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Aerostat envelopes are generally bodies of revolution with length to diameter ratio 
ranging from 3 to 5. Drag coefficient for this class of bodies can be obtained using empirical 
formulae or co-relations based on experimental studies. However such formulae are valid for 
specific class of envelope shapes only and result in errors of around 30% compared to the 
values determined by numerical methods. The motivation for the present study arose from 
the need for a simple but generic methodology to estimate coefficient of drag as a function of 
envelope geometry, thus eliminating the need for running numerically expensive CFD codes 
each time the shape is altered during an optimisation exercise. In a previous study, the 
envelop shape was parameterized in terms of six geometric coefficients, and a shape 
generation algorithm was developed to generate various possible shapes satisfying 
manufacturing and few geometric design constraints. An empirical co-relation for envelope 
drag coefficient was developed, but it was not amenable to coupling with an MDO process, 
since it required detailed geometric data about the envelope shape, especially the co-
ordinates of several points at the nose and trailing edge, and the grid density in these 
regions. In the present study, around 600 feasible shapes satisfying the user-specified volume 
and length constraints were generated using the shape generation algorithm. The flow 
patterns over these shapes were studied using FLUENTTM CFD Package and a better co-
relation was obtained by fitting a quadratic response surface using Design-ExpertTM 
package. The current methodology uses only the values of six design variables to determine 
the drag coefficient, thus making it easy to integrate with a multi-disciplinary optimization 
algorithm for determining optimum envelope shape. 

Nomenclature 
CD    = Coefficient of Drag 
CDV   =   Envelope Drag coefficient using Volume2/3 as reference 
CDS = Envelope Drag Coefficient using envelope surface area as reference 
Cp =  Pressure Coefficient 
d    = Envelope diameter, m 
Fcomp = Composite Objective Function 
L, l   = Length of aerostat envelope, m 
S  = Total surface area, m2 
V   = Envelope Volume, m3 
X1    = Abscissa of starting point of Spline -1 (m) 
X2  = Abscissa of starting point of Spline -2, Location of max. radius (m) 
X3 = Abscissa of end point of parabola (m) 
Y1   = Ordinate of the starting point of Spline -1 (m) 
Y2     = Ordinate of the starting point of Spline -2, Maximum radius (m) 
Y3  = Ordinate of the starting point of Parabola (m) 
Re   = Reynolds Number 
g    = Acceleration due to gravity, m/s2 
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ρa  = Density of air, m3/kg 
ρhe      = Density of  helium, m3/kg 
σmax  = Maximum hoop stress per unit thickness, N/m 
RSM   = Response Surface Methodology 

I.  Introduction 
An aerostat is an aerodynamically shaped body that is tethered to the ground. An Aerostat is filled with a ‘lighter 
than air’ gas, and thus generates static lift due to buoyancy. The primary requirements of an aerostat are high 
payload capacity, low blow-by, and sufficient stability and fast response to winds. The total lift that is produced by 
buoyancy and aerodynamic forces is balanced by the weight of the aerostat, the tether force and the payload. The 
buoyancy depends solely on the volume of LTA gas contained in the envelope. To increase the payload that can be 
carried by an envelope of fixed volume, either the weight of the aerostat has to be reduced or the tether force has to 
be reduced. 

The weight of the envelope depends on its total surface area and the density of the material that is used for 
manufacturing the aerostat. Thus, to reduce the weight of the aerostat, its surface area should be reduced. Selection 
of the proper geometry of the hull can reduce the surface area of the hull for the same volume. However the surface 
area alone does not decide the shape of the envelope as there are other considerations such as stresses generated and 
drag produced in the aerostat. When stress is low, thinner fabrics with lesser density can be used for manufacturing 
the aerostat. Another method to reduce the weight of the envelope is to use patches of thicker and denser material in 
highly stressed regions and thinner materials for other regions. 

Blow-by is the longitudinal displacement of the aerostat brought about by ambient winds. Such movement is 
undesirable, as it induces errors in the station keeping and reduces the effective operational altitude of the aerostat. If 
drag on the aerostat is high, longer tether has to be used to maintain the altitude, as shown in Fig. 1, thus drag also 
has a weight penalty attached to it. 

