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The stability properties of basic states are often elucidated by examining the evolution of small 
disturbances. Such studies have recently been successfully applied to mean turbulent states, obtained 
through averaging of experimental measurements or Large-Eddy Simulations (LES), for both wall-bounded 
as well as free shear flows. Typically, the equations are employed using the disturbance form of the 
equations. To circumvent the necessity to linearize the governing equations, an especially tedious task 
for viscous and turbulent closure terms, Touber and Sandham (2009) [21], proposed an approach that 
achieves the same purpose by solving the full Navier–Stokes (NS) equations, with a forcing term to 
maintain mean flow invariance. The method places no restrictions, such as slow streamwise variations, on 
the underlying basic state. The goals of the current work are to first verify this mean flow perturbation 
(NS-MFP) technique and then apply it to the problem of jet noise. For the first thrust, we show that 
when the basic state is appropriately constrained, the technique reverts to Linear, Parabolized and Global 
stability methods. The method is then verified by reproducing the growth of unstable modes in an 
inviscid Mach 6 entropy layer. The application to jet noise considers subsonic Mach 0.9 and perfectly 
expanded supersonic Mach 1.3 round jets. The results are compared with those from Parabolized 
Stability Equations (PSE) and LES solutions, respectively, considering monochromatic and multi-frequency 
perturbations. The NS-MFP method successfully reproduces key features of the modal response, including 
Strouhal number dependent directivity of noise radiation. Aspects related to the manner in which the 
mean basic state is obtained, whether from LES or Reynolds-averaged Navier–Stokes (RANS) equation 
are also explored. In particular, the sensitivity of the perturbation to whether the eddy viscosity is 
included or not, is examined in reference to maximum intensity of pressure fluctuation, directivity of 
noise radiation and the rate of fall-off of the spectra at higher Strouhal numbers. The results indicate 
that a closer match on the noise-radiation characteristics is obtained when effects of eddy-viscosity on 
the disturbances are neglected.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

The growth and propagation of perturbations in a flow can pro-
vide key insights into its behavior. Steady flow-fields are typically 
considered for this purpose. A comprehensive review of various 
methods employed to analyze the stability of laminar flow-fields 
may be found in Ref. [1]. One of the simpler approaches obtains 
the eigen-solution of linear stability theory (LST) equations, which 
assumes that the flow (basic state) does not vary in the stream-
wise direction. A more sophisticated method is that based on the 
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Parabolized Stability Equations (PSE) [2,3], which allows for inho-
mogeneous conditions, and has been used to explore linear [4] and 
non-linear [5] disturbance growth mechanisms in free and wall-
bounded shear flows. PSE essentially tracks the evolution of down-
stream propagating perturbation modes, but is limited to slow 
streamwise variation of the basic state. There is also the consid-
eration of “remaining ellipticity” [6,7], which can influence the ac-
curacy of the results. Though classical PSE has been developed for 
2D flows [4], it has also been applied to 3D axisymmetric flows [8,
9], shear-layers with spanwise periodicity [10] and the mean tur-
bulent subsonic jet issuing from serrated (chevroned) nozzles [11]. 
Global Stability Theory (GST) [1,12,13] lifts constraints of the re-
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quirement of slow streamwise variation in PSE, but is significantly 
more expensive for full 3D flow problems.

As a compromise, an extension of PSE called PSE-3D has been 
developed as a branch of global stability analysis which addresses 
some of the limitations of classic PSE without resorting to full Tri-
Global stability analysis for quasi-3D flows [14,15]. For such prob-
lems, while a Bi-Global stability analysis is performed at the inlet 
of the domain to determine the eigenfunctions and its growth-
rates, its subsequent streamwise evolution is computed by PSE, 
requiring that the flow should be slowly varying along that di-
rection [14,15]. Some shortcomings of PSE have been overcome in 
the recently proposed one-way approximation of hyperbolic equa-
tions in Towne and Colonius [16], where the upstream propagating 
modes are systematically removed from the equations.

Although inviscid or viscous stability theories have been devel-
oped for laminar steady basic states, recent applications to mean 
(time-invariant) turbulent flow have yielded considerable insight 
into the dynamics. In nominally 2-D turbulent shock-wave bound-
ary layer interactions (SBLI), such as those arising from impinging 
shocks or compression corners, these fields display a dominant 
low-frequency component at scales far separated from those as-
sociated with turbulent fluctuations. Numerous mechanisms have 
been proposed to explain this phenomenon, including larger-scale 
events in the incoming flow [17], Kelvin–Helmholtz based oscilla-
tion of the separated shear layer [18] and amplification of incom-
ing signals by the separation bubble [19,20]. The method under 
consideration in this work, the Navier–Stokes based Mean Flow 
Perturbation method (NS-MFP), was introduced by Touber and 
Sandham [21] to reproduce the key elements of the low frequency 
unsteadiness by perturbing the mean flow from a Large-Eddy Sim-
ulation (LES).

The use of a mean flow to generate insight into the unsteady 
turbulent dynamics has also seen significant success in key as-
pects of jet noise predictions. The relevant theory that broadly 
connects sound generation processes to the stability of the flow 
is mature. For example, in a review article, Tam [22] notes that 
‘large-scale turbulent fluctuations of a statistically stationary flow 
can be mathematically represented by a linear superposition of its 
normal modes’ and that these structures contribute significantly 
to the noise field. Other efforts building on this construct may be 
found in stochastic instability wave models of Refs. [23–25].

Noise prediction models based on instability mechanisms of 
turbulent mean flows have been advanced recently in several ef-
forts. For example, Refs. [26,27] show that the evolution of lower 
frequency components follows from the linear instability of the 
mean flow, as obtained through PSE. The mean of the turbulent 
jet for PSE, is either obtained from PIV measurements [26] or 
from validated LES computations [8]. In Ref. [8], it is shown that 
peak aft direction noise for a supersonic Mach 1.5 jet filtered by 
Proper Orthogonal Decomposition (POD) techniques can be satis-
factorily predicted by a combination of PSE modes combined with 
a near-to-far field transformation. However, there are limitations 
of linearized instability analysis of the mean turbulent flow-field 
to predict noise radiation characteristics. For example, Ref. [28]
notes that low-frequency perturbations generated due to nonlin-
ear interactions of spatially unstable modes are more effective in 
noise-radiation at shallow polar angles when compared to the in-
stability wave at the same frequency.

In the present work, we focus on first verifying the approach 
of Touber and Sandham [21] and subsequently adapting it to the 
analysis of jets. Typical techniques to explore perturbation propa-
gation solve the disturbance form of the governing equations i.e.,
where the basic state, assumed to satisfy the Navier–Stokes equa-
tions, forms the coefficients of the disturbance equation. Focusing 
on those in use for computational aeroacoustics, these include the 
generalized acoustic analogy (GAA) [29], linearized Euler equation 
(LEE) [30], compact disturbance equation (CDE) [31] and zero-
averaged source term (ZAST) in nonlinear residual (disturbance) 
equation [32]. In the generalized acoustic analogy (GAA) [29] and 
linearized Euler equations (LEE) [30] linearization is performed 
about the statistically stationary mean-flow, while requiring that 
these also satisfy inhomogeneous NSE. However, in the nonlinear 
disturbance equations (NLDE) [33], compact disturbance equation 
(CDE) [31] and zero-averaged source term (ZAST) [32] approaches, 
the nonlinear disturbance equations are retained.

The NS-MFP approach does not solve the disturbance equa-
tions: rather, the Navier–Stokes equations are solved with a forcing 
term to maintain the invariance of the basic state (Section 2), and 
operations are performed on the total variable instead of the dis-
turbance. An advantage of this approach is that the complexity of 
treating the viscous and turbulent closure terms, which are often 
neglected in approaches that solve the disturbance equations, is 
circumvented. Furthermore, since the full Navier–Stokes operator 
is considered, no constraints are placed on streamwise variation 
rates such as those enforced on PSE, thus facilitating application 
even to flows with shocks. Because it can be implemented in ex-
isting NS codes in a straightforward manner, it is also relatively 
easy to extend to three-dimensions [34]. The method thus has the 
potential to treat relatively complex flows for which acceptable 
computed mean solutions are available. Such solutions could be 
obtained for example from experimentally anchored Reynolds Av-
eraged Navier Stokes (RANS) equations such as those of Ref. [35]
for 3-D SBLI using tailored turbulence models. NS-MFP thus pro-
vides the opportunity to analyze unsteady aspects of 3-D flows 
without expensive direct numerical simulations (DNS) or LES or 
difficult-to-obtain 3-D volumetric measured data. Moreover, unlike 
LST, PSE or GST, NS-MFP method does not neglect the nonlinear 
interaction among various perturbation modes, which under cer-
tain circumstances can also provide valuable insight into the flow 
physics [28].

The key step in NS-MFP is to pre-compute the change in the 
solution vector when the NS operator is applied to the basic state. 
A disturbance is then introduced and marched in time together 
with the basic state with the same NS operator. After each step 
however, the pre-computed difference in the basic state is sub-
tracted (this step may be viewed as a forcing term) to ensure that 
it does not vary with time, leaving only the changes associated 
with the disturbance. Since the NS-MFP approach poses an initial-
boundary value problem for the disturbance evolution, it is rela-
tively efficient (Section 3 contains comments on the computational 
cost) compared to methods that seek the eigenmodes. However, a 
heuristic approach using different perturbations is necessary to de-
rive a comprehensive assessment of disturbance growth.

