COURSE CONTENTS

OF

B. TECH. & MINOR PROGRAMS

IN

AEROSPACE ENGINEERING, IIT BOMBAY

FOR

BATCHES OF 2022 AND ONWARDS

(Updated 24th July, 2023)

I. Core Theory Courses

Title of the course	AE 103 A Historical Perspective of Aerospace Engineering
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	PART-I:
	• The scientific revolution of the 17th century mechanics of the craftsmen and
	mathematics of the scholars are fused to explain the universe.
	• The 18th century enlightenment movement and growing dominance of the scientific
	worldview.
	• The 19th century steam engine and electric generator, and the industrial revolution.
	Evolutionary perspectives in geology, biology and society. The professionalization of
	science and development of its secular and elite character.
	• The 20th century - the birth of new physics and chemistry of the atomic and
	subatomic world, and related technologies. The birth of computing machines,
	aerodynamic and space technologies. The growing knowledge of cellular and
	molecular biology, and human diseases.
	• The 21st century - the global concerns for public health and pandemics, ecological
	devastation and agricultural crisis, social and economic inequality, remain and
	continue to grow.
	PART-II:
	1. History of Aerospace Engineering
	a. Aeronautics and Aerospace – Aircrafts and Rockets b. Basic structure/geometry/terminelegy of sircrafts and reckets
	c. Basic science of flight Number of disciplines involved in personage technology
	d. Stories of flight $-$ Across the world
	e Evolution in flying – halloons and gliders
	f. Flight of heavier than air object – First flight. First rockets
	2. Major milestones (discoveries and inventions) and its impact on society and industrial
	revolution, including negative impacts on the society.
	a. Global milestones – First balloon flight, powered flight, V2 rockets, Supersonic
	flight, civilian supersonic, Shuttle flights, SPACEX etc.
	b. Indian milestones – First Indigenous aircraft design- HF24, LCA, ALH, SLV,
	PSLV, GSLV etc.
	3. Evolution of ethics and practices in the discipline – Nuclear and Chemical Weapons
	control, Export control laws etc.
	4. Important persons, their biographies, struggle, and success – Indian and global
	5. Voices from the field (invited talks from practitioners and professionals) – Have
	couple of talks every semester
	 b. Recent and cutting edge research in the discipline 7. Dreamating directions of evolution of the discipline in the near fature.
Tanto/Dafaranaa	7. Prospective directions of evolution of the discipline in the near future.
rexis/kelerences	1. Silver, D. L., The Ascent of Science, Oxford University Press, 2000
	2. DIOHOWSKI, J., THE ASCENT OF Mall, Kalldolli House, 2011 3. Mayr. F. This is Biology: The Science of the Living World Harvard University
	Press 1997
	4 Kelley F C The Wright Brothers: A Biography George G Harran & Co 1004
	5 Raikumar P Tejas Story: The Light Combat Aircraft Project Manohar Publishers
	and Distributors. 2007

6 Anderson Ir. I.D. The Grand Designers: The Evolution of the Airplane in the 20th
6. Anderson, Jr. J. D., The Grand Designers. The Evolution of the Ampiane in the 20th
Century, Cambridge University Press, 2018

Title of the course	AE 152 Introduction to Aerospace Engineering
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	Historical Developments in Aviation, Aviation milestones, Components of an aircraft,
	Types of aerial vehicles.
	Basic Aerodynamics: Fluid dynamic equations & their basis, Ideal fluid, viscous flows,
	Flow past a body, Flow Separation, Generation of Lift, Drag & Moment, Non-dimensional
	coefficients, Airfoils & Wings, Airfoil families, Supersonic flight, Wave Drag, Aircraft
	Drag Polar,
	Properties of atmosphere: ISA, IRA, Pressure altitude, Altimeter; Aircraft speeds TAS,
	EAS, CAS, IAS.
	Types of Powerplant for aerospace vehicles, Thrust/Power and fuel flow variation with
	altitude & velocity.
	Aircraft Performance: Steady level flight, Altitude effects, Absolute ceiling, steady
	climbing flight, Energy methods, Range and Endurance, Sustained level turn, pull-up,
	Take-off and Landing.
Texts/References	1. Anderson, Jr., J. D., The Aeroplane, a History of its Technology, AIAA Education
	Series, 2002
	2. Anderson, Jr., J. D., Introduction to Flight, McGraw-Hill Professional, 2005
	3. Ojha S.K., Flight Performance of Aircraft, AIAA Education Series, 1995

