Boundary Fitted Coordinate System-Methods of Grid Generation

G. R. Shevare

Dept. of Aerospace, IIT Bombay, shevare@aero.iitb.ernet.in
· What is a Grid?

· Use of Grids in Computational Methods

· Solution of a PDE in Rectangular Domain

· Problems Associated with Domain with Arbitrary Boundary

· 1D Structured Grid – Storage makes it Structured!

· Properties of 1-D Structured Grids

· An Algebraic 1-D Grid Generation Formulation

· Grids in 2 Dimensions

· 2 Dimensional Structured Grids

· Topology of Grids in Doubly Connected Domain

· Methods of Automatic Numerical Grid Generation Methods

· Transfinite Interpolation Method

· Grid Generation Through Laplaces Equation

· Body Fitted Curvilinear Co-ordinates and their use
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· Relation between Co & Contra variant Base Vectors and Differential Operators in Contra base Vectors

What is a grid?

Grid is a Discrete Representation of a Domain.

Two Views can be taken:

1. Mold a given two-dimensional domain in to a rectangle (and three-dimensional domain in to a box) by a suitable affine transformation.
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(x, y) Physical Domain

((, () Computational Domain
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· Find two functions f and g such that ( = f (x, y) and ( = g (x, y).

· Draw lines corresponding to constant values of ( = i (( = i and ( = j (( = j

for i = 1 to i max and j = 1 to j max in (x, y) plane.

· Intersection of these points gives (a) grid points (i, j) and also (b) quadrilateral cells.

2. Fill a given domain with simple shapes such as triangles (say) so that the given domain is fully covered.
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· Domain here is space between two circles.

· The simple shape chosen to fill the space is triangle.

· Note that 
· triangles collectively 
cover the complete space
· triangles do not intersect 
each other
Emphasis is on cells (triangles in the present case); there are grid points but no continuous lines or what can be called as grid lines.

· Thus Grid (in 2D) is defined by

A set of discrete points and a set of cells (usually quadrilaterals or triangles)

Collection of neighbouring discrete points forming a set of cells and
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Lines extending connecting the discrete points, i.e. edges of cells.

If the edges span the across the domain and join the same number of grid points they are called grid lines.

· Grid also helps in representing a field in discrete form

· Represents continuous variables only at finite number of points

· Helps in converting PDE to
FDE, FVE or FEE

· Any Problem
( Simultaneous algebraic equation

· Solution of these equations gives field at discrete points.

· Representation of space and field can be done in two ways

Assign variables to discrete points

vs
Assign field variables to a cell
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in an averaged sense
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Finite Difference Method (FDM)
Finite Element Method (FEM)

Finite Volume Method(FVM)

Field assigned to grid points only

Field assigned to grid points as

Field assigned to cells and is






well as some intermediate points

assumed to be constant within a

cell

Variation of the field in between the
Variation of the field in between the


points is not explicitly defined

points is explicitly defined




Resulting equations are satisfied

Resulting equations are satisfied

Resulting equations satisfy

only at grid points


in an overall sense


conservation in every cell

Solution of a PDE in Rectangular Domain

Consider PDE: 


(2( = (2( / (x2  + (2( / (y2 = 0.

With Boundary Conditions:
( specified on boundary




Problem 1




Problem 2

· The domain be discretised at equal intervals in x and y directions

and the coordinates be defined as

xij = xi = i ((x) and yij = yj = j ((y)

where i and j are serial number of grid points in x and y directions

· ( be defined only at grid points: ( ij = ( (xij , yij )

· Second order partial derivatives to be approximated by second order accurate difference.

(2( = (2( / (x2  + (2( / (y2 = 0 gets approximated as

(( i+ij  - 2( ij + ( i-1j ) / ((x)2 +  (( ij+1 -  2( ij + ( ij-1)/ ((y)2 = 0.


( 1 )

This gives rise to penta-diagonal simultaneous linear algebraic equations for ( ij  equal to total number of grid points in the domain. ( ij on the boundary provides

RHS for the equations.  Or it can be solved iteratively as

( ij = (( i+ij  + ( i-1j  + ( ij+1  + ( ij-1)/ 4
if (x = (y ; 0<i< imax & 0<j<jmax
The Difficulties solving Problem no 2:

1. Equation ( 1 ) is not valid if grid point corresponding to

(a) ( ij not in the domain or

(b) values (i+1j ,( i-1j , ( ij+1  or  ( ij-1 are not lying on the boundary.

