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Near-field Pressure and Far-field Acoustic Response of 
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The near-field pressure of an unheated, Mach 0.9 jet with a ReD of 6.2x105 excited by plasma actuators has 
been investigated in order to evaluate the hydrodynamic and acoustic response of the jet, and the link 
between the two. Simultaneous acquisition of the far-field acoustic, the near-field pressure, and the actuation 
phase enables the use of phase-averaging of the pressure and acoustic signals and space-time correlations 
between the near field and the far field. By applying a filter in the frequency-wavenumber space, the near-
field pressure is decomposed into its constitutive hydrodynamic and acoustic components. Finally, wavelet 
analysis is utilized to assess the decomposed fields in the time domain. Both the hydrodynamic and acoustic 
response to forcing for StDF < 0.50 are found to follow a quasi-linear interaction model, in which the response 
to periodic forcing can be well predicted by a simple linear superposition of the impulsive response. 
Measurements of the pressure fluctuations and correlations to the far-field aft angle display an upstream 
shift in the structure saturation point as well as the dominant acoustic source region with increasing forcing 
frequency. Preliminary investigation in the time-domain found significantly lower temporal coherency of the 
acoustic response versus the hydrodynamic response; this difference was reduced by periodic forcing.  

Nomenclature 
a∞

 = Ambient speed of sound (m/s) 
kx = Axial wavenumber (rad/m)  
D = Nozzle exit diameter (m) 
Uj = Nozzle exit velocity (m/s) 
Uc =  Convective velocity of large-scale structures (m/s) 
f =   Spectral frequency (Hz) 
fF = Forcing frequency (Hz) 
r = Radial coordinate normal to the jet axis (m) 
R = Distance from near-field microphone to far-field microphone (m) 
ReD = Reynolds number based on D and nozzle exit conditions 
StDF = Forcing Strouhal number (fFD/Uj) 

I. Introduction 
Acoustic radiation generated by jet engines has long been a concern in the commercial and military aviation 

industries. The escalating number of flights, encroachment of urban and residential areas near airports, and 
tightening of environmental regulations have forced airports to introduce costly curfews, surcharges, flight path 
restrictions, and other measures to reduce noise levels in and around airports. Implementation of flow control 
strategies, either passive or active, is necessary in order to meet future aircraft noise regulations as well as the 
performance requirements. Many techniques to reduce the acoustic radiation from high-speed jets using either 
passive or active modifications to the nozzle have been investigated; however only a passive control, namely 
chevrons, has been implemented. All active control techniques on the other hand are in various development stages. 
This is because no consensus has yet formed in the aeroacoustic community over the precise mechanism by which 
subsonically convecting coherent structures generate sound, despite decades of work, and how to actively control it. 

The field of aeroacoustic research was pioneered by Lighthill, who showed that the established governing 
equations for fluid dynamics could be rearranged into an inhomogeneous wave equation in which a stress tensor 
(later referred to as Lighthill’s stress tensor) is the source1. As this acoustic analogy is exact, full knowledge of the 
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source term would yield an exact solution for the far-field acoustic radiation. However, for jets of practical interest a 
full description of the source term is not currently available, either experimentally or numerically, forcing 
researchers to use simplified models. Given the stochastic description of turbulent shear layers commonly held at the 
time, early work utilized random, uncorrelated eddies as a source model. While this source model, and the resulting 
Uj

8 power law it produced, found some success, it was shown2 to be deficient in explaining many aspects of jet 
noise, in particular the directivity of acoustic radiation in subsonic jets.  

Following the discovery of coherent structures in the form of instability waves in turbulent shear layers by 
Mollo-Christensen3 and later Crow & Champagne4, source models of increasing complexity based on coherent 
eddies have been suggested by researchers. Using conditional averaging, Moore5 was able to identify waves which 
were correlated over lengths greater than the local integral turbulence scale. These axially extended waveforms have 
been identified as having wavepacket characteristics6, which has led to the frequency-domain description of the 
large-scale structures. Spatial modulation of the wavepacket was shown to produce the superdirective character of 
far-field acoustic radiation observed in subsonic jets7. (In fact, this modulation is necessary for subsonically 
convecting structures to radiate to the far field6.) Similarly, temporal modulation of the wavepacket, in terms of 
amplitude and envelope, has been shown to improve agreement with numerical results in terms of directivity and 
amplitude8,9. Though significant advancements have been made towards the understanding of aeroacoustic sound 
generation, more work is necessary in order to fully characterize the salient characteristics of the turbulent eddies in 
regards to sound production. Control of the development of the shear layer of the jet, and hence the frequency 
content and phase of the coherent structures, may provide another avenue for investigation of the source mechanism 
and ultimately noise mitigation.  

The Gas Dynamics and Turbulence Laboratory (GDTL) has developed a class of plasma actuators, referred to as 
localized arc filament plasma actuators (LAFPAs), which can provide excitation signals of high amplitude and high 
frequency required for control of high Mach number and high Reynolds number jets10,11. GDTL has used these 
actuators for noise mitigation and flow control in Mach 0.912,13, Mach 1.314-16 and Mach 1.6517 unheated jets, and 
has recently expanded the use of LAFPAs to heated jets18. A review of the development of LAFPAs and their use in 
flow control and fluid phenomena research in high speed, high Reynolds number jets, both heated and unheated, can 
be found in Samimy et al.19.  