Although the method has been successfully applied to SBLI, 
it has not been systematically verified by comparison to classi-
cal solutions. We perform such an analysis in two different ways 
as a first step of our work. First, we show theoretically that un-
der appropriate conditions, NS-MFP reverts to LST, PSE and GST 
(Section 3). The results are confirmed by demonstrating that NS-
MFP reproduces LST results for a Mach 6 entropy layer (Section 4). 
We then apply the method to turbulent jet flow, with the goal of 
reproducing principal aspects of jet noise. Although the ultimate 
goal is to apply the technique to jets with shock waves, for the 
present work, we limit the scope to ideally expanded conditions. 
For generality, we consider a subsonic (Mach 0.9) and a supersonic 
(Mach 1.3) condition. For the former, we examine the conditions 
under which NS-MFP recovers the PSE solution, with both meth-
ods using a time-averaged LES solution as the basic state. For the 
Mach 1.3 case, we consider NS-MFP when the base-flow is ob-
tained from both LES and RANS and use well-validated LES as the 
truth model. We use this case to also address a key point of inter-
est on the effect of eddy viscosity on disturbance evolution.
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2. The Navier–Stokes-based mean flow perturbation method

A brief description of the method to predict disturbance evolu-
tion in a steady basic state is first provided. Let Q be the vector 
composed of the basic state, Q b , and added perturbations Q ′ , i.e., 
Q = Q b + Q ′ . The temporal evolution of Q is obtained by solving 
the full non-linear Navier–Stokes equation as

∂ Q

∂t
= L(Q ) (1)

where, L includes all spatial derivatives (advection and diffusion 
terms). If the base-flow Q b is used as the initial condition to the 
Navier–Stokes solver (without imposing any perturbations) then:

∂ Q b

∂t
= L(Q b) (2)

Q b may not itself satisfy the NS equations, ∂ Q b
∂t �= 0, as for ex-

ample, when obtained through time-averaging an LES or measure-
ment data. The evolution equation for the imposed disturbance Q ′
is obtained by subtracting Eq. (2) from Eq. (1):

∂ Q ′

∂t
= L(Q ) − L(Q b) (3)

Thus L(Q b) acts as a forcing term in the governing evolution equa-
tion of Q ′ . Although we restrict our attention to linear situations, 
nonlinear interactions of disturbances are not explicitly neglected 
in Eq. (3). Note that disturbance equations directly solve Eqn. (3)
by establishing the proper expressions for the left side of the equa-
tions (Q ′ is advanced directly), while the NS-MFP method achieves 
the same objective by evaluating the right hand side using the to-
tal variable Q .

�Q b = Q 1 − Q 0 is the change in the base-flow Q b after it 
has been advanced by a single step (without any imposed distur-
bance): this quantity is precomputed and stored. For all subsequent 
time steps, it is then employed as a forcing term to ensure that Q b
does not change. �Q b is zero if a laminar basic state is considered, 
as is a RANS-derived basic state if the effects of the eddy viscosity 
on the evolution of the disturbance are included (see Section 5.3
for a discussion of this aspect). However, �Q b �= 0 when the basic 
state is a time-averaged LES or is obtained from PIV. Without the 
forcing term, this basic state exhibits a drift, which alters the char-
acteristics of disturbance evolution. The NS-MFP technique thus 
facilitates the use of the total variable to obtain the evolution of 
disturbances, even if the basic state does not satisfy the Navier–
Stokes equations.

Although the need for a forcing term is a drawback relative to 
solving the disturbance equations, there are several advantages to 
this approach. Since the operator L in Eqs. (1) through (3) consid-
ers all pertinent terms, including viscous fluxes as well as any tur-
bulence closures, their effects are included in the evolution of the 
disturbance without the need to explicitly derive and implement 
these terms. The benefit is particularly important for turbulent clo-
sures, whose linearization can be tedious and model dependent 
(see e.g., Ref. [36], which performs these operations for a specific 
model) or unknown, as in the case of implicit LES approaches as 
employed in Ref. [37]. Furthermore, �Q b , and indeed the evolu-
tion of Eq. (2), is independent of the method employed for the 
LES or RANS from which the mean basic state is derived. This per-
mits the scheme for the NS-MFP to be different from that used 
in LES/RANS and facilitates the use of highly accurate schemes 
that can correctly track small imposed perturbations even through 
shock waves.

The Navier–Stokes equations are solved in non-dimensional 
form on a curvilinear (ξ, η, ζ )-coordinate system:
∂

∂τ

(
Q

J

)

=
[
−

(
∂ Fi

∂ξ
+ ∂Gi

∂η
+ ∂ Hi

∂ζ

)
+ 1

Re

(
∂ F v

∂ξ
+ ∂G v

∂η
+ ∂ H v

∂ζ

)]
(4)

where, Q = [ρ, ρu, ρv, ρw, ρE]T denotes the solution vector, de-
fined in terms of the fluid density ρ , Cartesian velocity compo-
nents (u, v, w) and total specific internal energy E = T /(γ − 1)M2

+ (u2 + v2 + w2)/2. Here, M is the Mach number of the flow, γ is 
the ratio of the specific heats and T is the fluid temperature. Addi-
tionally, we have used the ideal gas law to connect fluid-pressure 
p to ρ and T as p = ρT /γ M2. Sutherland’s law is used to express 
fluid viscosity μ as a function of temperature T .

In Eq. (4), J = ∂(ξ,η, ζ, τ )/∂(x, y, z, t) denotes the Jacobian of 
the transformation from Cartesian (x, y, z) to curvilinear (ξ, η, ζ )-
coordinate system. The inviscid and viscous fluxes in (ξ, η, ζ )-di-
rections are represented in Eq. (4) by (Fi, Gi, Hi) and (F v , G v , H v), 
respectively. The expression for the inviscid flux Fi is given as

Fi =

⎡
⎢⎢⎢⎢⎢⎣

ρU
ρuU + ξ̂x p

ρvU + ξ̂y p

ρwU + ξ̂z p

(ρE + p)U − ξ̂t p

⎤
⎥⎥⎥⎥⎥⎦ (5)

where U = (̂ξt + ξ̂xu + ξ̂y v + ξ̂z w), ̂ξx = J−1∂ξ/∂x, ̂ξy = J−1∂ξ/∂ y
and ̂ξz = J−1∂ξ/∂z. The viscous flux F v is given as

F v =

⎡
⎢⎢⎢⎢⎢⎣

0
ξ̂xi τi1

ξ̂xi τi2

ξ̂xi τi3

ξ̂xi (u jτi j + 1
(γ −1)M2

1
Pr qi

⎤
⎥⎥⎥⎥⎥⎦ (6)

where the Einstein summation convention is used and Pr denotes 
the Prandtl number of the fluid. The stress tensor τi j and heat flux 
qi appearing in Eq. (6) are given as

τi j = μ

(
∂ξk

∂x j

∂ui

∂ξk
+ ∂ξk

∂xi

∂u j

∂ξk
− 2

3
δi j

∂ξl

∂xk

∂uk

∂ξl

)
(7)

qi = κ
∂ξ j

∂xi

∂T

∂ξ j
(8)

Similar expressions for Gi , Hi , G v and H v can be obtained by re-
placing ξ by η and ζ in Eqs. (5) and (6), respectively.

Since NS-MFP maintains the basic state, no boundary conditions 
are applied when computing �Q b . At subsequent steps, the distur-
bance is introduced on one of the boundaries, and conditions on 
the remaining boundaries are only applied to disturbance quanti-
ties. The disturbances introduced are different for the entropy layer 
and jet cases and are discussed in the context of each problem 
below. The computational cost of each step in the procedure is 
essentially the same as for an iteration in the underlying Navier–
Stokes operator and is discussed below.

3. Properties of NS-MFP

To gain insight into the approach, we first investigate the man-
ner in which the NS-MFP approach relaxes to other well-known 
stability methods. Although details are deferred to the Appendix, 
it is instructive to explicitly show the connection between the ba-
sic state and perturbed quantities. In NS-MFP, the time-updated 
perturbations are obtained as the difference between the changes 
in the base-flow Q b and the total flow Q = Q b + Q ′ when both are 
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subjected to the Navier–Stokes operator (4) as explained in Sec. 2. 
Effectively, the equations governing Q ′ , obtained from Eq. (4), 
are the linearized Navier–Stokes equations, except that the solu-
tion procedure uses Q in appropriate fashion (see discussions in 
Sec. 2):

∂

∂τ

(
Q ′

J

)

=
[
−

(
∂ F ′

i

∂ξ
+ ∂G ′

i

∂η
+ ∂ H ′

i

∂ζ

)
+ 1

Re

(
∂ F ′

v

∂ξ
+ ∂G ′

v

∂η
+ ∂ H ′

v

∂ζ

)]
(9)

The expression for perturbation inviscid flux F ′
i = Fi − Fib can be 

given as

F ′
i =⎡

⎢⎢⎢⎣
ρb U ′ + ρ ′Ub + ρ ′U ′

ρbub U ′ + ρbu′Ub + ρ ′ub Ub + ρbu′U ′ + ρ ′ub Ub + ρbub U ′ + ρ ′u′U ′ + ξ̂x p′

ρb vb U ′ + ρb v ′Ub + ρ ′vb Ub + ρb v ′U ′ + ρ ′ vb Ub + ρb vb U ′ + ρ ′v ′U ′ + ξ̂y p′

ρb wb U ′ + ρb w ′Ub + ρ ′ wb Ub + ρb w ′U ′ + ρ ′ wb Ub + ρb wb U ′ + ρ ′ w ′U ′ + ξ̂z p′

(ρb Eb + pb)U ′ + (ρ ′ Eb + ρb E ′ + ρ ′ E ′ + p′)Ub + (ρ ′ Eb + ρb E ′ + ρ ′ E ′ + p′)U ′ − ξ̂t p′

⎤
⎥⎥⎥⎦

(10)

where U ′ = (̂ξxu′ + ξ̂y v ′ + ξ̂z w ′), ξ̂x = J−1∂ξ/∂x, ξ̂y = J−1∂ξ/∂ y, 
ξ̂z = J−1∂ξ/∂z and

E ′ = T ′/(γ − 1)M2 + (u′ub + v ′vb + w ′wb)

+ (u′ 2 + v ′ 2 + w ′ 2)/2

The perturbation viscous flux F ′
v = F v − F vb is given as

F ′
v =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
ξ̂xi τ

′
i1

ξ̂xi τ
′
i2

ξ̂xi τ
′
i3

ξ̂xi (u′
jτi jb

+ u jbτ
′
i j + u′

jτ
′
i j + 1

(γ −1)M2
1
Pr q′

i)

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

The perturbation stress tensor τ ′
i j and heat flux q′

i appearing in 
Eq. (11) are:

τ ′
i j = μbs′

i j + μ′si jb
+ μ′s′

i j (12)

qi = κb
∂ξ j

∂xi

∂T ′

∂ξ j
+ κ ′ ∂ξ j

∂xi

∂Tb

∂ξ j
+ κ ′ ∂ξ j

∂xi

∂T ′

∂ξ j
(13)

where s′
i j and si jb

denote perturbation and mean strain-rates, re-
spectively:

s′
i j =

[(
∂ξk

∂x j

∂u′
i

∂ξk
+ ∂ξk

∂xi

∂u′
j

∂ξk
− 2

3
δi j

∂ξl

∂xk

∂u′
k

∂ξl

)]
(14)

si jb
=

[(
∂ξk

∂x j

∂uib

∂ξk
+ ∂ξk

∂xi

∂u jb

∂ξk
− 2

3
δi j

∂ξl

∂xk

∂ukb

∂ξl

)]
(15)

Expressions for G ′
i , H ′

i , G ′
v and H ′

v can be defined by replacing ξ
in Eqs. (10) and (11) by η and ζ , respectively.