Title of the course	AE 223 Thermodynamics and Propulsion
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	Basic concepts: System boundary, surroundings, state, extensive and intensive properties, energy interactions, work and heat transfers, equilibrium, quasi-static and reversible processes, non-equilibrium and irreversible processes. Thermodynamic laws: Zeroth law and temperature, first law and internal energy, first law applied to flow processes, second law, entropy and absolute temperature, third law and absolute entropy, thermodynamics of simple compressible systems, energy and energy. Applications: Closed and open systems, polytropic processes, cyclic processes, Carnot cycle; Cycle analysis: Otto cycle, Diesel cycle, Joule-Brayton cycle; ideal and real cycles. Basic principles of heat transfer: conduction, convection and radiation. Introduction to aero-engine cycles: ramjets, turbojets, turbofans and turboprops/turboshafts, ideal and real cycles, component performance.
Texts/References	 Sonntag, R. E., Borgnakke ,C. and Van Wylen , G. J., Fundamentals of Thermodynamics, 6th ed., Wiley, 2002 Cengel, Y., and Boles, M., Thermodynamics: an Engineering Approach, 7th ed., McGraw Hill, 2010 Nag, P. K., Engineering Thermodynamics, 4th ed., Tata McGraw Hill, 2008 Rogers and Mayhew, Engineering Thermodynamics: Work and Heat Transfer, 4th Ed, Longman Scientific, 1992. Cengel, Y., and Ghajar, 4 Edition, McGraw Hill, Heat transfer: A practical approach, McGraw Hill, 2nd ed., 2002 Hill, P., and Peterson, C., Mechanics and Thermodynamics of Propulsion, Pearson Education, 2009

Title of the course	AE 227 Solid Mechanics
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	Introduction: Engineering Statics v/s Solid Mechanics, solid as a continuum, statement of
	a general solid mechanics problem.
	Elements of 2-D & 3-D Elasticity: components of stress & strain fields, stress/strain
	transformation, principal stresses, plane stress/strain, Mohr's circle, equilibrium
	equations, strain displacement relations, compatibility conditions, natural & kinematic
	boundary conditions, stress-strain relations, generalized Hooke's Law - Isotropy,
	Orthotropy, Anisotropy. Displacement and force methods of analysis. Concepts of linear and nonlinear problems. Illustration of linear elasticity solutions - problems in 2-D
	(rectangular and polar co-ordinates), stress function approach. St. Venant's principle.
	Material behaviour: introduction to metallic and non-metallic materials of aerospace
	interest, awareness/overview of structure of materials. Ductile, brittle, elasto-plastic and
	viscoelastic material behaviour - Elastic and strength properties. Composite materials.
	Materials selection. Failure of engineering materials, failure theories, concepts of fatigue,
	fracture and creep.
	1-D structural analysis: slender structural elements, assumptions simplifying the general
	(3-d) stress, strain and deformation fields for uncoupled axial deformation, uncoupled
	bending, and uncoupled twisting of slender 1-D elements and development elementary
	beam theory, idealization of general loads into axial forces, bending moments, shear forces
	and torque distributions, deflection and stress analysis of rods, beams and circular shafts.
	Introduction to energy methods – strain energy, virtual work, minimum potential energy.
	Introduction to energy principles and its applications. Introduction to Truss analysis.
	Riveted joints.
	Measurement of strain and displacement. Measurement of elastic and strength properties.
Touts/Deferences	ASTIVI stationards.
Texts/References	1. Gere, J. M., Mechanics of Materials, Thomson, 6 ed. 2007.
	2. Chandan, S.H., Dani, N.C. and Lardner, T.J. An introduction to the Mechanics of Materials" McGraw Hill International Edition 1078
	Timoshenko S P and Goodier I N ``Theory of Flasticity'' McGraw-Hill
	International Edition 1970
	International Edition, 1970.