2. It is possible to re-write an appropriate equation for such cases, but such solution suffers in terms of stability, accuracy, and complexity of code.

Problems Associated with Domain with Arbitrary Boundary

To remedy the problems posed by difficulty (1) and (2) we arrange points (i,j) such that (a) there are no points lying outside the domain and (b) each one the internal grid points necessarily has four neighbours with known indices.





Example #  1 :

i lines are shown by solid lines

j lines are shown by dotted lines.  

Arrow indicates the direction in which index increases. 










Example # 2:

i lines are shown by solid lines

j lines are shown by dotted lines. 

Arrow indicates the direction in which index increases. 


In both the above arrangements all the internal points (i, j) have four neighbouring with indices (i+1,j), (i-1,j), (i,j+1) and (i-1,j).

But it is not possible to approximate partial derivatives (2( / (x2 and 

(2( / (y2 by finite differences as the both the x and y coordinates of the neighbouring points vary.  However, it is to possible to approximate partial derivatives (2( / (r2 and (2( / ((2 by finite differences if PDE is written in Polar coordinates for Example # 2.

· We are seeking curvilinear coordinates where a coordinate axis coincides with the boundary of the domain; i.e curvilinear boundary fitted coordinates for a domain of any shape.

 1-D Structured Grid-Storage makes it Structured!

Essentially three column matrices or arrays; one each for x, y and z

If any one them is or constant, the array can be replaced by a scalar value
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Implicitly the following is assumed
Point No. 1 with Co-ordinates x(1), y(1), z(1) is connected to

point No. 2 with Co-ordinates x(2), y(2), z(2)

Every ith internal point there precisely two neighbours, namely

(i-1)th and

(i+1)th 

Boundary Points have only one neighbour each.

Point no 1 has point no 2 and

Last point has last but point as its neighbour.

· In Short the neighbourhood information and boundary of the domain is embedded in the data

· This way of storing the continuum data gives 1-D Structured Grid.

Properties of 1-D Structured Grids

x = xmin








x = xmax
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(=1


(





(=8







Let the unevenly distributed points on x-axis be mapped (moulded) on evenly mapped ( axis by an affine transformation.

This operation can be seen as a function 

x = F ( ( ) 
such that when

 
x = xmin  ( = 1,

x = x2     ( = 2, etc.

i.e. x is sampled only at N points and stored as discrete values representing the domain xmin   (  x   (   xmax
Note that there is no need to store ( as it always takes values from 1 to N







x = F ( ( )



Curve a

   









Curve c






Curve b
















Curve d









(
Curve a : more points near ( = 0


Curve b : more points near ( = 0 and ( = N

F must be monotonic

Curve c :  (x = constant



Curve d : Can not be used

1-D Structured Grid (Contd.)
Is it not enough to say points on x-axis are numbered serially?

Why have we introduced a new variable (?

In FDM it pays to transform the old equation (with x as independent variable) with the new variable ( which is sampled at equal intervals.  This leads to simple FDE form where (( gets cancelled through out.

This means that

for every point in x there exists a unique point in (    (  =  G ( x ) and

for every point in ( there exists a unique point in x    x =   F ( ( ).

Note that 


The above conditions are possible if and only if (d( / dx) or (dx / d()   is of the same sign for the complete rage of x or ( or alternatively

(d( / dx) ( 0    for xmin ( x ( xmax
(dx / d() ( 0.   for ( min ( ( ( ( max
How to find F or G constitutes 1-D Grid Generation Problem

(i) Algebraically

(ii) Using analogy of physics of a problem

(iii) Minimisation some property

An Algebraic 1-D Grid Generation Formulation

Assume that w(x)  a function that tells how to cluster the points with the help of following equation:

w dx = C d ( = constant  = C ( d(  = 1 say ) or

w ds =  C d ( = constant  

Note that

· It does not matter whether domain is x axis or a straight line in (x, y, z) space or a curve.

· If

· w is large 
dx will be small; 

· w  is small 
dx will be large.   Note that 
w ( 0 otherwise dx ((
Complete range of x must cover complete range of (, thus if w is given as a function of x solution of equation
x max








clustered grids
( w dx = C (( max - ( min )

x min









     w

 

gives 1D grids.

     spare  grids


spare  grids 














Note that

· w is required to supplied by those who do the simulation. 