The evolution of the disturbance is affected by both linear as 
well as non-linear terms i.e., products of perturbation quantities. 
Thus, the forcing term associated with L(Q b), is generated by the 
NS operator, whereas when the disturbance equation is solved as 
for example in the NLDE approach, constancy of the basic state is 
assured simply by maintaining the coefficients (which are based 
on the basic state) constant. If the disturbances grow to non-linear 
levels, then the possibility must be considered that such growth 
could be the effect of a changing mean state (due to wave-induced 
stresses caused by non-zero mean of the disturbances [32]) com-
bined with a linear disturbance growth subjected to the altered 
mean flow (secondary instability). Suponitsky et al. [28] discuss 
some considerations in this regard in the context of noise radiated 
by subsonic jets.

If it is assumed that the perturbation quantities in Eq. (9) are 
much smaller than corresponding variables in the base-flow, then 
the nonlinear disturbance terms in Eq. (9) can be neglected. The 
resulting linearized Navier–Stokes equation in terms of primitive 
variables in the physical (x, y, z)-coordinate system can be written 
symbolically as,

∂W ′

∂t
= A11b

∂W ′

∂x
+ A12b

∂W ′

∂ y
+ A13b

∂W ′

∂z

+ W ′
(

∂ B11b

∂x
+ ∂ B12b

∂ y
+ ∂ B13b

∂z

)
+C11b

∂2W ′

∂x2

+ C12b
∂2W ′

∂ y2
+ C13b

∂2W ′

∂z2
+ C14b

∂2W ′

∂x∂ y

+ C15b
∂2W ′

∂x∂z
+ C16b

∂2W ′

∂ y∂z
(16)

where, Wb = [ρb, ub, vb, wb, Tb]T and W ′ = [ρ ′, u′, v ′, w ′, T ′]T de-
note base-flow and disturbance quantities in primitive variables, 
respectively. In Eq. (16), the matrices A··b , B ··b and C··b are all func-
tions of the base-flow variable Wb and its spatial derivatives.

The above elaboration of the NS-MFP method facilitates exam-
ination of its properties under different conditions which form 
the basis of traditional stability approaches. By enforcing various 
conditions on the basic state, it can be shown that the NS-MFP re-
covers these classical techniques. Details of the manner in which 
the method recovers local linear stability [38–40], parabolized sta-
bility equations [3,4] and the global stability approach [1,41] are 
provided in Appendix A.

The solution of Eq. (3) requires spatial and temporal discretiza-
tion in a manner similar to those employed for the underlying LES, 
DNS or RANS. Therefore, the computational cost per iteration of NS-
MFP is similar to those methods. Several considerations reduce the 
total requirement substantially however. First, the time to prop-
agate the disturbance through the domain and acquire statistical 
data is much smaller than that required to obtain a statistically 
stationary turbulent state for the LES. Second, simplifications as-
sociated with 2-D or axisymmetry can often be leveraged if the 
disturbances are also of lower dimension. Finally, the scales in 
mean flow are much larger than those of the underlying turbu-
lence. A coarser mesh than employed for the original flow, with 
suitable interpolation, may also then be appropriate. NS-MFP is 
thus much cheaper than LES or GST, for which estimates are pro-
vided in [1] but more expensive than PSE.

4. Disturbance growth in an entropy layer

We verify the approach and its implementation by consider-
ing the inviscid instability of the entropy layer evolving over a 
flat plate with a blunt nose (Fig. 1(a)). The region of interest L
is 1 < L

r < Rer where Rer = ρ∞U∞r/μ∞ is the Reynolds number 
based on the leading edge radius, r and ρ∞ , U∞ and μ∞ denote 
free-stream values of fluid density, velocity and viscosity, respec-
tively. The inviscid instability is associated with the generalized 
inflection point, which is a sufficient condition to support unsta-
ble perturbations [42].

Analytical expressions for the leading order terms of the base-
flow profiles of velocity and temperature (nondimensionalized by 
respective free-stream values) are [42–44]:
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Fig. 1. (a) Schematic of blunted plate configuration and domain of interest. (b) Base-flow profiles of U velocity, density ρ , temperature T and Mach number plotted as 
functions of y-coordinate.
T (y) =
[

1 − 2(M2∞ − 1)2

M2∞(γ + 1)(M2∞ − 1 + ψ2)

]

×
[

1 + 2γ (M2∞ − 1)2

(γ + 1)(M2∞ − 1 + M2∞ψ2)

]1/γ

(17)

U (y) =
[

1 − 2(T − 1)

(γ − 1)M2∞

]1/2

(18)

y =
ψ∫

0

T

U
dψ (19)

where M∞ is the free-stream Mach number and γ = 1.4 for 
air. In Eqs. (17) and (18), the independent variable ψ is defined 
from Eq. (19). Equations (17) and (18) suggest that to leading 
order, temperature and velocity profiles are independent of the 
streamwise coordinate x. The streamwise variation of the base-
flow variables only enter through the higher order terms which 
are neglected here. The pressure is assumed to be uniform inside 
the entropy layer and therefore, nondimensional density ρ(y) and 
temperature T (y) satisfy the ideal gas equation, ρ(y)T (y) = 1. The 
wall-normal velocity component V does not contribute any term 
to the leading order of the asymptotic expansion of the entropy 
layer profiles [43,44] and is therefore assumed to be zero. The pro-
files of the basic state mean velocity U , density ρ , temperature T
and Mach number M for free-stream Mach number M∞ = 6 are 
shown in Fig. 1(b).

Since the base-flow profiles are functions of the wall-normal 
coordinate y only, with V (y) = 0, the parallel flow approximation 
holds (where the streamwise variation of the base-flow quanti-
ties are neglected). Furthermore, since the current emphasis is 
on the investigation of the characteristics of 2-D disturbances, the 
transverse velocity component W is also assumed to be zero. The 
entropy layer velocity profile shown in Fig. 1(b) contains a gener-
alized inflection point at y = 2.775 where ∂ [(∂U/∂ y) /T ] /∂ y = 0. 
Normal mode analysis of perturbations yields system of ODEs for 
the eigen-solution of the perturbation evolution as [42]:

dφ0

dy
− dU

dy

φ0

(U − c)
+ iα

(U − c)

γ

[
1 − T

M2∞(U − c)2

]
π0 = 0

(20)
dπ0

dy
+ iγ M2∞ α

(U − c)

T
φ0 = 0 (21)

where α and ω are complex wavenumber and circular frequency, 
respectively, while c = ω/α. The real part of c denotes the phase 
Table 1
Disturbance properties for indicated frequencies of excitation tabulated which are 
obtained from the linear inviscid instability analysis of the entropy layer. Here, cr

and ci are the real and imaginary part of the complex phase speed c = ω/α.

ω αr αi cr ci ycr

0.0315 0.03476 −0.7745 × 10−3 0.9057 0.2018 × 10−1 1.754
0.145 0.1555 −0.2298 × 10−2 0.9324 0.1378 × 10−1 2.51
0.25 0.2659 −0.1152 × 10−2 0.9402 0.4074 × 10−2 2.73

speed of the disturbances. The eigenfunctions φ0 and π0, rep-
resenting v ′ and p′ , respectively, also satisfy the homogeneous 
boundary conditions:

(φ0,π0) −→ 0, as y −→ ∞ and φ0 = 0, at y = 0 (22)

u′ , T ′ and ρ ′ can then be evaluated from the linearized invis-
cid u-momentum, energy and continuity equations, respectively. 
For excitation with real frequencies (i.e., when ω is real), the spa-
tial growth of the disturbance can be represented as exp(−αi x) at 
wavelength 2π/αr .

Although numerous simulations were performed, we distill the 
results by considering three distinct frequencies ω = 0.0315, 0.145
and 0.25. The corresponding eigensystem for each was obtained 
by solving the eigenvalue problem, Eqs. (20)–(22) using the 4th-
order Runge–Kutta integration scheme. The key properties of these 
disturbances are listed in Table 1 where, αr is the disturbance 
wavenumber, αi is the spatial amplification rate of the distur-
bances, (cr, ci) are the real and imaginary parts of the complex 
phase speed c = (ω/α) and ycr is the location of the critical 
layer, i.e., where (U − cr) = 0. The frequency ω = 0.145 displays 
the maximum rate of amplification [42] in the range of unstable 
frequencies, whereas ω = 0.0315 and 0.25 are located very close 
to the lower and upper bound of the unstable frequency range, 
consistent with the results of Ref. [42]. Fig. 2 shows the eigen-
solution properties for ω = 0.145. The real and imaginary parts of 
the temperature eigenfunction display rapid variation in the neigh-
borhood of the critical layer ycr . Other two non-optimal frequency 
cases considered here, i.e., ω = 0.25 and 0.0315, also show similar 
profile of eigenfunction and therefore are not shown here. For ver-
ification of MFP, the disturbances are introduced at the upstream 
boundary (see below) and the computed growth rate is compared 
with the theoretical value.

The computational domain is shown in Fig. 3. The basic state 
is constructed on this rectangular domain of streamwise length 
400 units corresponding to approximately 9.87 wavelengths of the 
ω = 0.145 case. The height of the domain is 20 units. 400 and 
800 uniformly spaced mesh points are respectively employed in ξ -
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Fig. 2. Real and imaginary part of the disturbance u, v , p and T are shown for ω = 0.145 in frames (a–d), respectively. These eigen-solutions are obtained by solving the 
inviscid instability equation given by Eqs. (20) and (21).

