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Abstract

Vortex methods are effective in providing high-resolution flow solutions for incompressible, viscous
fluid flow problems. These methods are grid free and self adaptive by construction. They are
typically used for very high-resolution bluff body flow computations.  In spite of their simplicity and
grid free nature they are not trivial to implement. In this work a sample implementation of a vortex
method that uses a random walk technique for diffusion is described. The method is validated
using the flow past a circular cylinder as a benchmark. For a comparison, the high-resolution
results for a similar flow, obtained by Koumoutsakos and Leonard [13] are considered. Some of
the results and problems with the random walk method are discussed.

Nomenclature

CD = Drag coefficient

D = Drag force

�

I
= Vortex momentum

K �
= Desingularised velocity kernel

L = Length of a vortex sheet

N = Number of particles

�

r
= position vector

R = Radius of cylinder

t = Time

U = Free stream velocity

u = x component of velocity

v = y component of velocity

�

v
= Velocity vector

x = x co-ordinate

y = y co-ordinate

ω = Vorticity

ν = Kinematic viscosity

δ = Core radius of vortex blob

γ = Strength of vortex sheet

��� = Desingularisation function

ρ = Density of fluid

Introduction

Vortex methods are a class of techniques that
are used to study viscous, incompressible
flows. The advantages of these methods are
that they are grid free, self adaptive and
mathematically well researched. The solution
procedure is highly intuitive. These
advantages result from the fact that for this
class of flows, the entire phenomenon can be
represented in terms of vorticity. The vorticity
is the curl of the velocity field. By discretising
this vorticity and tracking the resulting
particles of vorticity (called vortex blobs) one
can in principle solve the flow entirely. In
spite of the simplicity in the description of
these methods, the numerical implementation
of such schemes is usually non-trivial. This is
because there are a large number of important
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issues that need to be addressed before a
useful solver can be created. Obtaining high
resolution results using vortex methods
involves very large computational constraints.
However, it is also possible to obtain very
good engineering results by using simpler
implementations. Dutta[9] addresses several
of the issues related to such implementations.
The present work focuses on obtaining high
resolution results for the flow past a circular
cylinder at various Reynolds numbers.
Currently vortex methods are usually
applicable to incompressible single-phase
flows. Compressible vortex dynamics and
other areas are still open. The current work is
restricted to incompressible, viscous fluid
flows in two dimensions.

There are two steps in the numerical
implementation of vortex methods, the
convection and diffusion steps. During
convection, the vorticity is convected due to
the local velocity field (by integrating an ODE
in time). In the diffusion step an equation
analogous to the heat equation is applied to the
vorticity field. Convection involves the
computation of the velocity field due to the
vorticity on itself plus the effect of any other
potential field on it (like the effect due to a
free stream or a solid boundary). The
accuracy of a vortex method is directly
proportional to the number of particles, N, that
are used to discretise the vorticity field. If the
velocity induced by the N particles on each
other is O(N2) process. This is extremely
inefficient when N is large. It is imperative,
therefore, to use a scheme that reduces this
operation count. There are a large number of
schemes [3, 1, 11, 4, 2, 22, 8, 15] that have
been developed in the recent past that reduce
this O(N2) computation to either an O(N logN)
or O(N) one. Each method has its own set of
advantages and disadvantages. In the present
work the adaptive fast multipole method due
to Carrier et al [4] is used. This method
belongs to the class of methods called fast
multipole techniques and requires O(N)
operations. The basic philosophy is to
represent a cluster of particles that are
sufficiently far away by a single computational
unit. Once this is done, a hierarchical tree of
particles is created. For each cluster the
relevant far away, intermediate and nearby
clusters are identified and computations are
performed appropriately. The effect due to
clusters that are nearby are computed directly.
It can be shown [4] that any order of accuracy
that is desired can be obtained using such
methods. By using such techniques the effect
of the vortex blobs on each other can be
computed efficiently. The effect of the free
stream can be found trivially. If a solid
boundary is present one is required to solve
the potential flow past this body in the
presence of the vorticity. This can be done in
several ways. For relatively simple
geometries it is possible to use the method of
images in either the half plane or in the plane
of a cylinder and use appropriate conformal

mappings to obtain the flow past various solid
boundaries. Even fairly complex body
geometries have been solved in the past using
such techniques. References [9, 5, 16, 18] are
good examples. It is also possible to use a
grid based Laplace solver to satisfy the
boundary condition, but since this technique is
grid based and has associated problems it is
usually not used. The other technique is to use
a boundary element method or a panel method.
In the present work, a linear vortex panel
method is used to satisfy the no-penetration
condition on the boundary. This enables one
to solve for more general geometries.