Title of the course	AE 238 Aerospace Structural Mechanics
Credit Structure	3-0-0-6
Prerequisite	AE 227 Solid Mechanics
Course Content	Introduction: semi-monocoque aerospace structures - Loads and Design considerations;
	construction concepts, layout, nomenclature and structural function of parts, strength v/s
	stiffness based design.
	Torsion of non-circular prismatic beams: importance of warping; St. Venant or Prandtl's
	formulation; Membrane analogy and its application to narrow rectangular cross-section.
	General formulation of Thin-Walled Beam (TWB) Theory: Cartesian and midline
	systems, CSRD & thin-wall assumptions, general expressions for dominant

	displacement, strain and stress fields, equilibrium equations in midline system, stress
	resultants and general boundary conditions.
	Torsion and Bending of TWBs: Torsion of single and multi cell closed sections - Bredt-
	Batho theory, shear flow, torsion constant, free warping calculation, and concept of
	center of twist, torsional equilibrium equation and boundary conditions. Torsion of open
	TWBs without warp restraint, primary & secondary warping, St. Venant torsion
	constant. Uncoupled bending of open, closed, single cell, multi-cell TWBs - axial stress,
	shear flow, shear centre, displacement analysis. Torsion of open section TWBs with
	primary warp restraint - concept and theory of torsion bending, torsion bending constant,
	secondary warping restraint. Unsymmetric bending and coupled bending torsion
	analysis.
	Buckling of TWBs: Concept of structural instability, flexural buckling analysis, bending
	of beams under combined axial and lateral loads, short column and inelastic buckling.
	Pure torsional buckling and coupled flexural-torsional buckling of open TWBs.
	Introduction to the concept of buckling of plates, local buckling of TWBs. Introduction
	to buckling and post-buckling of stiffened skin panels, ultimate load carrying capacity of
	a typical semi-monocoque TW box-section. Introduction to tension-field beams.
Texts/References	1. Megson, T. H. G., Aircraft Structures for Engineering Students, Butterworth-
	Heinemann, 4th ed., 2007.
	2. Peery, D. J., Aircraft Structures, McGraw-Hill Education, 1st ed., 1950.
	3. Donaldson, B. K., Analysis of Aircraft Structures (Cambridge Aerospace Series),
	2nd ed., Cambridge University Press, 2008.
	4. Sun, C. T., Mechanics of Aircraft Structures, Wiley-Interscience, 1998.
	5. Bruhn, E. F., Analysis and Design of Flight Vehicle Structures, Jacobs Pub., 1973.
	6. Niu, M., Airframe Stress Analysis & Sizing, Adaso Adastra Engineering Center,
	1998.
	7. Cutler, J. and Liber, J., Understanding Aircraft Structures, Wiley Blackwell, 4th ed.,
	2006.

Title of the course	AE 244 Low Speed Aerodynamics
Credit Structure	3-0-0-6
Prerequisite	Nil
Prerequisite Course Content	 Nil Introduction Review of streamline, pathline, and streakline, dilatation, strain rate Circulation and vorticity Conservation of mass, momentum and energy in fixed, deforming, and moving control volumes Kinematics of fluid flows, Lagrangian and Eulerian descriptions Equation of motion in differential form Bernoulli's equation Similitude, dimensional analysis, and modeling; important non-dimensional groups in fluid mechanics Potential flow: stream function and velocity potential, source, sink, doublet, vortex and their superpositions Kutta-Joukowski theorem Thin airfoil theory Panel methods Potential flow over lifting wing: lifting line theory, vortex lattice method Viscous flow exact solutions pine flow
	Laminar boundary layers

Texts/References	1. White, F. M., Fluid Mechanics (SI Units), 7 th ed., McGraw Hill, 2011
	2. Panton, R. L., Incompressible Flow, 3 rd ed., Wiley India Edition, 2006
	3. Cengel, Y. A., Cimbala, J. M., Fluid Mechanics (Fundamentals and Applications),
	2 nd ed., Tata McGraw Hill, 2010
	4. Anderson, Jr., J. D., Fundamentals of Aerodynamics, 6th ed., McGraw Hill, 2017
	5. Bertin, J. J. and Cummings, R. M., Aerodynamics for Engineers, 6 th ed., Pearson,
	2013
	6. Houghton, E. L., Carpenter, P. W., Collicott, S. H. and Valentine, D. T.,
	Aerodynamics for Engineers, 6th ed., Butterworth-Heinemann, 2013