Fig. 3. Schematic diagram of the computational domain along with applied boundary conditions for NS-MFP.
and η-directions. Since the problem is inviscid and no discontinu-
ities exist in the flow, the Euler subset of the NS-MFP equations is 
solved with the sixth-order compact-difference scheme of Ref. [45]. 
The derivatives of the inviscid fluxes are obtained by first form-
ing the fluxes at the nodes and subsequently differentiating each 
component. A trace amount of fourth-order dissipation is added 
to systematically remove the spurious numerical disturbances in 
the solution. Time-integration of the solution is performed by 
the low-storage form of the fourth-order classical Runge–Kutta 
method [46]. A non-dimensional time-step of �t = 10−2 is used 
for the computations.

The disturbance is imposed at the inflow of the computational 
domain (segment AD of Fig. 3) by specifying the eigen-solution 
(obtained by solving Eqs. (20)–(22)) for the specified excitation fre-
quency case:

ϕ′(0, y, t) = A ×R

(
ϕ0(y) eiωt

)
(23)

where R(·) denotes the real part of the complex quantity (·) while 
ϕ′ and ϕ0 represent any of the quantities from u′ , v ′ , p′ and ρ ′
and the corresponding eigen-solution, respectively. The variable A
in Eq. (23) denotes the amplitude of the imposed perturbation. At 
the outflow and the upper boundaries of the computational do-
main (segments BC and C D of Fig. 3) Neumann conditions are 
applied on disturbance quantities (u′ , v ′ , p′ and ρ ′) as

∂q′

∂n
= 0 (24)

where q′ is the disturbance flow-variable and n is the unit vector 
normal to the boundary. The implicit nature of the compact differ-
encing scheme can yield spurious reflections from the downstream 
boundary. Neumann conditions are employed for u′ , p′ and ρ ′ at 
the bottom boundary AB , and v ′ = 0 is enforced for the vertical 
component of the disturbance to mimic the corresponding homo-
geneous boundary conditions of linear stability analysis as given in 
Eq. (22).

Fig. 4 shows contours of the vertical disturbance velocity com-
ponent, v ′ , for A = 10−3 at t = 1000. At this time instant, the 
initial transient due to the onset of excitation at t = 0 convects out 
of the outflow boundary establishing a time harmonic disturbance 
field in the entire computational domain. Fig. 4 shows that of 
the three frequency cases considered, disturbances corresponding 
to ω = 0.145 exhibit maximum growth, while those correspond-
ing to ω = 0.0315 and ω = 0.25 exhibit near-neutral behavior. 
This agrees with the predictions of the linear inviscid instability 
theory. Likewise, the ω = 0.0315 case displays perturbations with 
the largest wavelength (shortest wavenumber) while disturbances 
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Fig. 4. Contours of v ′ plotted for (a) ω = 0.145, (b) ω = 0.0315 and (c) ω = 0.25 at t = 1000. The amplitude of excitation is A = 10−3. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)
corresponding to ω = 0.25 have the shortest wavelength (largest 
wavenumber). These observations are consistent with the values 
listed in Table 1.

To further illustrate the characteristics of disturbance evolu-
tion, in Fig. 5, u′ (frames (a), (b), (d) and (f)) and p′ (frames (c), 
(e) and (g)) are plotted as functions of streamwise distance x at 
y = 2.45 for the indicated frequency cases. The amplitude of exci-
tation is A = 10−3 for all the cases shown. The transient evolution 
of disturbances is readily evident in u′ , Fig. 5(a). An approximate 
estimate of the speed of the front of the transient is 0.93, which 
is very close to the corresponding phase speed cr = 0.932 for dis-
turbances with ω = 0.145 (see Table 1). Similarly obtained phase 
speeds corresponding to the other two frequency cases are also 
very close to their respective theoretical estimates. The wavenum-
ber αr of the disturbances can also be estimated from Figs. 5(b–g) 
for the corresponding frequency cases. For ω = 0.145, this value 
from NS-MFP as shown in Figs. 5(b, c) is 0.15536, which approxi-
mates the predicted value of 0.15548 (see Table 1) very accurately. 
Similarly, estimated values of αr for the other two non-optimal 
frequency cases (0.0345 for ω = 0.0315 and 0.263 for ω = 0.0315) 
from Figs. 5(d, e) and 5(f, g) are in very good agreement to those 
predicted by the theory (see Table 1).

Fig. 6 compares the streamwise variation of the normalized 
amplitude for disturbances as obtained from NS-MFP with those 
predicted from LST. Fig. 6 shows A(x)/A(0) at a representative 
y-location of y = 1.2 for the optimal growth frequency ω = 0.145
where, A(x) and A(0) indicate disturbance amplitudes at any given 
streamwise location x and at the inlet (x = 0), respectively. Frame 
(a) considers a low initial amplitude of A = 1 × 10−6, which en-
sures linear growth, while frame (b) considers a much higher 
value (A = 10−2) to recover non-linear growth. According to the 
linear stability analysis, disturbance amplitudes should grow as 
A(x) = A(x0)e−αi(x−x0) . For this optimal frequency, ω = 0.145, the 
value of αi is −0.2298 × 10−2 (see Table 1). Fig. 6(a) thus shows 
an excellent match of the x-variation of A(x)/A(0) for all prim-
itive variable fluctuations between LST and MFP, as expected. At 
higher amplitude, frame (b), significant deviations become evident, 
with density fluctuations displaying the most sensitive non-linear 
behavior.

The above entropy layer case verifies the theoretical discussion 
of Sec. 3 and Appendix A, when suitable conditions are applied on 
the basic state. The jet cases considered next are more challenging, 
since the basic state is derived by time-averaging LES or steady-
state RANS. The time-averaged LES requires the forcing term to 
maintain constancy of the basic state. On the other hand for a 
RANS-derived base-flow, a similar forcing is only required if the 
eddy viscosity is neglected in the perturbation analysis, as dis-
cussed further in Section 5.3.

5. Application to jets

We consider free shear layers represented by jets at Mach 
0.9 and 1.3 since these are representative of current interest to 
the community. Each case has an LES database, which has previ-
ously been confirmed to match near and far-field data (see [47]
and [48,49] for the Mach 0.9 and 1.3 cases, respectively). For 
the Mach 0.9 jet case T jet/Tamb = 0.9227, with T jet = 251 K and 
Tamb = 272 K [47] while for Mach 1.3 jet T jet/Tamb = 0.7467 with 
T jet = 224 K and Tamb = 300 K [48]. Here, T jet and Tamb indi-
cate the temperatures of the jet at the nozzle exit plane and the 
surrounding ambient air, respectively. For each case, harmonic per-
turbations are introduced to obtain the modal response, whose 
qualitative and quantitative features are evaluated by considering 
results from the literature. To balance completeness and brevity, 
different approaches are employed to analyze the NS-MFP pertur-
bations for the two cases. For the Mach 0.9 case, we compare to 
PSE results, similar to those employed by Ref. [27], while for the 
Mach 1.3 case, we use the original LES data. Likewise, we only fo-
cus on the near field, since the far-field extension may be obtained 
through wave propagator approaches such as those discussed in 
Ref. [8], and are not directly pertinent to the NS-MFP method. 
The mean flow for both cases is obtained by time-averaging the 
LES data, though for the Mach 1.3 case, a RANS-based result is 
also employed separately to examine issues related to eddy viscos-
ity.
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Fig. 5. u′ (in frames (a), (b), (d) and (f)) and p′ (in frames (c), (e) and (g)) plotted as a function of streamwise distance x for y = 2.45 and indicated frequency cases. The 
amplitude of excitation is A = 10−3 for all the cases shown here. The time instants corresponding to disturbance plots shown in frames (b)–(g) are after the initial transient 
sweeps the entire computational domain.
5.1. Mean flow perturbation of a Mach 0.9 turbulent round jet

Fig. 7 highlights the general features of the unsteady flow with 
a Q -criterion [50] isosurface of the instantaneous turbulent flow-
field, colored by streamwise velocity. The initial growth of fluc-
tuations is dominated by the evolution of axisymmetric toroidal 
vortices due to Kelvin–Helmholtz like instabilities. The basic state, 
shown with streamwise velocity contours in Fig. 8, is obtained by 
averaging a validated LES in time as well as in the azimuthal di-
rection. To focus on the shear layer, the evolution of perturbation 
is examined in the domain x0/D = 1.3433 to x1/D = 31.30 in the 
axial direction and rmax/D = 17.66 in the radial direction.