· we may also formulate the problem as 

( max
C (xmax - xmin ) 
= 
( w d( 
if w is given as a function of (
( min
Solution of above integral equations produces 1-D Grids as per required clustering density.






Grids in 2 Dimensions

In 1-D the continuum was replaced by a set of grid points (vertices) and set of segments joining the vertices.

By analogy, in 2 Dimensions, we need three things:

(i)  a set of grid points (vertices)
(

(ii)  a set of segments and



(iii)  a set of cells





or 



or     ?


In any case the following conditions must be met:

1.  All the cells collectively must cover the given domain.

2.  Each segments must have only a maximum of only two neighbouring cells

3.  Each segments must have only two vertices

4.  Any two cells or segments must not overlap on each other.


· If cells are of the same type (say, either quadrilaterals or triangles only), the grid is called conformal grid

· The way the cells or grid points are stored, makes them structured or unstructured grid.

2 Dimensional Structured Grids

What happens if we decide to have only quadrilaterals arranged in the form of rows( i ) and columns ( j )





(1, 3)





(1, 2)




   (1, 4)





       (2, 2)




    (1, 1)




(2, 1)




(3, 1)






(4,1)

The segments & cells automatically get stored if only grid points are arranged in 2 dimensional array.

Say P [ i ] [ j ] = x[ i ] [ j ]  or  y[ i ] [ j ];    i = 1 to 9 and j = 1 to 4.

Segments get formed by 
P [ i ] [ j ] and P[ i+1] [ j ],

P [ i ] [ j ] and P[ i-1] [ j ],

P [ i ] [ j ] and P[ 1] [ j+1], 

P [ i ] [ j ] and P [ i 1] [ j-1 ].

Cells get formed by 
P [ i ] [ j ] , 
P[ i+1] [ j ],  P[ i ] [ j + 1 ], and P [ i + 1] [ j +1 ].

This way of storing the 2 dimensional continuum data is called Structured Grid.

2-D Structured Grid  (contd.)

We know that

1-D domain, i.e.  x axis or a straight line in (x,y,z) space (or a 3-D curve) can be mapped to a straight line say ( axis where  ((  is constant.

By analogy we can map
2-D domain, say ( x y plane ) or a surface in (x, y, z) space can be mapped to

on a rectangle in say ( (, ( ) plane.

Mathematically 

( = F (x, y), ( = G (x, y)      or     x = H ((, () , y = I ((, ()
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2-D Structured Grid (contd.)

Consequences of the Mapping

The domain acquired rectangular  topology;  i.e

· The boundary of the domain got divided in to four separate parts each getting mapped to sides of rectangle in  plane

· Four points on the boundary got explicitly mapped to four vertices

· If m lines are drawn along  (  axis and  n   lines are drawn along  (  axis, there will be m x n lines in the domain

· The intersection of these lines will generate grid points.  These lines also divide the domain in to cells (m-1) x (n-1) number.

Thus a structured grid gets generated automatically if (F and G) or (H and I) are found out.


Numerical method where in discrete points (xij ,yij) for i = 1 to m and j = 1 to n defined as



xij = H ( (ij, (ij )    for i = 1 to m and j = 1 to n 



yij = I ((ij, (ij ) 
with (ij, (ij are equally spaced

is called automatic numerical grid generation.

2-D STRUCTURED GRID  (contd.)

Topology of Grids in Doubly Connected Domain

How to Accommodate a Hole?

Make a Branch Cut in the Domain





Branch cuts
E. g. : ‘O’ Topology 
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· No of Points on both boundaries is the same 

· Flow gets resolved better on the internal surface

· Good for Simulation of Inviscid Flows

· Requires periodic boundary conditions

2-D STRUCTURED GRID  (contd.)

Topology of Grids in Doubly Connected Domain

‘C’ Topology
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Branch Cut



· No. of Points on the outer boundary is equal to the number of grid points on the airfoil + wake.

· Good for Simulation of viscous flow
· Requires a Special Provision for implementation of Boundary Conditions


The above operation can be seen as opening of the irregular domain to a rectangle

Note that structured grid requires rectangular topology 

2-D STRUCTURED GRID  (contd.)

Topology of Grids in Doubly Connected Domain

‘H’ Topology
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· Simulation of Cascade flows.