 

 
Figure 1. Effect of blow-by on tether length 

 
To minimize blow-by, the lateral coefficient of drag of the aerostat should be kept to the minimum. The 

envelope drag constitutes nearly 67% of the total drag of the aerostat; hence selecting an appropriate envelope shape 
is very important.  

Drag minimization of axi-symmetric bodies 
In most cases, aerostat envelopes can be assumed to be axi-symmetric bodies of revolution. Many studies, both 

experimental1-3, and computational4-9 for obtaining low drag shapes of such bodies for various applications and 
Reynolds number regimes have been reported in literature. One of the most important considerations in interpreting 
the results of these studies is the characteristic length that is used to define the Reynolds number of the envelope. 
Though V1/3 is usually used as the characteristic length, in some cases the Reynolds number reported is based on 
envelope length L. Transition Reynolds number depends on the choice of characteristic lengths. Similarly, the 
definition of coefficient of drag CD can also be based on total surface area of the body S, or the reference area 
equivalent to V2/3.  

The appropriate drag reduction technique to be followed requires knowledge of the working Reynolds number. 
Optimum shapes for different Reynolds number vary greatly. Maintaining extended regions of laminar flow by 
altering the shape of the body has been an important strategy in drag reduction for Envelope Reynolds number 
between 105 and 108. The shape of the body is selected to move the transition point as far back as possible. Although 
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theoretically an optimum shape can minimize the drag experienced by a body, proper manufacturing and 
smoothness of the shape is essential as the transition point shows a high sensitivity to surface roughness. Apart from 
passive laminarization techniques such as shape optimization, there are active methods of drag reduction such as 
boundary layer control. 

A. CFD techniques for shape optimization of axi-symmetric bodies 
Parsons and Goodson4 were the first to report application of numerical optimization techniques for shape 

optimization of axi-symmetric bodies. They represented the body by eight parameters, and coupled a boundary-layer 
method to a panel code. Pinebrook8 has also carried out studies on drag minimization of bodies of revolution. 
Dodbele et al.6 used the coordinate points defining the geometry of a fuselage as the design vector and the location 
of the transition point as the objective function to be maximized. The fact that drag reduction by modification of 
shape primarily involves increasing the extent of laminar flow justifies selection of location of transition point as 
objective function. 

In contrast, Zedan et al.5 used an inverse method for drag minimization of axi-symmetric bodies (such as 
airplane fuselages) by shaping. In this approach, a favorable velocity distribution was specified, and the shape of the 
body that produced this distribution was obtained. The fuselage designed showed a long region with a favorable 
pressure gradient in its forward part. It was stated that this should result in laminar flow up to 70 % of the body 
length at medium and large Reynolds numbers. Coiro and Nicolosi7 have also reported some results related to 
Natural Laminar Flow on aircraft fuselages. In this method, a linearly varying doublet distribution is placed along 
the axis of the body such that the stagnation streamline gives the shape of the body. Starting with an initial guess 
shape, the strength of the singularities is varied until the velocity distribution over the shape matches the prescribed 
velocity distribution. This method is better than usual optimization methods as the physics of transition delay is not 
masked. It also involves less computational resources; however, it involves a lot of experience to decide the required 
velocity distribution. 

Most of the abovementioned studies are related to bodies with extended laminar flow. However, Hess and 
James9 have shown that in case of fully turbulent boundary layer, drag is insensitive towards changes in body 
contour, and significant drag reduction by shaping alone cannot be achieved in such cases. Bodies having fully 
turbulent flows show a flat drag minimum at l/d ratios between 5 and 6. 

Lutz and Wagner10 have developed a tool for numerical optimization of axi-symmetric bodies submerged in 
incompressible flow at zero angle of attack. The objective of their work was to minimize the coefficient of drag of 
an envelope of given volume, for a prescribed speed range. In their studies, a panel code has been coupled with an 
integral boundary layer procedure to take into consideration the viscous effects. Instead of the conventional method 
of varying the shape of the body, the singularity strength distribution was varied during the optimization process and 
the optimum shape obtained from the stagnation streamline after closure conditions were satisfied. Transition 
calculations were done using a semi-empirical method known as the en transition criterion. A hybrid optimizer was 
used, which enables constrained optimization and consists of Genetic Algorithms, Downhill simplex and a gradient 
method. The results of the study are shown in Fig. 2. 

