reveals multiple unstable eigenmodes in the serrated jet at cross sections very
near the nozzle; round jets have at most one unstable mode at any cross section.
These new instability modes arise due to the azimuthal shear in the mean flow field.
Alternatively, they can be viewed as consequences of the Fourier azimuthal coupling
of the 1-D eigenproblems. Very near the nozzle exit (i.e. at x = 0.5D), the most
unstable modes in the serrated jet display slightly higher growth rates compared to the
corresponding round jet modes. However, the growth rates of the serrated jet modes
decrease dramatically by x = 2D, and are much less unstable than their round jet
counterparts thereat. In fact, beyond x = 2D, the most unstable eigenmode observed
near the nozzle stabilizes and a less unstable mode prevails. The phase speeds of the
most unstable serrated jet modes start out as lower than the corresponding round jet
modes near the nozzle, but become approximately similar further downstream.

The recent literature has provided a method to educe wavepackets from a natural
turbulent flow by filtering its near-field hydrodynamic pressure data with POD. The
PSE solutions are compared with the wavepackets thus extracted from the NASA
experiments on the serrated jet. A reasonable match is demonstrated between the two
over the Strouhal number range of 0.2 < St < 0.45. The failure at higher frequencies
is arguably attributable to the data, but that at lower frequencies possibly implicates
nonlinear effects. The degree of matching in serrated jets is quite similar to that in
round jets, even though the POD spectral decay is considerably slower in the former
case (which indicates its lower coherence). The data (which the PSE model replicates)
reveals that the near-field hydrodynamic pressure fluctuations are more energetic in the
round jet compared to the serrated jet.
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To validate the detailed structure of the wavepackets predicted by our PSE model
within the shear layer of the jet, we utilize an LES database that simulates the same
serrated jet. The LES jet has a transitional nature up to x = 0.7, so that the near-
nozzle region of the experimental jet is not replicated exactly. In particular, at most
one unstable mode is obtained in the LST of this jet at all relevant cross sections.
The shapes of the PSE pressure solution are compared visually and quantitatively with
the POD-filtered pressure modes of the LES data over a cylindrical domain extending
from x=1 to x=10. Encouraging agreement is obtained across the St-range mentioned
above.

We conclude that the PSE model captures the major features of the coherent
wavepackets observed in the hydrodynamic pressure field of the turbulent serrated jet.
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Appendix A. Properties of the stability solution

The rotational and mirror symmetries of the mean flow field delineated in § 2 result
in the following properties of the linear PSE solutions.

Property 1. L-fold rotational symmetry

q" (x,r, 0 4 2mk/L) =™ MLg" (x, r, 0), kel (A1)

Property 2. Mirror symmetry

o =a, (A2a)
Z]w,—m = aw,mv é € {ﬁxa ﬁrv ﬁv E}v (ZtG)w,—m = _(ﬁﬁ)w,mv (A 2b,C)

M0 =3¢, —0), Gelininp il @)Y, 0) =~ (. —0). (A2d.e)
As a corollary of (A2d,e), we only need to solve for azimuthal orders in the
range 0 < M < L/2. Moreover, (A2b,c) indicates that only N 4 1 out of the 2N + 1
coupled azimuthal modes in QO are independent, and that (i), 0 = 0. Finally, for

the Nyquist azimuthal order QL/z, only half of the coupled modes are independent.
These symmetries further reduce the stability problem dimensionality in the respective
azimuthal orders.
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Appendix B. Mean flow field fitting functions

The following are the fitting functions for the mean flow variables (in the Fourier
azimuthal domain), chosen after studying the data (e.g. figure 2b).

~ Ux ’ r g 70,
(ux)mz() = (r—ro)2 /82 282 (B 1)
Uxo[axoe (r—ry)”/ 01 + (1 _ axo)e (r—ry0)”/ on]’ F> ro.

