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Abstract

A new panel technique which produces a globally accurate velocity field has been devel-
oped. Traditional panel techniques panelise the body into a set of linear panels and distribute
some kind of singularity on the surface of these panels. The singularities normally used are
sources, doublets and vorticity. Such panel methods produce high accuracy at the control point
but do not produce accurate results globally and as one approaches the edges of the panels
the velocity field diverges. This is known as the edge effect. Most computations that use tra-
ditional panel methods are not affected by this edge effect since these panel techniques are
typically used to find the velocity/pressure of the fluid on the panelised body at certain control
points where the no penetration (or no tangency) boundary condition is applied and at these
points there is very little error. However, there are certain applications, like particle based flow
solvers, where a globally accurate velocity field is required. It can be shown that however high
the order of the singularity distribution on the panels, the edge effect is due to the mismatch
of the slope between two adjacent panels. Hence, the natural approach to this problem is to
panelise the body using cubic panels rather than linear panels by matching the slopes at the
edge of each panel. The fundamental equations for the velocity field and potential due to such
a cubic panel having a linear vorticity distribution are derived in this article. Also addressed
are certain issues involved in the derivation. The accuracy of the method is then demonstrated
by comparing the results with that obtained by traditional methods.

1. Introduction

Panel methods offer a very elegant and powerful means of computation for flow past ar-
bitrary bodies in two and three dimensions under various conditions of flow. The power of the
method is both due to the fact that the differential equations are reduced to an integral form along
the surface of the body and because the body in question is directly represented by a distribution
of singularities on its surface. Hess and Smith [1] laid the foundation for the source panel method.
The idea of the vortex panel method is due to Martensen [4] and is extended by Lewis [3]. Katz
and Plotkin [2] give a comprehensive overview of panel methods in general. In the following only
two-dimensional, incompressible, inviscid flows are considered. There are no assumptions made
on the geometry chosen. The basic philosophy being that one first splits the body geometrically
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into a set of panels and on the surface of each of these panels one distributes some kind of singu-
larity distribution. Normally the body is reduced to a set of piecewise linear elements. Typically
used singularity distributions are constant, linear and quadratic distributions of sources, vorticity
and doublets. For a constant distribution of singularity, given a set ofN panels this results inN
unknowns. In order to solve for the singularity distribution one must specifyN conditions to make
the problem determinable. Once this is done, one solves a matrix to determine the unknown dis-
tribution of singularity. The conditions are applied at certain control points and can be specified in
two ways, a velocity boundary condition (this is called the Neumann condition) and by the specifi-
cation of the potential inside the body (the Dirichlet condition). The obvious disadvantage with the
Dirichlet method is that one cannot solve for flow past thickness less bodies. However for closed
bodies they produce very good results at low panel densities.

Yon [7] performs an extensive study of nine different panel methods and reports finally that
the combined constant source and doublet method with the Dirichlet formulation is the most robust
from the practical requirements of speed and least sensitivity to panel densities. But for difficult
geometries such as airfoils with cusped trailing edges or very thin airfoils, only the linear vortex
Neumann formulation produced satisfactory results. This method was also found to be the only
stable method that converged to the correct circulation around the lifting airfoils. Rajan [6] also
shows that a vorticity distribution on the surface of a body is capable of explaining the kinematic
motion of the rigid body in addition to solving the fluid flow. A distribution of doublets can also
be used to solve for lifting bodies, however, it can be easily shown that a polynomial distribution
of doublets of ordern can be reduced to a distribution of vorticity of ordern− 1. Due to the above
advantages of the linear vortex method and since the current work is interested in an accurate
methodology for generalised bodies, both closed and open, thin and thick, and both lifting and
non-lifting, a linear distribution of vorticity on the panels is chosen and the Neumann boundary
condition (no penetration condition) is satisfied at the center of each panel.

Though panel methods provide very accurate results at and around the control points where
the boundary condition is applied, they usually have problems near the edges where two piecewise
linear panels intersect. Normally one is not concerned with these edge effects since one is inter-
ested in the distribution of pressure/velocity only on the control points so as to compute the load
on the body. A new panel method that does not have this edge effect is developed in this work.

First, the velocity and potential field introduced by a linear panel with a linear distribution
of vorticity is derived and studied. The fact that the linearisation of the geometry is the source
of the error near the edge is demonstrated and subsequently solved by using cubic panels, the
governing equations for which are derived in this work.

2. The Flat Panel Technique

The figure 1 shows a flat panel. The panel is first rotated about its first point,z1, by an angle
−θ and then shifted by a distance−z1 to orient the panel along thex axis with its start point at
the origin. Thez′ plane is the local coordinate system with respect to the panel as shown in Fig. 1.
The pointP moves to the corresponding pointP ′ in the local coordinate plane.
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Figure 1: Sketch of a single flat panel in thez plane and its counterpart in thez′ plane.