The second step involves the diffusion of the
vorticity. The diffusion equation is nothing
but the heat equation applied to the vorticity.
The equations for this will be discussed later.
There are several techniques to diffuse the
vorticity. The techniques can be classified
into two broad categories, non-deterministic
and deterministic schemes. The first
technique developed was the random vortex
method (RVM) by Chorin [6]. This technique
is easy to implement for simple geometries
and requires one to displace the vortex
elements with a random displacement.
Recently, quite a few novel techniques have
been developed to solve the diffusion equation
using deterministic schemes. Such schemes
eliminate the noise inherent in non-
deterministic ones. A few of the notable
techniques are the core spreading
algorithm[12], the particle strength exchange
technique (PSE)[13], and the vorticity
redistribution technique (VRT)[19]. These
methods enable one to get unprecedented
resolution using vortex methods. In the
current work the random vortex method is
employed. In spite of the fact that solutions
using such a non-deterministic technique are
inherently noisy, the method proves to be very
useful for obtain good engineering solutions.
Recently Lin et al [14] have developed a
simplified version of the RVM. Taylor and
Vezza[21], [20] use this technique to solve for
flow past transversely oscillating square
cylindrical sections and obtain very good
results. The deterministic schemes are usually
more complicated to implement. 

In the present work the random vortex method
is used to obtain the flow past an impulsively
started cylinder for a range of Reynolds
numbers (550, 1000, 3000, and 9500). This
problem has been studied extensively before
but recently, Koumoutsakos and Leonard[13]
have produced results of extraordinary
accuracy and resolution. Their results are used
to benchmark the current work, and
understand the problems and limitations of a
random vortex method.

Mathematical Preliminaries
In this section, the basic equations that govern
vortex-based techniques are discussed. The
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fluid considered is incompressible,viscous
andtwo-dimensional.In sucha caseit canbe
shown that in order to solve the flow it is
sufficient to solve for the vorticity field. The
governing equation for the vorticity, ω is
given as

D�
Dt

����� 2 �                          (1)

where ���
	���
v

is the curl of the

velocity field, �
v

is the velocity vectorandν

is the viscosity of the fluid.  The term

D

Dt
���
� t

���
v ���

representsthe material derivative. It is
commonpracticeto split eqn.(1)into two steps
as follows 

D�
Dt

� 0          (2)

���
�

t
���! 2 �          (3)

This is called operator or viscous splitting.
Eqn. (2) is theonethatadvectsthevorticity as
per the velocity field and eqn. (3) is the one
that diffuses the vorticity. Each step is
performedseparatelyin thecourseof onetime
step (a fractional time step technique). 

Computationally, to convect the
vorticity, it is necessaryto first discretisethe
vorticity field into unitsof vorticity. Theseare
called vortex blobs. The vorticity is
discretised as follows
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whereΓi is the circulation of the vortex blob

located at 2
r

i

at time t. ϕδ(r) is called a

smoothingfunction, which is an approximate
delta function which approachesδ(r) as the
parameter δ→0. Any appropriatesmoothing
function,ϕδ (r) canbe chosenandthe various
kindsof blobsusedin theliteraturecorrespond
to different smoothing functions. The
parameterδ is called the core radius of the
blob. Using theBiot-Savartequationonecan
computethevelocity of eachvortexblob at an
arbitrary point as follows 

�
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wherex, y arethex andy componentsof the

positionvector �
r

. Reference[16] provides

an excellentdiscussionand detailedoverview
of vortex methods. 

The diffusion equation,eqn. (3), is in fact the
heatequationandhasan exactsolutiongiven
by 
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         (7)

This equationcanbenumericallysolvedusing
severaltechniques.The presentwork focuses
on the randomvortex method (RVM). The
idea behind the randomvortex method is as
follows: diffusion can be approximatedby
giving the particles a random displacement
with a zero mean and total variance 2νt.
During a time step, each particle must be
given an independentrandom displacement
with mean0 and variance2ν∆t, where ∆t is
the time step. The method has been

numericallyshownto havean
O ] ^`_ N a

rate of convergence. 