 

 
 

Figure 2. CDv for optimum shape for various Reynolds number regimes10  
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As the design Reynolds number increases, the favorable pressure gradient in the fore body region has to be 
increased, in order to delay transition. This can be done by increasing the diameter, or moving the point of 
maximum diameter forward. The maximum diameter is fixed by the pressure recovery that is possible without 
turbulent separation. In real life airship and aerostat applications, the maximum diameter is also governed by the 
stresses that are developed in the fabric. However this factor wasn’t taken into consideration by Lutz and Wagner10 
and the aerodynamic aspects were alone taken into account for optimization. Transition occurs close to the point of 
minimum pressure. Beyond the point of transition, the wetted surface should be reduced as much as possible to 
minimize skin friction drag. 

Shape optimization by variation of geometric parameters  
Several low-drag profiles suitable for airship and aerostat envelopes have been suggested in literature. The 

approach is primarily to develop shapes that delay transition and separation. One of the frequently used methods of 
shape optimization is expressing the body profile as a combination of simple geometric shapes. Once the geometry 
of the body has been established in terms of simple curves, the defining parameters of these curves can be used as 
design variables. The shape defined by the optimum combination of these parameters is the shape for minimum 
drag.  

Two such shapes are the NPL shape11 suggested by National Physics Laboratory and the GNVR shape12,13 
developed by National Aerospace Laboratories, India. The NPL shape consists of two ellipsoids of revolution, 
which meet at the location of maximum diameter, as shown in Fig.3. The major axis of the rear ellipsoid is √2 times 
the major axis of the front ellipsoid. The radius of curvature continuously increases thus reducing the possibility of 
flow separation.   

 
 
 

 
 
 
 
 
 
  

 
Figure 3. National Physics Laboratory (NPL) low drag shape 

 
Figure 3. NPL shape 

The GNVR shape is a combination of an ellipse, circle and parabola as shown in Fig. 4. Earlier computational12 
and experimental studies13 have indicated that this shape corresponds to low CD of aerostats operating at M = 0.1 and 
H = 1.0 km. The entire geometry of GNVR is parameterized in terms of its maximum diameter, as shown in Fig. 4.  
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Figure 4. GNVR envelope profile 

II. Multidisciplinary approach to envelope shape optimization  
Kanikdale et al.14 have attempted a multidisciplinary approach to shape optimization of airships envelopes. They 

have defined a generic envelope profile in terms of a combination of two cubic-splines, with a spherical cap in the 
front portion, and a parabolic shape in the end, as shown in Fig. 5. The selection of a spherical cap for the enables 
the shape to be compatible with the spherical mooring cups that are in use in the winching and mooring systems of 
aerostats. A parabola was selected for the rear portion to make attachment of fins easier. 

 

 
Figure 5. Parameterization of envelope geometry by Kanikdale et al12. 

 
The defining equations in Kanikdale et al’s14 formulations are: 
Spherical Cap:  y2=2xR-x2   
Spline I:  y= a1x3+b1x2+ c1x+d1                                                                                                                                             (2) 
Spline II:  y=a2x3+b2x2+c2x+d2 
Parabolic end:  y2=an(L-x) 
 
There are 11 parameters in this formulation viz., R, a1, b1, c1, d1, a2, b2, c2, d2, an and L, For an envelope of given 

volume, five of these can be eliminated using the continuity of slope at the junction of various curves, and the fact 
that the junction of two splines represents the point of maximum diameter. Thus the shape can be expressed as a 
function of the following six shape parameters:  

XD = (x1, x2, y2, x3, y3, l)                                                                                                                                (3) 

An algorithm was developed that generated the co-ordinates of a feasible shape for specified values of the above 
six shape parameters, which were varied within a specified the range. Certain combinations of the abovementioned 
design variables could lead to “wiggly” envelope shapes. Such shapes were filtered out by forcing a constraint on 
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negative radius of curvature, since the shapes with convex curvature (particularly at the trailing portion) would 
suffer from heavy pressure drag. Shapes with rate of change of curvature beyond a specified value were also filtered 
out, since they would lead to a greater penalty in terms of manufacturing.  