We first perform a qualitative assessment to show that the 
NS-MFP method generates similar disturbance field forms as with 
the PSE results documented in Ref. [27], and that the compact 
wave-packet structure is a common observation even when the 
forcing function differs in its details. A localized excitation in time 
is imposed on the basic state of Fig. 8 by considering a Gaussian 
function:

p′(x0, r, t) = α1 f (r) exp

[
−

(
t − t0

σ

)2]
(25)

where α1 = 0.05 is the amplitude of excitation, t0 = 1 is the time 
instant of the peak excitation and σ = 0.1 is the width of the 
Gaussian pulse. The excitation is also localized in the radial direc-
tion by specifying f (r) as

f (r) = 1
[

1 + cos

(
π

r − r0
)]

(26)

2 �r
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Fig. 6. A(x)/A(0) plotted for u′ , v ′ , p′ and ρ ′ with LST results for (a) linear and 
(b) non-linear forcing at optimal frequency, ω = 0.145. Here, A(x) and A(0) indicate 
disturbance amplitudes at any given streamwise location x and at the inlet (x = 0), 
respectively.

for r0 − �r ≤ r ≤ r0 + �r and f (r) = 0, otherwise. Here r0 = 0.5D
is the radial location of the lip-line and �r = 0.22D is chosen 
to ensure that the excitation is radially localized while contain-
ing sufficient number of grid points (in this case 10) to resolve 
the perturbation without numerical instability. Boundary condi-
tions are similar to those employed for the stability analysis of 
axisymmetric flows in the literature [51,52]. Only the axisymmetric 
(m = 0) mode is employed – this can be justified by its superdi-
rective dominance at low polar angles of interest [53,8]. Higher 
azimuthal modes can of course be incorporated through an appro-
priate function g(θ) in Eq. (25), where θ denotes the azimuthal 
angle, and considering the full 3-D flow-field. At the outflow and 
far-field of the computational domain, Neumann conditions are 
employed on the disturbance quantities, i.e., u′ , v ′ , w ′ , p′ and ρ ′ . 
At the centerline of the jet, u′ , p′ and ρ ′ are specified by extrapo-
lating from the interior, while v ′ and w ′ are specified to be zero. At 
the inflow, excitation is imposed by specifying perturbation pres-
sure p′ by Eq. (25) while the other four disturbance quantities are 
Fig. 8. Time and azimuthally averaged mean U -velocity contours of Mach 0.9 turbu-
lent jet.

specified to be zero. Note that even when only pressure fluctua-
tions are imposed, the response generates acoustic and entropic 
modes as well, since, for an ideal gas dp = c2dρ + (γ − 1)ρT ds, 
where c is the local speed of sound and dp, dρ and ds indi-
cate changes in pressure, density and entropy, respectively. Vortical 
modes are also generated through the perturbation baroclinic term 
(1/ρ2

b )(∇ρ ′ × ∇pb + ∇ρb × ∇p′) appearing in the correspond-
ing disturbance vorticity transport equation, where the variables 
with subscript b refer to the base-flow quantities. The sixth-order 
compact scheme of Ref. [54] is used to discretize the inviscid 
flux. The fourth-order low storage Runge–Kutta time-integration 
scheme [46] is used with a time step of �t = 10−3. Long time 
integration is facilitated by artificially damping disturbances in a 
very narrow strip close to the outflow boundary.

The spatio-temporal evolution of perturbation pressure (p′) ob-
tained by NS-MFP using the excitation of Eq. (25) is shown in 
Fig. 9 at the indicated time instants. The excitation clearly gen-
erates a downstream propagating wave-packet, which disperses as 
it moves downstream. A qualitative comparison may be obtained 
by considering the PSE-based results of Ref. [27], whose mean ba-
sic state is similar to that in Fig. 8, but was obtained from PIV 
data. The forcing function for the PSE analysis was comprised of 
temporally impulsive excitation at the inflow obtained by adding 
linear stability modes (with known eigenfunctions), correspond-
ing to a range of Strouhal numbers (St = f D/U jet ) from 0.025 to 
0.375 in steps of 0.025. These modes were then evolved with PSE 
for each frequency component and the spatio-temporal evolution 
of the perturbation at any instant was obtained by the inverse 
Fourier transform of the sum of the PSE solutions for each har-
monic component in the spectral domain. The PSE results from 
Ref. [27] are shown in Fig. 10 at two representative time instants 
after the imposition of excitation. The primary feature is again a 
localized spatio-temporal wave-packet growing and propagating in 
Fig. 7. Instantaneous Q = 0.05 isosurface of LES for Mach 0.9 jet (Re = 635310).
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Fig. 9. Evolution of perturbation pressure p′ for M = 0.9 jet plotted at representative time instants for the impulse response case computed via proposed mean flow 
perturbation method. The impulsive excitation at the inflow station is prescribed here by Eq. (25).
Fig. 10. Evolution of perturbation pressure p′ for M = 0.9 jet plotted at representa-
tive time instants for the impulse response case as obtained by PSE.
Fig. 12 from Sinha et al. [27].

the downstream direction. As noted in Ref. [55], modulation and 
jittering of such wave-packets play a very crucial role in the acous-
tic emission due to the turbulent jet. Since the peak amplitude of 
the NS-MFP excitation is prescribed at t0 = 1, the comparison with 
Fig. 10 can be accomplished by time-shifting the current results 
by t = 1. For example, frames (c) and (f) of Fig. 9 should be com-
pared with the top and bottom frames of Fig. 10, respectively. The 
structures obtained with NS-MFP and PSE approaches are clearly 
qualitatively very similar, despite the differences in excitation de-
tails as well as the mean flow.

For a more quantitative comparison, we consider the response 
to one specific frequency, using the same excitation and basic state 
for both PSE as well as NS-MFP. The excitation corresponds to 
the axisymmetric m = 0 mode at a Strouhal number of 0.3, while 
the basic state is the computationally derived solution depicted in 
Fig. 8, truncated to 2 ≤ x/D ≤ 10 and 0 ≤ r/D ≤ 5 along stream-
wise and radial directions respectively. At the starting PSE solution 
location (x/D = 2), the mode shape functions and the complex 
wavenumber are chosen from the local linear stability analysis of 
the corresponding jet-profile for St = 0.3. These shapes for hori-
zontal and radial velocity components at x/D = 2 for St = 0.3 are 
shown in frames (a) and (b) of Fig. 11, respectively. The corre-
sponding mode-shapes for perturbation pressure and density are 
shown in frames (c) and (d) of Fig. 11, where subscripts r and i re-
fer to the real and imaginary parts of each complex eigenfunction. 
Since only the axisymmetric mode is considered here, the mode 
shape function for the disturbance azimuthal component of veloc-
ity is identically zero. 400 points are used in the radial direction, 
clustered near the centerline of the jet to achieve adequate resolu-
tion.

The same excitation function is imposed as in the PSE method 
by specifying the mode shape functions at the inlet of the compu-
tational domain (x/D = 2.0), similar to that given in Eq. (23). The 
evolution of disturbances with NS-MFP is shown in Fig. 12 with 
contours of u′ velocity in the (x, r)-plane at the indicated time 
instants. The amplitude of excitation is A = 10−6, which is small 
enough to ensure linear evolution of disturbances. The progressive 
spatio-temporal development of a time-harmonic wave solution 
in the entire computational domain is evident, as is the spatial 
growth of disturbances. Fig. 12 also reveals that the wavenumber 
of the time-harmonic perturbation increases as it moves down-
stream. This observation is consistent with the PSE analysis and 
other corresponding stability results.

We preface the direct comparison by noting that the two ap-
proaches have very different assumptions, which must be taken 
into account. In addition to the slow streamwise variation assump-
tion, PSE also encounters the problem of residual ellipticity from 
streamwise pressure gradients and streamwise diffusion terms, 
as detailed in Refs. [56,6,57,7]. To damp modes associated with 
residual ellipticity, PSE imposes a minimum streamwise step size, 
which also has the effect of reducing streamwise gradients. In the 
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Fig. 11. Real and imaginary part of the complex mode-shape functions shown for (a) u′ , (b) v ′ , (c) p′ and (d) ρ ′ at x/D = 2.

Fig. 12. Contours of u′ plotted in (x, r)-plane at indicated time-instants when the mean flow shown in Fig. 8 is excited at x/D = 2 by LST mode-shape functions (Fig. 11) for 
St = 0.3 and m = 0.
present case, the computational mesh for PSE was coarsened along 
the streamwise direction by considering only 24 uniformly spaced 
grid-points. Such a coarse streamwise grid is however unsuitable 
for the NS-MFP approach, since it leads to a large truncation er-
ror. Therefore, a fair comparison with PSE requires reduction of 
the streamwise variation of the basic state for NS-MFP, without 
compromising the fineness of the mesh required to reduce dis-
cretization error.

To accomplish this, we note that PSE disturbances are expressed 
as:

q′(x, r, φ, t) = q̃(X, r) exp

[
i

(∫
¯

α(ξ̄ )dξ̄ + mφ − ωt

)]
(27)
ξ

where X = εx, ε 	 1 and m is an integer. The streamwise variation 
of the base-flow is thus constrained to be slow through ε , together 
with the assumption that the second derivatives of perturbation 
mode shape functions q̃ are sufficiently small to be neglected. 
For NS-MFP therefore, streamwise derivatives can be reduced by 
simply applying a stretch factor to the NS-MFP basic state mesh, 
without altering the crucial transverse variation. The bounds of 
mesh stretching can be obtained by examining the rate of change 
on the PSE and NS-MFP meshes. The region 2 ≤ x/D ≤ 10 is effec-
tively discretized with 24 points for PSE, whereas NS-MFP uses 240
points in the same region. For illustration, a second order ∂u/∂x
numerically by a second-order approximation for PSE corresponds 
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Fig. 13. Streamwise variation of A(x)/A(x0) plotted for indicated cases, where A(x)
and A(x0) are the amplitudes of u′

max at streamwise stations x and x0, respectively.

to[
∂ui

∂x

]
P S E

= ui+10 − ui−10

20�x

while the same quantity would be evaluated as[
∂ui

∂x

]
N S−M F P

= ui+1 − ui−1

2�x

in NS-MFP. Thus, to match axial gradients, a local grid stretch fac-
tor of approximately F̂ = ([uxi ]N S−M F P /[uxi ]P S E

)
is required. In ef-

fect, we stretch our computational domain by F̂ along x-direction, 
thereby increasing the average streamwise grid-spacings by this 
factor. This effectively reduces the streamwise gradients to values 
similar to those in the PSE, while maintaining a mesh density suit-
able for the finite-difference technique. The factor F̂ can be esti-
mated a priori, but naturally varies with streamwise distance, since 
the basic state gradients are not constant. For 4.2 ≤ x/D ≤ 7.6, 
F̂ varies from 1.2 to 1.1, with an average value of approximately 
1.14.