In theboundarylayerregionthereare
further simplifications that ariseand in order
to simulate the vorticity in such regions
Chorin[7]deviseda vortexsheetalgorithm. In
this schemeone uses the fact that near a
boundary a vortex blob behavesdifferently
dueto thepresenceof its imagevortex. There
is also a notion of a numerical layer that
surroundsthe body. If a blob enters this
region is convertedto a sheetandvice versa.
Theheightof this numericallayeris amultiple

of
2̂Lb t

. The implementationof such a

schemefor the flow pasta circular cylinder is
straightforwardbut for complex shapesit is
extremelyhard to implement. Puckett [16]
provides a detailed discussion on these
schemes. If thestrengthof a sheetis givenas
γ, its length is L andif the sheetis parallel to
the x-axis and starting at the origin then the
velocity inducedby it at a point (x, y) is given
as
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�
u ,v ��� ��� ,0 � 0 � x � L ; y � 0

�
u ,v ��� � 0,0 � otherwise

   (8)

When a sheet is converted to a blob the core
radius of the converted blob is set to be such
that δ=L/π. In the present computation, the
blob due to Chorin[16] is used. It is also to be
noted that the sheets are to be given a random
displacement for the diffusion only in the
direction of the local normal to the body
surface. This is because of the nature of the
boundary layer equations. 

The actual computation proceeds as follows:
The slip due to all the existing vorticity and
free stream is computed on the surface of the
body. Sheets are then introduced just at the
surface of the body such that this slip is offset.
Each sheet has a fixed magnitude of strength
and this parameter is called γmax. Therefore,
given some magnitude of slip, sufficient
numbers of sheets are introduced to satisfy the
no slip boundary condition. These sheets are
then diffused and convected as per equation
(3) and (2) respectively. As the vortices
diffuse and convect the particles are converted
to blobs and sheets as required. This process
is repeated for each time step. The
computation can be continued in this fashion
for as long as required. 

Computational results
As discussed in the introduction, this work
implements a fast multipole algorithm to solve
for the velocity field due to the blobs on
themselves. A panel method that uses a linear
vorticity distribution is used to solve for the
potential boundary condition on the body
surface. The flow past a circular cylinder is
considered as a benchmark problem and the
results are compared with those obtained by
Koumoutsakos and Leonard [13]. They have
performed high-resolution studies of the flow
past the circular cylinder at various Reynolds
numbers and use a very large number of
particles. As a result the simulations are only
for small times. They also indicate that the
drag coefficient is a very good measure of the
accuracy of the scheme. Hence, in the present
computations, the coefficient of drag, CD,
versus time is plotted and the resulting curves
are compared with those obtained in [13]. The
coefficient of drag CD is computed using the
vortex momentum of the fluid. The vortex
moment in a fluid flow at a time t is defined as

�
I �
	

i � 1

N �
r

i �
�

i
.             (9)

It is known that the force �
F

on the body is

given as
d

�
I � dt

. Therefore, given a set of

vortex blobs, �
I

can be obtained from

eqn.(9). The force �
F

can be calculated by

performing a central difference of the vortex
momentum. CD is computed using the
equation 

C
D � D� U 2 R

          (10)

where U is the free stream velocity, R is the
radius of the cylinder and D is the drag force.
Since the random vortex method introduces
noise into the positions of the blobs, the curve

for �
I

versus t (time) will have oscillations

about a mean curve. If such a curve is to be
differentiated as it is, large errors will be
obtained in the CD curve. In order to avoid this
the vortex momentum curve is smoothed using
a spline and the resulting curve is
differentiated to obtain the drag curve.
Koumoutsakos and Leonard plot CD versus a
non-dimensional time, T = Ut/R, where t is the
actual time and the other symbols are as
mentioned above. The same is done for the
present computations.

The various computational parameters have to
be chosen carefully. The parameters involved
are ∆t, γmax, δ, the numerical layer height and
the number of panels, N. The present
computations use the Chorin blob, which has
compact support. Since a panel method is
being used for the no penetration condition, it
is imperative that the vortex blobs do not
penetrate the panels. This condition can be
ensured by making sure that the core radius, δ,
is smaller than the numerical layer height. The

numerical layer height is given by k
2 ��� t

,

where k is a constant. Hence it is required that

δ ≤ k
2 ��� t

. In the present computations k

is chosen between 1 and 5. As mentioned in
an earlier section, the core radius is related to
the length of a vortex sheet via the equation
δ=L/π, where L is the length of the sheet.
Given N equal sized panels for the circle, if
each panel is to release sheets, it is clear that
L=2πR/N. Hence, δ=2R/Ν. Thus, given a
Reynolds number and a cylinder radius R,
except for k and γmax, only one parameter, ∆t,
needs to be chosen. Puckett[16], also provides
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a simple stability criterion for ∆t, such that the
sheet displacement should not be more than its
length, L. In the case of the flow past a
circular cylinder, 2U∆t < L. Hence, the
present computations use a ∆t such that the
above criteria are satisfied. For the Re=9500
case, ∆t is chosen to be 0.0025 seconds, R=1m
and 400 panels are used for the body. The
value of γmax is chosen to be 0.05m/s for all
simulations.