· Flow near Leading Edge does not get Resolved

· Requires Special arrangement of Implementing Boundary Conditions

Not Recommended for General Use

Methods of Automatic Numerical Grid Generation Methods

How to Formulate the equations F and G ?

How to Solve the Formulation?

Define a Map Geometrically

Algebraic Grids :


TFI (Transfinite Interpolation Grids)






Many TFI schemes are available,

But only so called Bi-linear Coon’s Patch is normally used






Fast, Acceptable quality if geometry is simple.

Define Requirements of Grids Mathematically

Elliptic Grids: 


Many Formulations available






Computationally expensive

Uses TFI Grids as initial grids and refines to meet mathematical requirements.

Use an analogy from Physics

Hyperbolic Equation:

Allow the boundary of the objects to move as if it is a sound waves






This method is rarely used

Algebraic Method of Grid Generation : Transfinite Interpolation Method

Problem specification 

Given four parametric curves x (u, 0), y (u, 0),
0  ( v ( 1

x (u, 1),  y (u, 1),
0 ( v  ( 1

x (0, v),  x (1, v),
0 ( u  ( 1

y (0, v),  y (1, v) ,
0  (u  ( 1



Find x ( u , v) and y ( u , v);  0 ( u  ( 1, 0  ( v ( 1


TFI Grid is:

x ( u , v )  =  (1 - v) x (u, 0)
+ v x (u, 1) 
+ (1 - u) x (0, v)
+ u x (1, v)

(1 - v ) x (0 , 0) 
- v x (0, 1) 
- (1 - u) x (0, 0)
- u x (1, 0)

for 0 ( u  ( 1and  0  ( v ( 1.

u lines can be stored as i ( or ( ) lines and v lines can be stored as j ( or ( ) lines

· The method can be extended to 3 dimensions easily.

· Grid may spill out side the given domain; Jacobian may become negative

· Overall quality is rarely acceptable

· Almost always used as initial grid in grid generation algorithms

Methods of Automatic 2D Structured Grid Generation

Based on Solution of Elliptic Equation

Elliptic Grids give Partial Differential equations for  (  and ( as unknowns with x, y as knowns,
with boundary conditions where ( lines and ( lines are required to mapped as per the following

( = F (x , y) , with curve 3-1 in (x,y) becomes  ( = 0, curve 4-2 in (x,y) becomes  ( = M, 0 ( ( ( 1.

( = G (x , y), with curve 3-4 in (x,y) becomes  ( = 0, curve 1-2 in (x,y) becomes  ( = N,  0 ( ( ( 1.

Thus instead of solving ( = F (x , y)  ( = G (x , y), we invert the PDE and pose them as

x = H ( (, ( )   and  y = I ((, ( ) as given below.
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Consider a given domain in ( in x y plane shown on the left and (' in (, ( space shown on the right side.

We are seeking two functions ( = H (x, y) and ( = I(x, y) such that a rectangle in ((,() plane gets mapped to the given domain.

Most Commonly ( = H (x, y) and ( = I(x, y) are obtained by solving Laplace's equations:
(2( = (2(/ (x2 + (2(/ (y2= 0 

(Eqn. 1)

(2( = (2(/(x2 + (2(/ (y2= 0

(Eqn. 2)

with boundary Conditions:

given variation of ( along the bottom boundary with (= 0

(BC. 1a)

given variation of ( along the top boundary with (= 1


(BC. 1b)

given variation of (along the left boundary with (= 0


(BC. 2a)

given variation of (along the right boundary with ( = 0

(BC. 2b)

To solve the problem we start inverting these equations by using chain rule

(/(x = ((/(()(((/(x) + ((/(()(((/(x)

(/(y = ((/(()(((/(y) + ((/(()(((/(y)

Similarly

(2/(x2 = ((/(()((2(/(x2) + (((/(x) ((2/(x(() + ((/(()((2(/(x2) + (((/(x) ((2/(x(() or

(2/(x2 = ((/(()((2(/(x2) + ((/(()((2(/(x2) + ((2/((2)((2 (/(x)2 + ((2/((2)(((/(x)2

 + 2((2/(((()(((/(x)(( (/(x),

(2/(y2 = ((/(()((2(/(y2) + ((/(()((2(/(y2) + ((2/((2)((2 (/(y)2 + ((2/((2)(((/(y)2