(ﬁx)m>0 == (ljxmle_(r_r“lnl)szml + Umee_(r_rWZ)Z/afmz)U(r)- (B 2)
v Ur() a, ,
= _ _ —r/8r03
Wr)m=o = 1 4 e==roD)/801 < 1 + elr="02)/8r02 e o (r), (B3)
—(r=rm)*/8}
v € ml r < Fn,
(ur)m>0 — O'(V) Urm {e_(r_rrm)z/azmz oy > P (B 4)
(thg) m=0 = 0. (B5)
Wig)mn0 = (Ui T it - Uppe= 002" B2 (1), (B6)
> L+ Zoi, r < reol, B7)
=0T + §01e_(r_r‘°‘)2/8§°' + Coze_(r_w)z/a?oz, r>reor.
oo = (e 70 o g pe =00 o) () (B8)
o(r)=2/(1+e) —1. (B9)

The sigmoid function o (r) is designed to ensure vanishing values at the centreline for
specific quantities. All the coefficients are functions of x, and are obtained by least-
squares fit from data.

Appendix C. LES database validation results

Figures 17 and 18 present the comparison of the time-averaged LES data against
the NASA PIV data (described in §3.1). The centreline velocity and the normal
Reynolds stress component are matched well. The radial profiles of these quantities
also show significant similarity. However, the LES predicts a somewhat thicker
shear layer in the chevron tip plane, especially near the nozzle exit. Xia & Tucker
(2012) demonstrated favourable agreement of the far-field sound predictions (using
a Ffowcs-Williams Hawkings solver) with measured values for the SMCO006 nozzle
case computed using the same numerical set-up.

Appendix D. Analysis of the multiple LST eigensolutions

Figure 19 presents the results of an exercise undertaken to seek the origin of the
two instability modes in the serrated jet — modes (i) and (ii) — described in §5.1.
The azimuthal complexity of the mean flow profile is identified by J (see §2), and
it proves interesting to examine the eigenspectra resulting from separate computations
where we retain successively fewer azimuthal modes in the mean flow at x= 1. The
mean axial velocity contours are depicted in figure 19(a—d), and their radial derivatives
along the two extremal azimuths (viz. flat and lobe) are presented in figure 19(e).
The lobes become successively broader as J is decreased from 3 to 1. However, the
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FIGURE 17. (Colour online) (@) Mean axial velocity and () its standard deviation along
the centreline from LES (curves) compared with experimental data (symbols).
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FIGURE 18. (Colour online) Mean axial velocity (a,b) and its standard deviation (c,d)
from LES (solid) compared with experimental data (dotted). The profiles for the root and
tip planes of the chevrons are shown in (a,c) and (b,d), respectively.

magnitude of the radial gradient at the lobe actually increases with decreasing J. The
flats, on the other hand, remain substantially unchanged for 1 <J < 3.

Figure 19(f,g) shows the effect of these mean flow modifications on modes (i)
and (ii)) in M =0 and 1 at St =0.35. The growth rate in mode (i), which peaks at
the flats, reduces successively. Conversely, the growth rate in mode (ii), which peaks
at the lobes, is enhanced as J is decreased. If we simplistically consider round jets
consisting of either the flat or lobe profiles, and modes (i) and (ii) to be dictated
solely by these respective profiles, then the modification of the mean flow gradients
indicated above serve to explain the trends in these growth rates. We conclude that
mode (i) is primarily associated with the maximum radial shear occurring at the flats
of the mean flow profile (where it peaks in figure 4), and hence has the highest
growth rate. Mode (ii), on the other hand, is associated with the second (much
weaker) extremal of radial shear at the lobes, and hence displays lower growth rates.
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FIGURE 19. (Colour online) (a—d) Contour plots of mean axial velocity in the serrated
jet at x=1.0 for decreasing azimuthal complexity, J (from J=3 in (a) to J=0 in (d));
contour levels are equally spaced between 0.1 and 0.9U;. (e) Radial derivative of mean
axial velocity for varying J at the two extremal azimuthal angles shown in (a). (f,g) Effect
of J (indicated in legend) on the eigenspectra in M =0 and 1 modes for St=0.35.