The vorticityγ at any point on the panel(ζ) is expressed as

γ = γ1 +
γ2 − γ1

l
ζ

Now in the local coordinate system the velocity due to the panel on the pointP ′ can be easily
obtained at any pointz′ as follows

V (z′) = u′ − iv′ =
−i
2π

∫ l

0

γ dζ

z′ − ζ

V (z′) =
−i
2π

∫ l

0

γ1 + (γ2−γ1)ζ
l

z′ − ζ
dζ

wherei =
√
−1 andl is the length of the panel. Integrating which we get

V (z′) = u′ − iv′ =
−iγ1

2π

[(
z′

l
− 1

)
ln

(
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z′

)
+ 1

]
− −iγ2

2π

[
z′

l
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z′

)
+ 1

]
(1)

Now rotating the velocity in thez′ plane back to thez plane we obtain the velocity due to
the panel at thez plane by noting thatdz′

dz
= e−iθ

V (z) = u− iv =
−i
2π

{
γ1

[(
z′

l
− 1

)
ln

(
z′ − l

z′

)
+ 1

]
− γ2

[
z′

l
ln

(
z′ − l

z′

)
+ 1

]}
e−iθ (2)

wherez′ = (z − z1)e
−iθ, z1 is the first point of the panel andθ is its angle with respect to thex

axis.
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Given this velocity it is easy to solve for the flow past an arbitrary panelised body. If there
areN panels for a closed body there are2N values ofγ to be computed. However, if it is required
that the gamma distribution be continuous, thenN additional conditions are obtained, therefore
there are effectively onlyN unknowns. By choosing to satisfy the no-penetration condition at the
center of each panelN more conditions are obtained. This is done by imposing the condition that
Vtotal ·eiθi = 0 whereVtotal is the conjugate of the total velocity at a panel control point andθi is the
angle of that panel and the dot product being appropriately defined. For open bodies an additional
condition is required and it is possible to either specify a condition on the total circulation or apply
the Kutta condition.

Considering equation 1, it is found that at the origin of thez′ plane the the first term di-
verges. Similarly the second term diverges as one approaches the pointz′ = l implying that the
velocity for the panel in thez plane diverges as one approaches either of its ends. If one were
to distribute sources instead of panels this problem remains since the only difference between the
two velocities is a multiplicative factor ofi. For a distribution of doublets the situation is worse
since a doublet would have a singularity of the form1

z
unlike the existingln(z) singularity. It may

be felt that the effect of this singularity will be nullified for a panelised body due to the effect of
the next panel that shares an end point with this panel and since the sign of theγ2 coefficient is
opposite that of theγ1 term. This is valid for a flat object, however, for a curved body, the angle
of rotation involved for each panel is different since the discretisation of the body is in terms of
flat panels. In order to illustrate this the flow past a thickness less flat plate at an angle of attack of
90o is computed with a linear vortex distribution such that the total circulation over the flat plate is
zero. The exactγ distribution for this flow is known from which the distribution of the magnitude
of the velocity along the top surface of the body can be computed and compared to a computed
solution employing 200 equally spaced panels with a linear distribution of vorticity. If the flow has
a speedw and the plate centered about the origin, oriented along the x axis and having a half span
of b (b = l/2) then itsγ distribution is given byγ = 2 ∗ w ∗ x/

√
b2 − x2 and due to symmetry

the velocity distribution (which will be along the x axis) is given asu = w ∗ x/
√
b2 − x2. For the

comparison,w = 1 unit/sec andl = 0.5 units, are chosen. The figure 2 plots the corresponding
curves for half the span. The velocity plot here due to the panels includes points that are just above
the edges of the panel. Clearly no edge effects are seen and apart from the reasonably small error
near the tips of the panel where the vorticity goes to infinity, the velocity magnitude elsewhere
compares almost exactly showing that for flat objects the linear discretisation of the geometry does
not produce any edge effects. It is to be noted that the error near the edges of the flat plate can be
removed by using panels that are spaced according to a sinusoidal function.

If a curved body is considered, due to the difference in the angle of each panel and the
singularity at its edge the velocity diverges as one approaches the edges. The natural solution for
this problem is to discretise the body geometry in terms of cubic panels.

3. The Cubic Panel Technique

As was seen earlier if a curved body geometry is discretised in terms of piecewise linear
panels, the velocity field diverges at the edges of the panels. Since this is due to the mismatch of
the slopes of two adjacent panels, it is required that the the common end point as well as the slopes
of two adjacent panels be matched. This requires four conditions to be applied to each panel and
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Figure 2: Exact and computed magnitude of velocity along the surface of a flat plate at an angle of
attack90◦.
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Figure 3: Sketch of a single cubic panel having a chord lengthl in thez′ plane.