Figure 1 plots CD versus T for various
Reynolds numbers. The circular symbols are
the results due to Koumoutsakos and Leonard
and the lines are the present results. The
random vortex method that is presently used
for the computations is not accurate for highly

viscous flows. This is clearly seen from the
plots. As the Reynolds number increases the
computed curves are closer to the results of
Koumoutsakos and Leonard. For the case of
Re=550 the trends are clearly very similar but
the curve is slightly shifted. For the case of
Re=1000 the curve agrees even more with
that given by Koumoutsakos and Leonard and
for the case Re=3000 the agreement is even
better. For the case when Re=9500 the results
match very well for small times but
subsequently the results are very different.
The prime reason for this is the fact that the
random vortex method introduces noise into
the simulation. 

Fig. 1 CD versus T curves for various Reynolds numbers. The circles are the values obtained by
Koumoutsakos and Leonard and the lines represent the present computations.
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 [a] 0.3 seconds [b] 1.2 seconds

[c] 2.1 seconds [d] 2.7 seconds

[e] 3.9 seconds [f] 4.8 seconds

Fig.2 Vorticity plot for various times for the Reynolds number 3000.  Red dots represent vortex
blobs that have a clockwise circulation and blue dots represent anti-clockwise circulation.  Sheets
having clockwise circulation are coloured yellow and sheets with anti-clockwise circulation are
coloured cyan.

6



 
[a] 0.3 seconds [b] 1.8 seconds

[c] 2.1 seconds [d] 2.7 seconds

[d] 4.8 seconds [f] 6.0 seconds

Fig.3 Velocity vector plots for the flow past an impulsively started cylinder.  Reynolds number is
3000.

The technique used by Koumoutsakos and
Leonard is a deterministic one (particle
strength exchange - PSE) and hence does not
introduce random noise into the flow. Due to
the high Reynolds number, the flow is
unstable and the noise in the RVM causes the
vortex distribution in the wake of the cylinder

to become asymmetric. The PSE technique,
used by Koumoutsakos and Leonard, does not
cause this asymmetry and hence the present
results differ from theirs.  

The problem due to noise in the RVM is a
common one and it is for this reason that
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deterministic diffusion schemes are in vogue
today. In spite of this difference in the results
it is known that in realistic situations, there are
small perturbations, therefore the random
vortex method is still useful from an
engineering standpoint. From the above
results it is clear that for small times the
agreement with extremely accurate results is
good. Even for fairly low Reynolds numbers
the results are acceptable and capture the
trends reasonably accurately. 

Figures 2(a) to 2(f) plot the vortex blobs and
sheets at different times. The Reynolds
number is 3000. Each red dot represents a
single vortex blob that has a clockwise
circulation. Blue dots represent blobs with
anti-clockwise circulation. Sheets having
clockwise circulation are coloured yellow and
sheets with anti-clockwise circulation are
coloured cyan. It is clear that the method is
able to capture interesting features. At t=0.3
seconds the boundary layer has formed and
t=1.2 seconds the rear of the flow has started
to separate. At t=2.1 seconds the formation of
the secondary vortex is seen clearly. At 2.7
seconds a small tertiary vortex is also seen
clearly. A small asymmetry in the flow is also
seen. This is due to the random nature of the
diffusion process. At 3.9 seconds the primary
vortex, has moved significantly towards the aft
of the cylinder. After 4.8 seconds the
primary vortex is still close to the rear of the
cylinder. The asymmetry in the solution is
clearly seen at this time.  

Figures 3(a) to 3(f) plot velocity vectors for
various times for a Reynolds number of 3000.
The plots show the development of the flow in
the wake of the cylinder for small times. The
fine scale structure of the flow is captured.
Secondary and even tertiary vortex structures
are seen.

Conclusions
In this paper the random vortex method
technique coupled with a fast multipole
method is introduced. Such a methodology
can be used to simulate two-dimensional,
incompressible, viscous flows. Some of the
numerical issues are discussed and results are
shown for the flow past a circular cylinder for
a range of Reynolds numbers. These results
are compared with those obtained by
Koumoutsakos and Leonard [13]. For the case
when Re=1000 and Re=3000 the agreement
with their results is good but due to the noise
introduced by the random vortex method and
the consequent asymmetry in the vorticity
distribution the results for the case when
Re=9500 do not agree for longer times. This
failure of the scheme is well known and it is
for this reason that deterministic diffusion
schemes have been developed. However, it is
known that for engineering solutions in
realistic situations the random vortex method
technique is ideal. Since such a solver has

been developed and successfully validated for
high resolutions using the flow past a cylinder
as a benchmark problem it is now possible to
study more realistic flows. Further validations
using criteria different from drag curves are
also essential and these will be pursued in the
future.
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