The other instability modes display higher azimuthal complexity, and are not covered
by this explanation. Note the considerable reduction in both the number and growth
rates of these other unstable modes as J is decreased.

Appendix E. Cone-POD modes of the jet hydrodynamic near field

As described in § 3.2, the pressure time series recorded on the near-field phased
microphone array encasing the jet is divided into segments that are considered
independent realizations, and each of these are Fourier transformed in time and
azimuth. Let us denote the consequent signal in the kth segment at ring axial location
x, frequency w and Fourier azimuthal mode m as &% (x), the radial coordinate
being redundant on the conical surface of the array. The azimuthal resolution of the
array is not fine enough to evince the coupling due to the lobed azimuthal stochastic
structure of the flow; thus the different m-modes are considered independent. The

inner product for the cone-POD is defined for two realizations 2! and 2V as

(P Gy = / (D ) P () dx, E1)

where (-)" denotes complex conjugation, and the integration is over the axial domain
of measurement. With this, the integral eigenvalue (POD) problem is (Lumley 1967)

/ E[PB ) PB ()} N (62) ds = oW (x1),4 (E2)
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where E(-) denotes the expectation over the different realizations, so that the kernel
is the 2-point cross-correlation tensor. The eigenvalues A are non-negative, and the
eigenfunction v corresponding to the largest A is the most energetic coherent structure
in the data per POD theory. The normalization of the nth POD eigenfunction is such
that ||1p(") . =A™  where ||-||con i the norm induced by the inner product in (E1).

Cone ,m>

Appendix F. Volume-POD modes of the serrated jet

The complex pressure at frequency w is denoted P,(x, r, 0). As explained in §4,
we obtain sufficient realizations of this from the LES data, the kth being denoted Pl
The inner product for the volume-POD is defined for two such fields P! and PV as

PPy, / / / {(PV(x, r, 0)) P(x, r, 0)r dx drde. (F1)

Here X, and X, are respectively the upstream and downstream extents of the data.
As in appendix E, the consequent POD problem is

/// P EP )P o)) 1nr o () doy = Ao P i 0. (F2)

The integration limits are omitted for notational convenience. The r!/?

introduced to make the problem Hermitian (Baker 1977).

The serrated flow geometry has L symmetric lobes. Thus, we expect that the cross
correlation will be the same if the reference angle is shifted by 2wk/L as long as the
angular difference between the two correlated quantities is maintained. This symmetry
is used to ‘augment’ the data ensemble size, in a manner analogous to POD in the
presence of a homogeneous direction (Sirovich 1987). With the usual definition of
azimuthal Fourier transform, and introducing the notation y = (x, r), this results in the
simplified kernel

weightings are

oo

EPY(y,, 0+ 9){PYy, 00 1= > EPY, )P, 0} 10 (F3)

m,l=—o0

Substituting this in (F2) and applying azimuthal Fourier transform to the result yields

C
> / / nEPY )P 0D 1n@um-n (02 4y = Awuty o). (F4)
I=—C

This represents the reduced POD problem in the presence of the serrated mean flow.
The restriction of the summation to £C reflects the limit of the azimuthal grid
resolution of the data, or the vanishing of coupling across a large m-range. As an
aside, note that for the round jet L — oo, so that [/ can only be zero, and we retrieve
the fully decoupled set of POD problems, as expected.

The azimuthal coupling exhibited by (F4) is similar to the PSE problem in §2.
Invoking analogous arguments and using the definition of M, we only need to solve
for the sets M € [0, [(L —1)/2]], the corresponding eigensolutions being denoted by
AM d3£f (x). Owing to the mirror symmetry of the serrations, the 4+m and —m will
have the same statistics, which is to be used to augment the expectation operation



62 A. Sinha, K. Gudmundsson, H. Xia and T. Colonius

in the computation of the kernel (Sirovich 1987). In the actual implementation, the
equivalent snapshot method is used (Sirovich 1987; Sinha et al. 2014).
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