Results are shown for various simulated cases in Fig. 13. Here 
A(x)/A(x0) is plotted as a function of x/D , where A(x) and A(x0)

are the amplitudes of u′
max at streamwise stations x and x0, re-

spectively. u′
max is the maximum of |u′| over all radial locations 

and the ariation of normalized amplitude corresponding to PSE is 
computed by numerically integrating −αi from x0 to x, i.e.,

[
A(x)

A(x0)

]
P S E

= exp

( x∫
x0

(−αi) dx

)

The naive comparison (marked NS-MFP), uses the basic state 
without any modification. The initial growth is substantially higher 
than that obtained with PSE. The results are consistent with the 
discussion above: the NS-MFP method accounts for the correct 
(large) initial gradients in the basic state, leading to the observed 
high growth rate. Results with several F̂ values are also shown on 
Fig. 13. Satisfactory agreement is clearly achieved if F̂ lies between 
1.14 and 1.18. The value 1.14 yields the best average match with 
PSE growth rate over 3.77 ≤ x/D ≤ 10. At the downstream end 
of the domain however, the NS-MFP rate asymptotes to a higher 
value than with PSE. This is a consequence of the fact that a single 
stretch factor value cannot account for the spatially changing gra-
dients in the basic state. Moreover, since the comparison of MFP 
results with PSE requires modification of the basic state to reflect 
PSE constraints, these are necessarily dependent on the domain 
of interest. In principle, a variable stretch factor based on local 
streamwise gradients could ensure a better match, but the exer-
cise does not provide much new insight. In summary therefore, 
the conditions required in Appendix A can only be satisfied when 
similar constraints as required for PSE are also enforced on the 
base-flow for NS-MFP.

5.2. NS-MFP analysis of Mach 1.3 perfectly-expanded jet

We now consider the supersonic jet, and use suitably filtered 
results from the LES as the truth model to analyze the performance 
of NS-MFP. As noted earlier, the database, described in Ref. [49,
58], has been employed in several studies [59]. Fig. 14 shows 
representative aspects of the flow after statistical stationarity has 
been achieved with azimuthal vorticity and dilatation (∇ · 
V ) in 
frames (a) and (b), respectively. The shear layer breaks down at the 
lip-line slightly downstream of the nozzle exit, where the bound-
ary layer has been assumed to be laminar. The resulting structures 
are initially azimuthally coherent and roll-up to form vortices. 
These structures subsequently, entrain fluid and the disturbed flow 
increasingly penetrates towards the axis. Further downstream, the 
turbulent flow is dominated by coherent vortical structures which 
play an important role in the energy-cascade to the fine-scale ed-
dies, and have major influence on the noise field. The dilatation 
contours of frame (b) are a surrogate for the sound field outside 
of the turbulent regions of the jet. The dominant acoustic radi-
ation direction is at shallow angles, due to Mach wave radiation 
associated with the large turbulent structures moving at a super-
sonic group velocity (see e.g., Ref. [60]). By contrast, radiation is 
less prominent along upstream or higher polar angles, which are 
due to the fine-scale turbulence [60]. Further details of the near 
field are discussed below.

Key features of the basic state employed are plotted in Fig. 15, 
which show mean U -velocity and pressure P contours. As before, 
this field is obtained through time- and azimuthally-averaging the 
turbulent field. The overall features are generally similar to those 
of the Mach 0.9 jet discussed above. This basic state is perturbed 
by once again imposing a pressure perturbation, p′ , at the nozzle 
exit plane close to the lip-line:

p′(x, r, t) = αm σ(x, r) R(e2iπSt t) (28)
Fig. 14. Instantaneous snapshots of azimuthal vorticity ωθ and velocity-divergence ∇ · 
V of turbulent Mach 1.3 perfectly-expanded jet after reaching statistical-stationarity 
are plotted at a radial-plane in frames (a) and (b), respectively.
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Fig. 15. (a, b) Contours of U -velocity and pressure P of the axisymmetric basic-state obtained by time- and azimuthally-averaging statistical stationary turbulent Mach 1.3 
flow.

Fig. 16. Evolution of disturbance pressure p′ corresponding to excitation Strouhal number of St = 0.3 plotted in the (x, r)-plane at (a) t = 10, (b) t = 15, (c) t = 20, (d) t = 25, 
(e) t = 30 and (f) t = 40 for Mach 1.3 perfectly-expanded jet case.
where R(·) denotes the real part of the complex quantity en-
closed within the parenthesis, St and αm indicate the Strouhal 
number and the amplitude of the imposed excitation. In Eq. (28), 
σ(x, r) represents a Gaussian-like function which is localized 
close to the lip-line. The maximum value of σ(x, r) is unity and 
αm = 10−4, to ensure that the disturbances remain in the linear 
regime.

In Fig. 16, the evolution of disturbance pressure p′ correspond-
ing to excitation Strouhal number of St = 0.3 is plotted in the 
(x, r)-plane at the indicated time instants. The initial transient re-
sponse dies down beyond t ∼ 25, and a time-harmonic solution 
is obtained. Two distinct components are evident from the distur-
bance contours. Close to the jet centerline, a clear wave-packet (or 
“wave-guide”) like behavior [61–63] is observed whose amplitude 
initially grows and attains maxima around x/D � 6.25, before de-
caying. This wave-packet is associated with the corresponding in-
stability waves for this particular Strouhal number. Away from the 
turbulent jet region, the disturbance takes a distinctively acoustic 
wave propagation character, essentially radiation associated with 
the wave-packet, which is confined close to the jet-centerline.

The wave packet form of the perturbation is consistent with 
the discussion in Sec. 1, regarding the influence of its evolution 
and propagation as a source of coherent sound radiation by tur-
bulent jets [24,26,64]. Like the behavior in Fig. 16, such wave-
packets display growth, saturation and decay of amplitudes whose 
spatial extent is significantly larger than the turbulence length 
scales [61]. While the fluctuation energy corresponding to these 
non-compact wave-packets is considerably lower than the compact 
and stochastic turbulent eddies, these are more acoustically effi-
cient than the latter sources of noise radiation [55,61,59]. Fig. 16
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Fig. 17. Contours of time-harmonic disturbance pressure p′ corresponding to indicated excitation Strouhal number plotted in the (x, r)-plane.

Fig. 18. Contours of time-harmonic disturbance pressure p′ obtained from the actual full LES of the turbulent Mach 1.3 jet plotted in the (x, r)-plane for corresponding 
indicated Strouhal number.
suggests that the present NS-MFP approach can successfully cap-
ture and predict some of the important features of the linear 
wave-packet and sound radiated by these coherent sources. More-
over, as the amplitude of excitation is very low, the generated 
wave-packet is predominantly in the linear regime. Linearity of 
the response also implies that the NS-MFP approach is unable to 
simulate the influence of compact turbulent eddies. Therefore, this 
method cannot predict the noise generated by fine-scale turbu-
lence, which primarily influences sound radiation along side-line 
directions [65].

Fig. 17 plots the statistically stationary time-harmonic distur-
bance pressure p′ after the initial transient convects out of the 
domain, for Strouhal numbers of 0.1, 0.3, 0.5 and 1.0 in frames 
(a–d), respectively. Fig. 17(a) shows that disturbances correspond-
ing to St = 0.1 display acoustic radiation of lower intensity and the 
field is confined to the jet-centerline with a maximum amplitude 
occurring around x � 6.8, after which the amplitude decays. The 
St = 0.3 component has been discussed earlier in the context of 
Fig. 16 which reiterates the existence of the wave-packet compo-
nent in the core of the jet, and the acoustic radiation in the near 
acoustic field, predominantly between polar angles of 17◦ and 40◦ , 
with respect to the center of the nozzle exit plane. At the higher 
frequency of St = 0.5, these two features are also evident, but the 
wave-packet is smaller and achieves a maximum nearer the noz-
zle exit plane. The radiated noise is lower than for St = 0.3 and is 
spread over a larger range of polar angles (between 30◦ and 105◦
with respect to the center of the nozzle exit plane). This trend con-
tinues as the excitation frequency is increased to St = 1.0 as shown 
in Fig. 17(d).

The results from the NS-MFP procedure are now assessed by 
comparison with the LES database. Fig. 18 shows contours of dis-
turbance pressure p′ for the indicated Strouhal numbers obtained 
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Fig. 19. (a, b) Axial variation of the normalized amplitude of disturbance pressure p′ at the lip-line plotted for indicated Strouhal numbers for NS-MFP and time-accurate 
implicit LES, respectively.
from the actual LES of the turbulent Mach 1.3 jet. Note that no per-
turbations are explicitly imposed on the LES to induce breakdown. 
The shear layer exiting the nozzle is very unstable, and numerically 
introduced perturbations are sufficient. After the flow has reached 
a statistically stationary state, instantaneous fluctuations are ob-
tained by subtracting the time-averaged flow from the instanta-
neous state. The axisymmetric azimuthal mode, m = 0, of these 
instantaneous fluctuations are then extracted by azimuthally aver-
aging the perturbations. For m = 0 mode, the disturbance quan-
tities at each St are obtained by first performing a Fast Fourier 
Transform (FFT) of the time-series of the perturbation data at each 
grid-location and subsequently reconstructing the data by inverse 
FFT. As anticipated, Fig. 18 shows that the LES results also dis-
play strong directivity of the noise-radiation based on the Strouhal 
number. The qualitative similarity between NS-MFP and LES for 
the dominant St = 0.3 form is also evident, and is consistent with 
Mach-wave radiation of disturbances associated with the part of 
the underlying wave-packet which travels at a supersonic group-
velocity [64,65], as well as the wave-packet model of the super-
sonic jet-noise [8]. Note that sideline radiation does not promi-
nently appear in Fig. 18, since only the m = 0 mode has been 
filtered out of the LES solution. Although the comparison between 
dominant features of LES and NS-MFP is good, discrepancies are 
evident with respect to the lower, St = 0.1 component, possible 
reasons for which are discussed later.

Fig. 19 displays the axial variation of the normalized amplitude 
of disturbance pressure p′ at the lip-line for various Strouhal num-
bers. Since the amplitudes of the imposed perturbations are small, 
the disturbances evolve linearly. This indicates that the absolute 
values of the amplitude itself are not important, but the trends 
are. This is the motivation behind comparing the normalized am-
plitude of p′ for different Strouhal numbers. The amplitudes in 
Fig. 19(a) and (b) are normalized with respect to the corresponding 
maximum amplitude i.e. the amplitude at St = 0.5. For the corre-
sponding dominant components i.e., St= 0.3 and 0.5, agreement 
on the approximate locations of the peaks and the trend of the 
streamwise variation of the corresponding amplitude profiles are 
noted. The mismatch in amplitudes at the high (St = 1.0) frequency 
is consistent with the contour plots of Fig. 17 and is associated 
with fine-scale turbulence, not considered in the mean flow anal-
ysis. Overall, the results agree with the postulate that the mean 
flow perturbation yields insight into the dominant relatively large 
scale features arising from mean flow instabilities.
Fig. 20. Time variation of the imposed disturbance pressure at the exciter location 
for multi-periodic excitation case.