The shape was optimized to minimize the envelope drag, the stresses developed in the envelope fabric and the 
weight of the envelope. A composite objective function involving CDV, σmax and S of the envelope was formed as:   
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Where, w1, w2 and w3 are weight functions. The GNVR shape was taken as reference shape for comparison.  

Optimum shapes for minimum value of various objective functions were obtained by coupling SIMANN Simulated 
Annealing optimizer. The resulting optimum shape compared with the GNVR shape is shown in Fig.6, and the 
comparison of values for the three objective functions with the GNVR shape is listed in Table 1. 

  

 
Figure 6. Comparison of GNVR shape and Optimized shape  

 
 

Table 1 Comparison of values for the three objective functions with GNVR shape 
 

 Objective Function GNVR Shape Optimized Shape % Improvement 

CDV 2.686E-02 2.260 E-02 15.8 % Lower 

S 573 598 4.5 % Higher 

σmax 4457 4262 4.4 % Lower 

Fcomp 3.0 2.8 6.7 % Lower 

 

B. Formulation of an expression for CDV in terms of envelope geometrical parameters 
An empirical formula for CDV has been suggested by Hoerner11, 

 

6/1Re

3704.0)(032.1833.0)(252.03/1)(172.0
DVC

l/dl/dl/d ++
=                                                                     (5)                                         

Equation (5) is based on experimental studies, and hence valid only for specific class of envelope shapes with 
limits on range of l/d and position of maximum diameter. Kanikdale et al.12 estimated CDV using Eqn. 2 for several 
axi-symmetric bodies of revolution, and found that it resulted in errors of around 30% compared to the values 
determined by the FLUENTTM CFD Package.  

Based on a detailed study of results obtained through CFD experimentation over a large number of shapes, 
Kanikdale et. al. developed an empirical procedure for estimation of CDV, which is listed vide Eqs. (6-9) 

     BADVC += α                                                                                                                                         (6)                
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Where N = Number of Grid Points used in the CFD analysis  

C. Limitations of Kanikdale’s empirical formula for CDV Estimation 
Kanikdale et al’s model14 for CDV estimation is not amenable for coupling with an MDO process, since it requires 
the knowledge of the slope of nose and tail portion, for which it requires detailed geometric data about the envelope 
shape, especially the co-ordinates of several points at the nose and trailing edge, and the grid density in these 
regions. Secondly, the selection of the parameters (such as α1, α2, α3, β) for fitting an expression for CDV is quite 
arbitrary, and do not reflect the physics of the flow.  

D. Modified Approach for obtaining a co-relation for Drag Coefficient  
The present work attempts to arrive at a more generic methodology to calculate the envelope drag coefficient of 

an aerostat of given volume and length. The current methodology uses only the values of six shape parameters to 
determine the drag coefficient, making it easy to integrate with an MDO process.  

The envelope geometry was parameterized using the same six shape parameters as in the previous study by 
Kanikdale et al14. The dimensions of an envelope of GNVR shape for an envelope volume of 2000 m3 were 
obtained, and these were used to decide the ranges for the six shape parameters, as shown in Table 2.  

 
Table 2 Upper and Lower limits imposed on the shape parameters 

 
Shape Parameters Lower Limit (m) Upper Limit (m) 

X1 0.05 2.00 
Y2 0.5 5.00 
X2 0.5 18.0 
X3 0.6 36.0 
Y3 0.5 4.5 
L 35.0 36.0 

 
With the help of shape generation algorithm, around 600 feasible shapes were generated, and their CDS values 

were obtained using the FLUENTTM CFD code. An axi-symmetric grid was built around the upper half of the body 
in the semicircular computational domain, and an axi-symmetric segregated implicit solver was selected, in 
conjunction with S-A turbulence model. The required boundary condition parameters i.e., pressure, temperature and 
density were obtained using ISA conditions corresponding to altitude of 1.2 Km. Sutherland’s formula was selected 
for viscosity variation with temperature. The pressure distribution and CDS were obtained for a Gauge Pressure of 
87514 Pa, and Mach No. of 0.107. 