 + 2((2/(((()(((/(y)(( (/(y)

(2/(x(y = ((/(()((2(/(x(y) + ((/(()((2(/(x(y) + ((2/((2)(( (/(x)(( (/(y)

    
   + ((2/((2)(((/(x)(((/(y) + ((2/(((()[(((/(x)(( (/(y)+(( (/(x)(((/(y)]

But for any variable u, one can write 

(u/(( = ((u/(x) ((x/(() + ((u/(y)((y/(()

(u/(( = ((u/(x) ((x/(() + ((u/(y)((y/(()

and ((u/(x) & ((u/(y) can be solved in terms of

(u/((, (u/((, (x/((, (y/((, (x/(( and (y/((as


        (u/((
(y/((     
   (x/((   (y/((
   
  
(u/((  (y/((
((u/(x)  =





           =   (1/J)





        (u/((  (y/((

   (x/((   (y/((
   
 
 (u/((  (y/((



(x/((
  (y/((
where J = Jacobian = ((x, y) /(((, ()   = 

(x/((
  (y/((
or
((u/(x)  = [((u/(()((y/(() - ((u/(()((y/(()] / J
and

((u/(y)  = [((u/(()((x/(() - ((u/(() ((x/(()] / J

Using the above two realations on ( or ( instead of on u derivatives ((/(x, ((/(y, ((/(x and ((/(y as well (2(/(x2, (2(/(y2, (2(/(x2 also (2(/(y2 can be found in terms of (2x/((2, (2y/((2, (2x/((2, (2y/((2 (2x/((((, (2y/((((, (x/(( and (y/((.

Thus  equations corresponding Laplace's to equation 1 and 2 become

g11 x(( + g22x(( + 2 g12x((  = 0




(Eqn. 3)

g11 y(( + g22y(( + 2 g12y(( = 0




(Eqn. 4)

with 
gij = ai . aj where a1 = x( i + y( j; and a2 = x( i + y( j

Boundary conditions equivalent to BC 1 and 2 are

x ((, 0), y ((, 0);

x (( ,1), y (( ,1); 
(BC 3 a&b)

x (0, (), y (0, ();
x (1, (), y (1, ()
(BC 4 a&b)

· Laplace grids are the smoothest.

· Grid lines wrap around tightly if boundary curve is convex.

· To get desired grid spacing Poisson System is used

(2( = (2(/ (x2 + (2(/ (y2= P 
(2( = (2(/(x2 + (2(/ (y2= Q

· P and Q are called control functions.  They control the orthogonality and clustering

Body Fitted Curvilinear Co-ordinates and their use

We can choose curvilinear axes along three distinct curves

(








X

Or we can choose them along normal to surfaces





          Z

                (





If we choose the 1st option the base vector along curvilinear axes is given as the rate of change position vector (i.e. x, y, z) wrt (:

a  = 
lim ( r((+ d( ) - r (() ) / d( = r( = (x/(( i + (y(( j +(z/(( k

as d(( 0

Since we need three curvilinear axes we require three curves

Say
(1 = (,
  (2 = (,
(3  = (
or 
(i, ( i = 1, 2, 3).

ai  = 
lim ( r((+ d( ) - r (() ) / d( = r(i

( i = 1, 2, 3).


as d(( 0

Notes

ai are called covariant base vectors

There are three base vectors: a1, a2 and a3
Each base vector has three components

If we choose the 2nd option the base vector along curvilinear axes is given as the gradient of ( = ( (x, y, z); i.e. normal to the plane ( = constant

a  = 
Grad ( = ((
Since we need three curvilinear axes we require three surfaces

Say
(i  = ( (x, y, z),
  (2 = ( (x, y, z) ,
(3  = ( (x, y, z)

or 
(i  =  (i (x, y, z),
( i = 1, 2, 3).

ai  = 
((i

( i = 1, 2, 3).

Notes

ai are called contra-variant base vectors

There are three base vectors: a1, a2 and a3
Each base vector has three components
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      a3

a2
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( = constant





a1








( = constant












         a1






(

     a2


( = constant
Only in an orthogonal co-ordinate system two types of base vectors coincide with each other.

Neither ai nor ai are unit vectors.

Expressions for 3D vector, segment length, area and volume in terms of covariant base vectors.