To further examine the performance of NS-MFP approach in 
predicting key elements of the acoustic field, we replace the 
monochromatic excitation with a multi-frequency input. The im-
posed localized disturbance pressure for this case is given as

p′(x, r, t) = αmσ(x, r)
N∑

n=1

R(ei(2πStnt+φn)) (29)

where Stn and φn are the excitation Strouhal number and phase 
difference of the nth frequency component, while αm = 10−4 is the 
excitation amplitude. The phase difference φn is chosen such that 
it varies randomly between 0 and 2π . Altogether, 191 different fre-
quencies are used linearly spanning the range 0.1 < St < 2.0. The 
corresponding time variation, mimicking white noise excitation, is 
shown plotted in Fig. 20.

To quantitatively compare the PSD obtained from NS-MFP and 
LES data-set, in Fig. 21 we plot normalized PSD of p′ at the in-
dicated polar angles (calculated with respect to the center of the 
nozzle exit plane and at a distance of 12D from it). The red solid-
lines in this figure correspond to the results obtained from NS-
MFP while the black dotted lines are from the m = 0 mode of 
the LES data-set. The PSD is normalized with respect to its cor-
responding maximum value. This figure shows good match for the 
fall of the spectra at moderately high Strouhal numbers, particu-
larly at θ = 40◦ and 60◦ . High-frequency spectra associated with 
fine scale turbulence are not reproducible by NS-MFP, since those 
sources are absent in the basic state. The performance degradation 
at lower Strouhal numbers for the axisymmetric mode is similar to 
that reported in Ref. [8]. White-noise excitation, as examined here, 
specifies that all the frequency-components have equal amplitudes, 
which does not represent a real-life scenario. The actual response 
will depend on the relative amplitude and radial variation of var-
ious frequency components in the incoming flow. This is a likely 
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Fig. 21. Normalized power spectral density of disturbance pressure p′ as obtained from NS-MFP and LES plotted for indicated polar angles (θ ). The polar angle θ is calculated 
with respect to the center of the nozzle exit plane at a distance of 12D from it. The red-lines correspond to the results obtained from NS-MFP while the black dotted lines 
are from the m = 0 mode of the LES data-set.

Fig. 22. Contours of (a) the base-flow obtained from RANS and (b) eddy-viscosity μt plotted in (x, r)-plane. (c) Axial variation of the centerline velocity and (d) radial 
variation of the horizontal velocity component plotted for base-flows corresponding to RANS and mean of LES.
reason for the mismatch of the axial variation of the amplitudes 
for the low-frequency components. In [66], LES data was projected 
onto the relevant families of instability waves by bi-orthogonal de-
composition to obtain appropriate inlet conditions (including the 
amplitude and shape functions) to educe near-field pressure fields 
for PSE analysis of Mach 1.5 supersonic jet. Therefore, we specu-
late that NS-MFP with a frequency dependent amplitude variation 
of excitation Strouhal numbers at the nozzle-exit, obtained from 
either LES or experiments might show a better match in terms of 
the spectral content at lower Strouhal numbers.

5.3. Use of RANS-based mean flow-field for Mach 1.3
perfectly-expanded jet

The above analysis used a basic state derived by time-averaging 
LES. A major advantage accrues if this basic state is obtained from 
RANS, since such solutions are far cheaper to obtain. In this sec-
tion, we examine the issues related to the use of RANS-derived 
basic states, most importantly on the treatment of eddy viscosity, 
again focusing on the Mach 1.3 case.

The (k − ε) turbulence model [67] with compressibility cor-
rection are used, as implemented in Ref. [68]. Fig. 22(a) shows 
the base-flow, with contours of the horizontal velocity component 
plotted from 0.05 to 1.0 at intervals of 0.0475. Comparing this 
RANS result with the corresponding LES field (Fig. 15(a)), there is 
overall similarity in the features, but the shear-layer grows more 
rapidly than that of the LES. Fig. 22(b) shows the eddy viscos-
ity field (μt ), which is mostly confined in the shear-layer and is 
maximum around x/D � 20. However, this does not correspond to 
high Reynolds stresses, since local gradients are relatively small. 
Fig. 22(c) compares the axial variation of the mean centerline ve-
locity for base-flows from LES and RANS – the latter has a slightly 
more elongated core region and a modestly higher subsequent de-
cay. Fig. 22(d) compares streamwise velocity versus radial distance 
at several streamwise locations (x/D = 5, 10, 15 and 20). Except 
for a small region close to the jet-centerline, both approaches dis-
play very good quantitative match.
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Fig. 23. Contours of time-harmonic disturbance pressure p′ corresponding to (a, b) St = 0.3 and (c, d) St = 1.0 plotted in the (x, r)-plane when RANS based base-flow is used 
for NS-MFP. Frames (a) and (c) corresponds to the cases where eddy-viscosity μt is included for NS-MFP while frames (b) and (d) are for the cases when μt is excluded for 
NS-MFP.
Although this would suggest that the NS-MFP results should be-
have similarly with both profiles, an important question arises on 
the treatment of eddy viscosity. We consider this in the context of 
the triple decomposition approach of Reynolds and Hussain [69]:

Q ( 
X, t) = Q ( 
X) + Q̃ ( 
X, εt) + Q ′′( 
X, t) (30)

where Q ( 
X) is the time-invariant mean flow, Q̃ ( 
X, εt) represent 
low-frequency large-scale coherent structures and Q ′′( 
X, t) denote 
incoherent/random fluctuations. While Q can be obtained from 
RANS-like approaches (the only difference being the presence of a 
term which specifies the extraction of energy from the mean flow 
to the organized structures), the evolution of Q̃ is given as:

∂ Q̃

∂t
= L(Q , Q̃ ) +N (Q , Q̃ ) − r̃ (31)

where L() and N () denote linear and non-linear operators, respec-
tively. The ith-component of the vector r̃ for an in compressible 
flow is given as:

r̃i = ∂

∂x j

(
〈u′

iu
′
j〉 − u′

iu
′
j

)
(32)

Here, 〈·〉 denotes phase-averaging, · denotes time-averaging and u′
i

represents fluctuating velocity components. Essentially, the term r̃
represents a sink signifying drain of energy from large-scale struc-
tures due to its interactions with incoherent fluctuations. Reynolds 
and Hussain [69] and several other researchers (e.g. Lifshitz et 
al. [70]) have pointed out the need to model this term correctly 
to capture the dynamics of the coherent structures so that the 
interactions between the high-frequency random fluctuations and 
low-frequency coherent structures are accounted for. Lifshitz et 
al. [70] also note that use of an inaccurate model for turbulence-
coherent interactions can lead to an erroneous prediction of the 
evolution and propagation of large-scale coherent structures. Note 
that though Eqs. (30)–(32) are valid for incompressible flows, sim-
ilar considerations hold for the compressible scenario. On the con-
trary, there also exists an alternative view-point that the effect of 
the inherent nonlinearities and turbulence-coherent interactions of 
the flow is implicitly incorporated in the mean turbulent flow-
field insofar as the characteristics of the large-scale structures are 
Fig. 24. Normalized amplitude of the St = 0.5 component plotted as a function of 
x/D at the lip-line. Here, RANS (1) and RANS (2) refer to the cases when eddy-
viscosity μt is included and excluded, respectively while using RANS based base-
flow for NS-MFP. The acronym MLES indicates NS-MFP analysis with mean of LES 
as the base-flow.

concerned [26]. Numerous efforts, including Refs. [21,71,26,72,73]
therefore, do not explicitly consider the eddy viscosity in the anal-
ysis. To address this issue, we present and compare two sets of 
simulation results in the present section while using base-flow ob-
tained from RANS for NS-MFP. In the first set, eddy-viscosity μt

terms are included and in the second set these are excluded – note 
that in the latter case, the term r̃ of Eq. (31) is zero.

The use of a RANS-derived mean flow as well as the effect of 
considering or suppressing the eddy viscosity is shown in Fig. 23, 
where contours of time-harmonic disturbance pressure p′ are plot-
ted at two excitation Strouhal numbers, St = 0.3 and 1.0. Frames 
(a) and (c) depict the case when eddy-viscosity, μt , is included for 
disturbance evolution by NS-MFP while frames (b) and (d) con-
sider disturbance propagation without the use of eddy viscosity. 
Clearly, when the eddy viscosity is suppressed, the results have 
similar qualitative form as those obtained from the LES-derived 
mean flow. The inclusion of eddy-viscosity lowers the amplitude 
of radiation without altering its directivity. This is consistent with 
the rationale that μt acts as a source of diffusion in the jet-shear 
layer (Fig. 22), which in turn damps the disturbance.
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Fig. 25. Normalized power spectral density (PSD) plotted as a function of Strouhal number St at indicated polar angles. Here, RANS (1) and RANS (2) refer to the cases when 
eddy-viscosity μt is included and excluded, respectively while using RANS-based base-flow for NS-MFP. The acronym MLES indicates NS-MFP analysis with mean of LES as 
the base-flow.
To further quantitatively study the effects of using a base-flow 
from RANS, Fig. 24 depicts the streamwise variation of the nor-
malized St = 0.5 amplitude for the three cases: RANS basic state 
with and without eddy viscosity as well as the LES basic state. The 
choice of St = 0.5 is dictated by prior results (Fig. 19) where the 
centerline variation of St= 0.5 component displays maximum am-
plitude among the four Strouhal numbers plotted. Here, we again 
plot and compare only the variation of the self-normalized ampli-
tude to highlight the spatial characteristics of the response field 
on the eddy-viscosity. For reference, maximum amplitudes for the 
streamwise variation of the St = 0.5 component along the cen-
terline are 0.015, 0.05 and 0.145, respectively for RANS-1 (when 
μt is included for NS-MFP with RANS-derived base-flow), RANS-2 
(when μt is excluded for NS-MFP with RANS-derived base-flow) 
and MLES (NS-MFP with LES-derived base-flow) cases respectively, 
and are used for respective normalizations shown in Fig. 24. Fig. 24
indicates that the RANS simulation without μt yields the similar 
general behavior as LES-based solution in terms of the streamwise 
location of the maximum amplitude. Including μt shifts that lo-
cation slightly upstream. The time-accurate LES of the Mach 1.3
jet displayed (Fig. 19), showed that for St = 0.5, the maximum 
amplitude of perturbations occur around x/D � 4. These results 
suggest that the inclusion of μt leads to slight distortion of the re-
sulting wave-packet but a large damping of the disturbance field. 
Therefore, it is not recommended in performing mean flow pertur-
bations, based on these observations.