Title of the course	AE 308 Control Theory
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	Introduction: Control situations & control objectives, broad control tasks, open-loop and closed-loop control concept, various types of control structures, unity negative feedback control systems, basic control actions. Two-position Control Systems: On-off control concept and action of an ideal relay, 1st and 2nd order system on-off control, effect of hysteresis on the closed-loop control performance, relay modelling.
	System response: Response of higher order systems to standard and generic inputs in Laplace and time domains, concept of partial fractions.
	System Stability: Concept of system stability and connection with its response, asymptotic and bounded-input bounded-output stability, role of characteristic roots in stability, Routh's criterion for absolute and relative stability analysis, including unknown parameter-based stability.
	Proportional Control Systems: Proportional control action modelling, stability and response of proportional control systems, concept of root locus and its application to proportional control system analysis.
	Frequency Response: Concept of frequency domain and frequency response, response representation using bode, Nyquist and Nichol's plots, closed-loop system analysis using frequency response attributes, Nyquist stability analysis.
	Closed-loop Response Attributes: Transient and steady-state response concept, tracking control task and closed-loop error constants, integral control option for tracking, transient response and role of derivative action.
	Closed-loop Response Control Elements: PI controllers and lag compensators for
	tracking control tasks, PD controllers and lead compensators for transient response
	control tasks, PID controllers and lag-lead compensators for complex control tasks.
	Design of Closed-loop Control Systems: Closed-loop performance specifications, gain and phase margins as design specifications, use of root locus, Bode plots, Nyquist plots and Nichol's plots in closed-loop control design, design rules, methodologies and guidelines for different types of control tasks.
Texts/References	1. Ogata, K., Modern Control Engineering, 5 th ed., Prentice Hall India, 2010
	 Kuo, B. C. and Golnaraghi, F., Automatic Control Systems, 8th ed., John Wiley & Sons, 2003
	 D`Azzo, J. J. and Houpis, C. H., Linear Control Systems Analysis and Design – Conventional and Modern, 4th ed., McGraw-Hill, 1995
	 Nise, N. S., Control Systems Engineering, 3rd ed., John Wiley & Sons, 2001 Franklin, G. F., Powell, J. D. and Emami-Naeini, A., Feedback Control of Dynamic Systems 5th ed. Peerson Prentice Hall, LPE, 2006
	 Gopal, M., Control Systems – Principles and Design, 3rd ed., Tata McGraw-Hill, 2008

Title of the course	AE 332 Aircraft Design
Credit Structure	3-0-0-6
Prerequisite	AE 152 Introduction to Aerospace Engineering
Course Content	Introduction to Aircraft Design: Three phases in aircraft design, Computer based aircraft
	design methodologies, differences between LTA and HTA aircraft, type of civil and
	military aircraft.
	Configuration and Layout: Types and comparison of wing, tail, fuselage, landing gear,
	wing-tail combinations, power plant (types, numbers, locations), unconventional aircraft
	configurations.
	Sizing and Constraint Analysis: Initial sizing, estimation of design gross weight, rubber
	engine sizing and fixed engine sizing, refined sizing method and constraint analysis.
	Estimation Methodologies: Lift and drag coefficient, design loads,
	component mass breakdown, acquisition cost, direct operating cost.
	Operational and Environmental Issues: Range-payload diagram, V-n diagram, noise and
	emission levels.
Texts/References	1. Raymer, D. P., Aircraft Design - A Conceptual Approach, AIAA Educational Series,
	4th ed., 2006.
	2. Brandt, S. A., Stiles, R. J., Bertin, J. J., Whitford, R., Introduction to Aeronautics: A
	Design Perspective, AIAA Educational Series, 2nd ed., 2004.
	3. Jenkinson, L. R., Simpkin, P. and Rhodes, D., Civil Jet Aircraft Design, Arnold
	Publishers, London, 1999.
	4. Fielding, J., Introduction to Aircraft Design, Cambridge Aerospace Series,
	Cambridge University Press, 1999.
	5. Kundu, A.K, Aircraft Design, Cambridge Aerospace Series, Cambridge University
	Press, ISBN-13 978-0-521-88516-4, 2010.