The flow patterns generated over the various shapes were studied to correlate them with the geometric features 
of the aerostat envelope. Figure 7 shows the effect of variation of each shape parameter individually on the values of 
CDS. 
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Figure 7. Effect of variation of each shape parameter individually on CDS 
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It was observed that CDS increased exponentially with reduction in X2 values less than around 10.0 m, i.e., bodies 
with their maximum diameter located within the first 30% of the length had high CDS. No clear-cut trend for CDS was 
seen with the variation of the other five shape parameters, indicating that their effect on CDS is only of a lower order.  

A closer look at the flow patterns and the variation of CDS with X2, revealed that the shapes could be classified 
into three distinct regimes; those having X2 upto 25% of length (Regime-I), those for which X2 between 25% and 
50% (Regime-II), and those for which X2 was more than 50% of the length (Regime-III), as shown in Fig.8.  
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Figure 8. The three regimes based on variation of CDS with X2 

 
Sample flow patterns and Cp distribution along envelope length for one representative shape belonging to each of 

these regimes is shown in Fig. 9 
 

 
 

  



 
 

American Institute of Aeronautics and Astronautics 
10

 
 

  

  
Figure 9. Typical flow patterns and Cp distribution along envelope length in three regimes 

E. Response Surface methodology for better co-relation 
Response Surface Methodology, or RSM, is a collection of mathematical and statistical techniques that are 

useful for the modeling and analysis of problems in which a response of interest is influenced by several variables 
and the objective is to optimize this response. The approach of RSM is to perform a series of experiments, based on 
numerical analyses or physical experiments, for a prescribed set of design points, and to construct a global 
approximation of the measured quantity over the design space, as shown in Fig. 10. RSM has been gainfully 
employed for diverse applications, ranging from aerodynamics and rocket propulsion15 to drug dosage design16. 

 

  
Figure 10. Basic methodology adopted in Response Surface Method15 

 
According to Myers and Montgomery17, RSM tends to reduce the number of computational or physical 

experiment necessary to explore the design space. Another advantage of using response surface analysis is the 
ability to intelligently choose only a few of the full factorial set to construct an input-output relationship. 

A second-order response surface was developed in the present study, for obtaining the co-relations between CDS 
and the shape parameters. This is because a first order polynomial would not have incorporated the various 
interaction terms of shape parameters, and higher order polynomial other than quadratic would have resulted in 
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lower goodness of fit and reliability over the entire parameter space. The Central Composite Design (CCD) scheme 
was selected for the design of the response surface design, since it is considered to be the most reliable class for 
fitting a second-order response surface. 

Box and Hunter18 suggested that a second-order response surface design should be rotatable, to provide good 
predictions throughout the region of interest. In a rotatable design, the variance of the predicted response is the same 
at all points that are the same distance from the design center. The selection of a parameter “Alpha,” in coded units, 
is the axial distance from the center point and makes the design rotatable. A rotatable design provides equally good 
predictions at points equally distant from the center, a very desirable property for RSM. 

The response surface was developed using the CCD module in Design Expert19, incorporating all quadratic terms 
and their interactions. These terms were then analyzed on the basis of ANOVA tests, and the insignificant terms 
were neglected to develop an improved response surface. This iterative process was repeated, till adequate response 
surface fits were achieved; the resultant quadratic response surface is listed in Eqs. (10-12). 

 
For Regime-I 
CDS = α1 + α2X2 + α3Y2 + α4X2

2 + α5 X2Y2                                                                                                                                (10) 
 
For Regime-II 
CDS = β1+ β2 X2 + β3 X3 + β4 Y2 + β5Y3 +  β6 X2

2 +  β7 X2 Y2                                                                                                   (11) 
          +β8 X3 Y2 + β9 X3 Y3 + β10 Y2 Y3         
 
For Regime-III 
CDS = λ1 – λ2 X1 – λ3X2 – λ4 Y2 – λ5 Y3 – λ6 L + λ7 X1

2                                                                                  (12) 
          + λ8  X2

2 + λ9 Y2
2 + λ10 Y3

2 + λ11 X1 X2 – λ12 X1 Y3 + λ13 Y2 L  
 

The values of the coefficients λ1, λ2…. λ13 in Eqs. (10-12) are listed in Appendix. 
 