5



hence a piecewise cubic panel method is the right choice. Figure 3 shows a schematic of a cubic
panel in the panel coordinates (z′ plane).η is the height of the panel at thex locationζ. The panel
is oriented such that its end points are along thex axis. Since the geometry is cubic,η in the panel
coordinates is given by

η = a1ζ + a2ζ
2 + a3ζ

3 (3)

wherea1, a2 anda3 are coefficients that depend on the both the slopes of the panel and the chord
length,l. Depending on the implementation the values for these coefficients can be easily found.
In order to simplify the equations theγ distribution is made linear with respect toζ and not the arc
length of the cubic panel. However the location of the distribution is along the cubic panel and not
on its chord. The velocity due to the panel in the panel coordinates is given by

V (z′) = u′ − iv′ =
−i
2π

∫ l

0

(γ1 + kζ)

z′ − (ζ + iη)
dζ (4)

by substituting equation 3 and simplifying the resulting expression the following is obtained

V (z′) =
k

2πa3

∫ l

0

(ζ + γ1/k)(
ζ3 + a2

a3
ζ2 + (a1−i)

a3
ζ + iz′

a3

)dζ (5)

wherek = (γ2 − γ1)/l. The integral in equation 5 is not integrable directly. In order to solve it the
cubic in the denominator is reduced as follows

ζ3 +
a2

a3

ζ2 +
(a1 − i)

a3

+
iz′

a3

ζ = (ζ − a)(ζ − b)(ζ − c)

wherea, b andc are the complex cube roots of the cubic. These roots can be computed numerically.
The numerical procedure is standard and given in [5]. Given the roots one can find the velocity
field due to the panels by performing the integration using the method of partial fractions. After
integration and simplification the velocity due to the cubic panel is obtained as

V (z′) =
−γ2

2πa3l

 a log
(

a−l
a

)
(a− c)(a− b)

+
b log

(
b−l
b

)
(b− c)(b− a)

+
c log

(
c−l
c

)
(c− a)(c− b)


− γ1

2πa3l

(l − a) log
(

a−l
a

)
(a− c)(a− b)

+
(l − b) log

(
b−l
b

)
(b− c)(b− a)

+
(l − c) log

(
c−l
c

)
(c− a)(c− b)

 (6)

wherea, b and c are the complex cube roots of the cubic denominator in equation 5 that are
computed numerically anda1, a2 anda3 are the cubic coefficients of the panel that depend on both
the slopes of the panel and the chord length,l. It must be noted that the cube roots involvez′

implicitly. Using eqn. 6 the velocity due to a panel with an angleθ can be found just as in the case
of the linear panel and is as follows

V (z) = V (z′)e−iθ (7)

Hence using equations 6 and 7 the velocity due to an arbitrary panel can be found. Using
this newly developed velocity field the flow past any body can be computed. It must be noted that
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for each and every pointz one needs to solve the cubic equation and obtain the cube roots. In a
similar manner it is possible to derive the complex potentialΦ due to a cubic panel. In thez′ plane
Φ can be obtained as follows

Φ = φ+ iψ =
−ik
2π

∫ l

0
(ζ +

γ1

k
) ln (ia3(ζ − a)(ζ − b)(ζ − c)) dζ

which upon simplification and integration becomes

Φ =
−il
4π

(γ1 + γ2) ln(−ia3) + I1 + I2 + I3 (8)

where

I1 =
−ik
4π

[
(l − a)2(ln(l − a)− 0.5)− a2(ln(−a)− 0.5)

]
+
−ik
2π

[(a+ d)(l − a)(ln(l − a)− 1) + (a+ d)a(ln(−a)− 1)]

andI2 andI3 are the same asI1 with thea replaced withb andc respectively and

d =
γ1

k
, k = (γ2 − γ1)/l

anda, b, c are the same cube roots used in the velocity evaluation. Thus the complex potential at
any point due to the cubic panel can be found.

4. Validation

In order to show that the cubic panel distribution does not produce any edge effects the case
of a flow past a circular cylinder of unit radius at zero angle of attack is considered. The figure 4
plots the velocity magnitude computed by both the linear panel technique and the newly developed
cubic method. The free stream velocity is chosen as 1 unit/sec and 200 equal sized panels are used
in both the cases. The edge effect produced by the flat panel technique is clearly seen. It is also
clear that using the cubic panels completely removes the problem.

5. Conclusions

The reason why edge effects are seen in panel methods is studied and a solution has also
been presented. The solution is to discretise the body in terms of cubic panels and not flat panels.
The equations for such a panel distribution have been successfully developed. It has also been
shown that such a technique effectively removes the edge effect and therby significantly reduces
error. Using this method, it becomes possible to produce a globally accurate velocity field for the
flow past an arbitrary shaped two-dimensional body using a panel method.

6. Acknowledgements

The authors would like to thank Nikhil V. Raj (M.S. Scholar, UIUC) for taking the time to
obtain and send us Steven Yon’s thesis [7].

7



1
�

1.2 1.4 1.6 1.8 2
�

2.2 2.4
Length along body surface

1.7

1.8

1.9

2

2.1

V
el

oc
ity

 M
ag

ni
tu

de
�

Cubic Panels
Linear Panels

Figure 4: Illustration of the accuracy of the cubic panel method for the uniform flow past a 200
paneled cylinder
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