Title of the course	AE 339 High Speed Aerodynamics
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	<u>Introduction</u> : Conservation laws, equivalence of momentum and energy equations, isentropic flow, speed of sound, Mach waves, static and stagnation conditions <u>Subsonic compressible flow past airfoils</u> : Linearized velocity potential equation, Prandtl- Glauert compressibility corrections, critical Mach number, drag divergence Mach number, effect of sweep, supercritical airfoils, area rule <u>Supersonic flows</u> : Stationary and moving normal shock waves, Pitot probes in compressible flows, oblique shocks, shock interactions, shock reflection from boundaries, shockwave-boundary layer interaction, Prandtl-Meyer expansion fans, interaction of expansion waves, reflection of expansion waves from boundaries, shock- expansion wave interaction, unsteady expansion waves superpositions; <u>Transonic flow</u> : Transonic flow past unswept airfoils, transonic similarity rules, numerical methods in transonic flows, supersonic flow past airfoils, linearized supersonic flow, shock expansion method, supersonic flow over wings, subsonic/supersonic leading edge. <u>Internal aerodynamics</u> : Mach Number and area relationship, critical conditions, convergent nozzles, convergent-divergent nozzles, under- and over-expanded nozzle flows, convergent-divergent supersonic diffusers, supersonic wind tunnels, shock tubes

	T
	<u>Hypersonic flows</u> : Introduction to hypersonic flows, real gas effects, Newtonian theory,
	lift and drag in hypersonic flows, hypersonic shockwave relations, Mach number
	independence
Texts/References	1. Anderson, Jr., J. D., Modern Compressible Flow: with Historical Perspective, 3 rd ed.,
	McGraw Hill, 2003.
	2. Oosthuizen, P. H. and Carscallen, W. E., Compressible Fluid Flow, 2 nd ed., CRC Press,
	2013.
	3. Yahya, S. M., Fundamentals of Compressible Flow, 3 rd ed., New Age International,
	New Delhi, 2003
	4. Anderson, Jr., J. D., Fundamentals of Aerodynamics, 6 th ed., McGraw Hill, 2017
	5. Bertin, J. J. and Cummings, R. M., Aerodynamics for Engineers, 6 th ed., Pearson, 2013
	6. Houghton, E. L., Carpenter, P. W., Collicott, S. H. and Valentine, D. T., Aerodynamics
	for Engineers, 6 th ed., Butterworth-Heinemann, 2013

Title of the course	AE 341 Flight Mechanics of Aircrafts and Spacecrafts
Credit Structure	3-0-0-6
Prerequisite	Exposure to AE 103 and AE 152 is recommended
Course Content	 The course is aimed at providing an introduction to the mechanics of rigid aircrafts and spacecrafts. It includes a selection of topics on static and dynamic aircraft flight stability and orbital mechanics. Essential features of aircraft and spacecraft operations and flight Basics of static equilibrium and stability of aircrafts (longitudinal, lateral, and roll) A concise introduction to dynamics of rigid bodies (inertia, parameterization of rotation) Elements of aircraft flight dynamics, including stability derivatives and maneuvers Spacecraft attitude dynamics Orbits in two dimensions Orbits in three dimensions Orbital maneuvers
Texts/References	 Curtis, H., Orbital Mechanics for Engineering Students, 4th ed., Butterworth- Heinemann, 2019 Bate, R. R., Mueller, D. D., White, J. E. and Saylor, W. W., Fundamentals of Astrodynamics, 2nd ed., Dover Publications, 2020 Thomson, W. T., Introduction to Space Dynamics, Dover Publication, 1986 Perkins, C. D. and Hage, R. E., Airplane Performance, Stability, and Control, John Wiley & Sons, 1949 Nelson, R., Flight Stability and Automatic Control, 2nd ed., McGraw Hill, 2017 Sinha, N. K. and Ananthkrishnan, N., Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods, CRC Press, 2021

Title of the course	AE 344 Aero Propulsion
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	 Introduction to various aircraft propulsive devices: piston-prop, turbo-prop, turbojet, turbofan, turboshaft, vectored-thrust, lift engines. Gas turbine cycles and cycle-based performance analysis; 1-D and 2-D analysis of flow through gas turbine components – intake, compressors, turbines, combustion chamber, afterburner, and nozzle.