The results of ANOVA test for the final model is shown in Table 3. High values of R2, Adjusted R2 and 

Predicted R2 indicate that the response surface developed for different regimes match well with the experimental 
data. Another indication of the goodness of the fit is the close agreement between the values of R2, Adjusted R2. 
Further, the values of Predicted R2 and Adjusted R2 values are also within 0.20 of each other, which indicates low 
variability in predicting any new value.  

 
                                                             Table-3 Results of ANOVA test 
 

 Regime-I Regime-II Regime-III 
X2 location X2  <  0.25L 0.25L ≤ X2 < 0.5 L X2  ≥ 0.50L 
 R2 0.9887 0.9514 0.9445 
Adjusted R2 0.9854 0.9498 0.9334 
Predicted R2 0.9805 0.9455 0.9035 

 
A plot of actual and predicted values of CDV for the three regimes is shown in Fig.11, which show a good match 

along the entire range. The scatter in the predicted values of CDS is shown in Fig.12. No specific trend in the scatter 
of predicted values is seen, indicating that no important co-relation terms (that would have greatly altered the 
equations for the response surface) have been left out. Another test on the goodness of the response surface are the 
normal probability plots, which indicate whether the residuals follow a normal distribution, in which case the points 
follow a straight line and show that results are consistent with normality. These plots for various regimes are shown 
Fig.13. 

All the above statistical tests and plots provide confidence toward the good quality and high reliability of the 
response surface obtained. 
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Figure 11. Predicted v/s Actual value of CDS for the points in three regimes 
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Figure 12. Residuals of the Predicted value of CDS for the points in three regimes 



 
 

American Institute of Aeronautics and Astronautics 
14

 
 

Residuals for Regime-I  (X2  <  0.25 L) 

N
or

m
al

  P
ro

ba
bi

lit
y 

%
 

  

 

Residuals for Regime-II  (0.25 L ≤ X2 < 0.50 L) 

N
or

m
al

   
Pr

ob
ab

ili
ty

 %
 

  

 
Residuals for Regime-III (X2  ≥ 0.50 L ) 

N
or

m
al

 P
ro

ba
bi

lit
y 

%
 

 
 

Figure 13. Normal Probability Vs Residuals for the points in three regimes 
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III. Conclusions 
In the present work, an improved co-relation for drag coefficient of a generic axi-symmetric body of revolution has 
been developed. The shape of the body was parameterized with six shape parameters, using Kanikdale’s shape 
generation algorithm. A strong co-relation between drag coefficient and one shape parameter (viz., location of the 
point of maximum thickness) was observed, with other parameters not contributing much. A second-order response 
surface, including several interactive quadratic terms was fitted to incorporate the effect of all shape parameters, 
which can estimate CDS with an accuracy of ±10 %, compared to the results obtained with FLUENTTM CFD code. 
Based on the results of the various statistical parameters and test, it was concluded that the response-surface 
obtained is accurate and reliable.  This response surface can be coupled with a high level of confidence to multi-
disciplinary analysis and optimization procedure, without the need for calling a CFD routine for estimation of the 
Drag Coefficient. 

            Appendix 
The values of the coefficients for the response surface obtained for the three segments are listed below. 
 

Coefficients Value  Coefficients Value 
α1 -1.89E-02  β10 –2.80E -04 
α2 2.40E-04  λ1 9.79E -02 
α3 8.00E-03  λ2 -7.10E -04 
α4 4.80E-04  λ3 -3.50E -04 
α5 1.10E-03  λ4 -2.30E -02 
β1 -1.56E-02  λ5 -5.77E -04 
β2 5.30E-04  λ6 -1.46E -03 
β3 2.20E-04  λ7 1.00E -04 
β4 5.62E-03  λ8 9.00E -06 
β5 5.80E-04  λ9 1.35E -03 
β6 2.40E-05  λ10 1.50E -05 
β7 -2.20E-04  λ11 3.50E -05 
β8 -7.20E-05  λ12 -2.20E -05 
β9 2.00E-05  λ13 2.43E -04 
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