1.
Distance between two points not necessarily lying along a coordinate line. 

Vector connecting these points is

dr = 
((x/(( i + (y/(( j +(z/(( k) d(
+

((x/(( i + (y/((j +(z/(( k) d(
+

((x/(( i + (y/(( j +(z/(( k) d(



or 
dr  = 
( a i  d(i

magnitude of this vector ds is given by: (ds) 2  = (dr) ( (dr)


(ds) 2  =
( ( a i  d(i ) ( ( ( a j  d(j )



=
( ( (a i ( a j )  d(i  d(j


=
( ( g ij d(i  d(j 

where g ij = a i ( a j = a j ( a i
2.
Distance, ds, between two points separated by d( but both lying ( line.


(r = 
((x/(( i + (y/(( j +(z/(( k) ((




a i  ((i
magnitude of this vector (s is given by: (ds) 2  = (dr) ( (dr)


(ds) 2 = ((x/(( i + (y/(( j +(z/(( k) d(( ((x/(( i + (y/(( j +(z/(( k) d(


=  a i  d(i ( a i  d(i



= a i (a i  d(i  d(i 
= gii (d(i)2 where g ii = a i ( a i
3.
Surface are of an element bounded by d( and d( i.e. d(i and d(j

(






(dS)i = | aj x ak| d(j d(k  = ((gjj gkk - gjk2) d(j d(k 



(
4.
Volume bounded by d( , d( and  d( i.e. d(i, d(j  and d(k 


dV = 
ai ( (a x ak) d(i, d(j d(k  = ( (det [ gij ]) d(i, d(j d(k

(g d(i, d(j d(k
Expressions for differential operators on scalars and vectors in terms of covariant base vectors

· Divergence of a Vector Field A such as velocity

((A
=
{ ( [(aj x ak) ( A] (i } / (g

conservative form

((A
=
{ ( (aj x ak) ( A (i } / (g


non-conservative form

Note:

if A is ((V), [(aj x ak) ( A] represents flux mass flux across a face of a cell.

· Curl of a Vector Field A such as velocity

(xA
=
{ ( [(aj x ak) x A] (i } / (g

conservative form

=
{ ( [(aj (A) ak) - (ak (A) aj)] (i } / (g

(xA
=
{ ( (aj x ak) x A (i } / (g


non-conservative form

=
{ ( (aj (A(i) ak) - (ak (A(i) aj)} / (g

· Gradient of a scalar A

(A
=
{ ( [(aj x ak) A] (i } / (g


conservative form

(A
=
{ ( (aj x ak) A (i } / (g


non-conservative form

· Laplacian of a scalar A

(2A
=
{ ( ( {(1/(g)(aj x ak) ([(am x an)A] (l } (i }/(g











conservative form

(2A
=
{ ( ( (aj x ak) ( (am x an)A] (l (i }/ g +




{ ( ( (aj x ak) ([[(am x an)]/(g] (i ] A (l }/(g

non-conservative form

Relation between Co & Contra variant Base Vectors and

Differential Operators in Contra base Vectors 

· By definition ai = ((i 

But Gradient of a scalar A is given by { ( (aj x ak) A (i } / (g,

Using (i for A gives the desired relation

ai = ((i = (aj x ak)/(g

as (i (j = (ij
· One more interesting relation between co and contra variant base vectors is obtained as follows:

ai ( aj = ai ((ak x al)/(g = (ij
as ai (ak x al = (g
if i, j and k are cyclic.

· Because of the above properties between co and contra-variant base vectors any vector A can be written as:

A = ( (ai ( A) ai  = ( (ai ( A) ai 
Note that Ai  = ai ( A are components along (NOT necessarily unit) normal to (i surface but since ai ( aj = (ij , component along (i gets correctly scaled and aligned.

· Expression for gij = gi (gj 
gil = gi (gl  = (aj x ak) ( (am x an)/ g = (gjmgkn - gjngkm)/g with det [gij] =1/ det [gij] = 1/g.

· Divergence of a Vector Field A such as velocity

((A
=
{ ( [(g ai (A] (i } / (g


conservative form

· Curl of a Vector Field A such as velocity

(xA
=
{ ( [(g ai x A] (i } / (g


conservative form

· Gradient of a scalar A

(A
=
{ ( [(g ai A] (i } / (g


conservative form

· Laplacian of a scalar A

(2A
=
{ ( [ai (((g aj A) (j] (i } / (g

conservative form
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