	Other propulsion systems: ramjets, scramjets and pulsejets
	• Introduction to various rocket engine concepts: thrust equation, rocket performance
	parameters, mission analysis, and multi-staging
	• Nozzle theory, combustion of propellants, thrust vectoring.
	• Rocket vehicles: Solid propellant rockets, liquid propellant rockets, electric thrusters:
	concepts, constructional features, propellants
Texts/References	1. Cumpsty, N. and Heyes, A., Jet Propulsion, 3rd ed., Cambridge University Press,
	ISBN: 978-1107511224
	2. Ramamurthi, K., Rocket Propulsion, 1st ed., Laxmi Publications, ISBN: 978-
	9385750007
	3. Heister, S., Anderson, W. E., Pourpoint, T. L. and Cassady, R. J., Rocket Propulsion,
	1st ed., Cambridge University Press, ISBN: 978-1108422277
	4. Farokhi, S., Aircraft Propulsion, 3rd ed., Wiley, ISBN: 978-1119718642
	5. Hill, P. and Peterson, C., Mechanics and Thermodynamics of Propulsion, 2nd ed.,
	Pearson, ISBN: 978-8131729519

II. Laboratory Courses

Title of the course	AE 229 Introduction to Aerodynamics and Propulsion Laboratory
Credit Structure	0-0-3-3
Prerequisite	Nil
Course Content	Force (drag) measurement using load balance, flow visualization in water tunnel, Rubin's tube for combustion visualization, Pitot static probe and manometer for velocity measurement
Texts/References	Laboratory Manuals of Aerospace Engineering Department

Title of the course	AE 231 Introduction to Aerospace Structures and Control Laboratory
Credit Structure	0-0-3-3
Prerequisite	Nil
Course Content	Four experiments focused on demonstrating typical tests used to determine material characterization and structural response, strain measurement, and exposure to aircraft's behavior. These experiments are as follows:
	• Testing of aerospace materials under axial loading, demonstration of ductile and brittle behavior of materials, and the determination of material elastic properties and strength
	• Testing of aerospace structures under flexural loading, bending tests to determine structural deflection, and material Young's modulus
	• Application of Wheatstone bridge for strain measurement, derivation of strain and resistance variations, and application of strain gauge measurement
	• Introduction to flight simulation, trimming of aircraft for various operating points
Texts/References	1. Anderson, Jr., J. D., Introduction to Flight, McGraw-Hill Professional, 2005
	2. Doebelin, E. and Manik, D., Doebelin's Measurement Systems, 6 th ed., McGraw-Hill Education
	 Laboratory Manual, Aircraft Structures Lab., Dept. of Aerospace Engineering, IIT Bombay, 2023

Title of the course	AE 233 Control Systems Laboratory
Credit Structure	0-0-3-3
Prerequisite	AE 308 (Control Theory) or equivalent
Course Content	• Modeling and identification of plant dynamics for different types of systems
	• Reinforcement of basic control concepts: Proportional, integral, and derivative
	feedback applied to simple control systems such as servo control, temperature
	control, and gyroscope.
	• Real system effects: Effect of friction, backlash, resistance, loading, and transport lag
	on the control system behavior.
	• Frequency response: Experimental generation, application to closed loop system
	stability analysis.
	• Lab Project: Design of a control system involving simulation studies, hardware
	implementation, and demonstration.
Texts/References	1. Ogata, K., 'Modern Control Engineering', 5th ed., Prentice Hall India, Eastern
	Economy Edition, 2010.
	2. User Manuals of the various experimental setups

Title of the course	AE 246 Aircraft Structures Laboratory
Credit Structure	0-0-3-3
Prerequisite	Nil
Course Content	The experiments in this laboratory course cover the following:
	Fabrication of fiber reinforced composite laminate.
	• Tension, compression, interlaminar shear, impact and hardness testing for
	determination of elastic moduli and strength of material.
	• Coefficient of thermal expansion.
	• Strain measurement.
	• Inverse methods for material property determination (Poisson's ratio and Young's
	Modulus) using measured static and dynamic structural response in conjunction with simple structural models.
	• Shear center of open section thin-walled beam, displacement and strain distribution
	in bending and torsion of twin-walled open and closed section beams.
	• Buckling of beams/plates.
	• Measurement of natural frequency, natural modes and modal damping of beams.
Texts/References	Laboratory Manual, Aircraft Structures Lab., Dept. of Aerospace Engineering, IIT
	Bombay, 2007.