Finally, the spectral response with the LES and the two RANS 
cases is shown in Fig. 25 for different polar angles. The normalized 
(by the maximum PSD) value is plotted against Strouhal numbers. 
Several observations are apparent. All three cases display almost 
identical value of the peak Strouhal number (the value of St cor-
responding to maximum PSD), whose location moves to the right 
on the St axis. At the shallow angle direction of interest, θ = 20◦ , 
results are almost identical for all the three cases and the rate of 
fall-off of the spectra at higher Strouhal numbers is also very sim-
ilar. In general however, results with the LES mean flow and the 
RANS case without eddy viscosity are closer to each other – reit-
erating that there is no advantage in this situation to consider the 
eddy viscosity in the perturbation.

6. Summary and conclusion

The Navier–Stokes equation based mean flow perturbation 
method (NS-MFP) to derive modal responses from the linearized 
Navier–Stokes equations has been first verified by considering lim-
iting cases of linear stability theory (LST), parabolized stability 
equation (PSE) or global stability theory (GST). Distinctions from 
other approaches which solve the disturbance form of the govern-
ing equations, including non-linear disturbance equations (NLDE), 
compact disturbance equation (CDE) and zero-average source term 
(ZAST) have been delineated and considerations regarding com-
putational expense are provided. The entropy layer perturbation 
growth as estimated by LST is then verified by successfully repro-
ducing linear inviscid stability results for three excitation frequen-
cies in terms of wavelength, amplification and phase speed. Round 
jets at Mach 0.9 and 1.3 are then considered to establish the NS-
MFP approach as a means to obtain elements of the near field. For 
the former, the NS-MFP results from the time-averaged basic state 
are compared with those from PSE. It is shown that a wave-packet 
structure arises for all excitations. The direct comparison with PSE 
results is performed with monochromatic and multi-frequency ex-
citation. The monochromatic perturbation at a Strouhal number 
of 0.3, initiated with mode-shape functions obtained from local 
linear stability analysis indicates similar results when the basic 
state streamwise variation is adjusted to match the approximations 
made to converge the PSE. For the Mach 1.3 case, the disturbance 
evolution with NS-MFP reproduces some of the key features of the 
LES, including directivity associated with large scale structures and 
variation of spectra for moderate Strouhal number and shallow 
angles. A study of a RANS-derived basic state also yields similar 
results as the LES-derived state if the eddy viscosity is neglected 
in the evolution of the perturbations.
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Appendix A. Connection of NS-MFP to traditional methods

A.1. Relation to local linear stability approach

To evaluate the local stability of any given profile, the eigen-
values of the corresponding Orr–Sommerfeld Equation (OSE) are ex-
amined as described in Refs. [38–40,74,75]. The Orr–Sommerfeld 
equation is derived for the linearized evolution of disturbances un-
der the assumption of parallel base-flow, i.e. it does not vary with 
respect to streamwise x- or spanwise/azimuthal coordinate z [38,
75]. The coordinate y may refer to wall-normal direction for wall-
bounded flows [74,75] or radial direction for axisymmetric flows 
such as round jets [39,51]. Under the parallel flow assumption, all 
the spatial derivatives of the base-flow Wb with respect to either 
x or z coordinate is zero and Eq. (16) transforms to

∂W ′

∂t
= A11b(Wb(y))

∂W ′

∂x
+ A12b(Wb(y))

∂W ′

∂ y

+ A13b(Wb(y))
∂W ′

∂z
+ W ′ ∂ B12b(Wb)

∂ y
+ C̃11b

∂2W ′

∂x2

+ C̃12b
∂2W ′

∂ y2
+ C̃13b

∂2W ′

∂z2
+ C̃14b

∂2W ′

∂x∂ y

+ C̃15b
∂2W ′

∂x∂z
+ C̃16b

∂2W ′

∂ y∂z
(A.1)

In Eq. (A.1), the matrices C̃··b are obtained from corresponding 
C··b matrix by neglecting x and z derivatives of the base-flow. The 
small perturbation may be expressed by its Fourier–Laplace trans-
form as

W ′(x, y, z, t)

=
(

1

2π

)3∫
ω

∫
β

∫
α

W̃ ′
L(α,β,ω; y)ei(αx+βz−ωt) dα dβ dω (A.2)

Inserting Eq. (A.2) in Eq. (A.1), the governing equation for W̃ ′
L be-

comes:

Ab W̃ ′
L + Bb

dW̃ ′
L(y)

dy
+ C̃12b

d2W̃ ′
L(y)

dy2
= 0 (A.3)

where

Ab =
(

iαA11b(y) + iβ A13b(y) + iω + dB12b(y)

dy

− α2C̃11b − β2C̃13b − αβ C̃15b

)
and

Bb =
(

A12b(y) + iαC̃14b + iβ C̃16b

)
This recovers the Orr–Sommerfeld equation used in local linear sta-
bility analysis. For the eigenvalue analysis, this equation is sub-
jected to appropriate homogeneous boundary conditions for W̃ ′

L .

A.2. Relation to parabolized stability equations (PSE)

In the PSE based approach [3,4], the base-flow Wb is considered 
to be slowly varying along the streamwise coordinate x. Therefore, 
Wb = Wb(X, y), where X = εx is a slow function of x, i.e., 0 <
ε 	 1. For a laminar wall bounded shear layer, ε = Rex

−1/2, where 
Rex = U∞x/ν is the Reynolds number based on local streamwise 
coordinate x. The disturbance W ′ can be decomposed into Fourier 
modes as a product of a slowly varying shape function and a 
rapidly varying wave-like part in the axial direction as

W ′(x, y, z, t) =
(

1

2π

)2∫
ω

∫
β

W̃ ′
P (β,ω; X, y)

exp

{
i

( x∫
x0

α(ξ)dξ + βz − ωt

)}
dβ dω (A.4)

It is to be pointed out that in Eq. (A.4), the complex wave-number 
α is a function of the slowly-varying streamwise coordinate X , i.e.
α = α(X). Substituting Eq. (A.4) in Eq. (16), the equation for W̃ ′

P
becomes

Ab W̃ ′
P + Bb

∂W̃ ′
P

∂ y
+ C̃12b

∂2W̃ ′
P

∂ y2
+ ε

[
Cb

∂W̃ ′
P

∂ X
+ W̃ ′

P
∂ B11b

∂ X

+ i
dα

dX
C11b W̃ ′

P + C14b
∂2W̃ ′

P

∂ X∂ y

]
+ε2C11b

∂2W̃ ′
P

∂ X2
= 0 (A.5)

where

Cb =
(

A11b + iα(X)C11b + iβC15b

)

Comparing Eq. (A.5) with Eq. (A.3), one can also alternatively ex-
press Eq. (A.5) up to O(ε) as

L0(W̃ ′
P ) + ε

[
Cb

∂W̃ ′
P

∂ X
+ W̃ ′

P
∂ B11b

∂ X
+ i

dα

dX
C11b W̃ ′

P

+ C14b
∂2W̃ ′

P

∂ X∂ y

]
= 0 (A.6)

where the operator L0 is given as

L0 =
(
Ab + Bb

∂

∂ y
+ C̃12b

∂2

∂ y2

)

Equation (A.6) is effectively the PSE for the corresponding flow. 
However, Eq. (A.6) alone is not sufficient to obtain an axial vari-
ation of the shape function W̃ ′

P and the complex wavenumber α. 
This is because the decomposition (A.4) does not resolve the ambi-
guity in the slow-axial variation which can be subsumed either in 
W̃ ′

P or α [3]. To address this issue additional integral constraints 
are generally used on the shape function W̃ ′

P [3].
Although the correspondence to PSE has been established, di-

rect comparisons with NS-MFP is constrained by practical consid-
erations. Stability constraints for the PSE marching require that the 
corresponding mesh has to be considerably coarser than NS-MFP, 
where the numerical technique is susceptible to serious issues 
with truncation error for such coarse meshes. Secondly, derivation 
of PSE assumes that the mean flow is a solution, while NS-MFP 
enforces this constraint explicitly. When the basic state is not a 
solution of the NS equations or the gradient of the base flow is 
not small enough, the results from the two approaches can differ 
as illustrated in Sec. 5.1. For such cases, one needs to take ad-
ditional measures to match predictions of disturbance evolution 
from these two approaches. A similar measure has been taken in 
Sec. 5.1, where the streamwise gradient of the base-flow is artifi-
cially smoothed so that amplitude variation of both cases can be 
favorably matched. Therefore, the use of PSE necessarily requires 
restraining assumptions which NS-MFP does not.
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A.3. Relation to global stability equation

If the imposed perturbations are small, the nonlinear terms 
in Eq. (3) may be neglected. For temporal instability analysis, 
W ′ = W ′

0eiωt where ω = ωr + iωi with ωr denoting the fre-
quency of oscillation and ωi denoting temporal growth rate of the 
disturbances. For Global Stability Analysis [41], ∂W ′/∂x = [P ]W ′ , 
∂W ′/∂ y = [R]W ′ and ∂W ′/∂z = [S]W ′ , where the matrices P , R
and S result from the spatial discretization schemes adopted to 
numerically evaluate the derivatives along x-, y- and z-directions, 
respectively. Upon substituting these in Eq. (16) and further sim-
plifying, the following eigenvalue problem is obtained in terms of 
complex ω as

ÂW ′
0 = iωW ′

0 (A.7)

This is the same as the Global Stability Equation as discussed in 
Ref. [1] and [41] and used to analyze the evolution of disturbances 
by Alizard and Robinet [76], Ehrenstein and Gallaire [77], Nichols 
and Lele [78] and other references contained therein.
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