Title of the course	AE 343 Aerodynamics Laboratory
Credit Structure	0-0-3-3
Prerequisite	Nil
Course Content	 Types of low-speed wind tunnels and their characteristics, suction and blowdown tunnels, closed and open jet tunnels Pitot probes and velocity measurement
	• Characteristics of a planar jet flow, self-similarity
	• Boundary layer flow over a flat plate, estimation of displacement and momentum thicknesses and shape factor, locating laminar, transitional and turbulent boundary layers
	 Flow past airfoil and measurement of pressure drag, estimation of drag by wake survey method, measurement of unsteady flow using hot-wire anemometer Shock tube measurements, incident and reflected shock wayes
Texts/References	1 Goldstein R I Fluid Mechanics Measurements Taylor and Francis 1996
	 Pope A., and Goin, K. W., High Speed Wind Tunnel Testing, John Wiley & Sons, 1985
	 Barlow, J. B., Rae, W. H., Pope, A., Low-Speed Wind Tunnel Testing, 3rd ed., Wiley-Interscience, 1999

Title of the course	AE 345 Aircraft Propulsion Laboratory	
Credit Structure	0-0-3-3	
Prerequisite	Nil	
Course Content	• Study of gas turbine cycle and engine operation characteristics	
	• Flow through nozzle – pressure distribution and thrust measurement	
	Characteristics of impulse and reaction turbine	
	Measurement of laminar flame speed	
	• Fuel injection system	

Texts/References	1.	Hill, P., and Peterson, C., Mechanics and Thermodynamics of Propulsion, Pearson
		Education, 2009.
	2.	Laboratory Manual, Propulsion Laboratory, Department of Aerospace Engineering,
		IIT Bombay, 2007.

Title of the course	AE 429 Aircraft Design Project
Credit Structure	1-0-4-6
Prerequisite	Exposure to AE 332
Course Content	Students complete a group project involving conceptual design of an aircraft, while meeting some stated requirements.
	The group project is aimed to achieve the following learning goals for the students:
	• To provide hands-on experience related to Aircraft Design
	• To be able to plan and execute a multi-disciplinary design task
	• To be able to successfully present the results of the design task verbally and in the
	form of a report and drawings
	• To learn to work efficiently in a group and as a member of the group.
Texts/References	1. Raymer, D. R., User Manual for RDS-Professional, Software for Aircraft Design,
	Analysis & Optimization, Version 5.2, Conceptual Research Corporation, California,
	USA 2007
	2. Roskam, J., User Manual for Advanced Aircraft Analysis (AAA) Software, Version
	3.1, Design, Analysis and Research Corporation, Kansas, USA, 2006

III. Minor Theory Courses (Core)

Title of the course	AE 153 Introduction to Aerospace Engineering
Credit Structure	3-0-0-6
Prerequisite	Nil
Course Content	Historical Developments in Aviation, Aviation milestones, Components of an aircraft,
	Types of aerial vehicles.
	Basic Aerodynamics: Fluid dynamic equations & their basis, Ideal fluid, viscous flows,
	Flow past a body, Flow Separation, Generation of Lift, Drag & Moment, Non-dimensional
	coefficients, Airfoils & Wings, Aerofoil families, Supersonic flight, Wave Drag, Aircraft
	Drag Polar,
	Properties of atmosphere: ISA, IRA, Pressure altitude, Altimeter; Aircraft speeds TAS,
	EAS, CAS, IAS.
	Types of Powerplant for aerospace vehicles, Thrust/Power and fuel flow variation with
	altitude & velocity.
	Aircraft Performance: Steady level flight, Altitude effects, Absolute ceiling, steady
	climbing flight, Energy methods, Range and
	Endurance, Sustained level turn, pull-up, Take-off and Landing.
Texts/References	1. Anderson, Jr., J. D., The Aeroplane, a History of its Technology, AIAA Education
	Series, 2002
	2. Anderson, Jr., J. D., Introduction to Flight, McGraw-Hill Professional, 2005
	3. Ojha S.K., Flight Performance of Aircraft, AIAA Education Series, 1995

2023-07-24: Created