More recently, the diagnostic potential of LAFPAs for understanding jet flow phenomena has been explored. 
Excitation of the flow by LAFPAs results in a definitive spatio-temporal origin to which resulting phenomena can be 
referenced. The absolute temporal reference afforded by LAFPA excitation provides researchers the ability to 
investigate the growth, saturation, and decay of structures with high fidelity. Kearney-Fischer et al.20 investigated 
Mach wave radiation from heated, high Mach number jets using schlieren imaging phase-locked to LAFPAs, among 
other data acquisition techniques. Sinha et al.21 showed the quasi-linearity of large-scale structure interaction 
through phase-averaging of the near-field pressure in jets forced at low Strouhal numbers (StDF  <  0.5). 
Furthermore, the behavior of the seeded structures was found to be well predicted by linear parabolized stability 
theory. Alkandry et al.22 and Crawley et al.23 showed that the coherent large-scale structures produced by the forcing 
in turn generated coherent radiation to the far field at aft angles. By correlating the near-field pressure and the 
acoustic far-field, it was shown that the quasi-linear interactions of the structures did not affect the sound source 
statistics or source region. 

In the current work, the range of forcing Strouhal numbers has been increased to provide a more complete 
characterization of the interaction of the large-scale structures, and their effect on the far-field acoustic radiation. 
Additionally, the microphone array grid has been extended, which enables the decomposition of the near-field 
pressure into its hydrodynamic and acoustic constituents via a wavenumber-frequency filtering algorithm. Such a 
decomposition has been performed previously by other researchers24. Inspection of the individual components will 
yield further insight into the noise source region and ultimately the noise source mechanism or mechanisms. 

II. Experimental Methodology 
All experiments were conducted at the GDTL within the Aerospace Research Center at the Ohio State 

University. Compressed, dried, and filtered air is supplied to the facility from two cylindrical storage tanks with a 
total capacity of 43 m3 and maximum storage pressure of 16 MPa. The air may be routed through a storage heater 
(not used in this study), which allows the jet to operate with a stagnation temperature up to 500 °C, before 
expanding through a nozzle and exhausting horizontally into an anechoic chamber. Opposite the nozzle, a collector 
accumulates the jet and entrained air from the jet and exhausts it to the outdoors. A schematic of the anechoic 
chamber can be seen in Figure 1. The dimensions of the chamber are 6.20 m wide by 5.59 m long and 3.36 m tall, 
with internal wedge-tip to wedge-tip dimensions of 5.14 m by 4.48 m and 2.53 m, respectively. The design of the 
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chamber produces a cutoff frequency of 160 Hz, well below the frequencies of interest. A more detailed description 
of the GDTL anechoic chamber properties and validation has been given by Hahn25. 

 

Figure 1: Plan view of the anechoic chamber at the GDTL (dimensions in meters). 

For this study a converging, axisymmetric nozzle with exit diameter D of 25.4 mm (1 in.) was used. The internal 
contour of the nozzle was designed using a fifth order polynomial. The nozzle utilized a thick-lipped design in order 
to simplify the mounts for the extension, which housed the eight actuators used in this study. For the experiments 
reported in this paper, the jet was operated at a Mach number (ܯ) of 0.90, and with a total temperature ratio of 
unity. The Reynolds number based on the jet exit diameter was 6.2 × 10ହ; previous investigations using hot-wire 
anemometry have indicated that the initial shear layer is turbulent for this operating condition with momentum 
thickness ~0.09 mm and displacement thickness ~1.2 mm26. 

A. Localized Arc Filament Plasma Actuators 
Each LAFPA consists of a pair of tungsten pin electrodes, which are placed around the nozzle perimeter 1 mm 

upstream of the nozzle exit. Eight uniformly spaced actuators are used in this study. The center-to-center spacing 
between electrode pairs for each actuator is 4 mm. The electrodes are housed in a boron nitride extension attached to 
the end of the nozzle. A groove with dimensions of 1 mm wide and 0.5 mm deep is machined in the boron nitride, 
into which the electrode tips protrude, to provide a region of low momentum flow in order to stabilize the plasma 
arcs. It has been shown that the existence of this groove does not substantially alter the flow field or the control 
authority of the LAFPAs27. A more detailed description of LAFPA characteristics can be found in Utkin et al.11. 

The LAFPAs are energized by a multi-channel, high-voltage plasma power generator capable of simultaneously 
powering up to eight LAFPAs, which was designed and built in-house at the GDTL. In the second-generation power 
supply, each individual circuit consists of a switchable capacitor in line with a high voltage transformer; the arcing 
electrodes are connected to the secondary side of the coil. The capacitor is charged by a 100 V DC power supply 
when the first switch is closed and the second is opened; at the user-specified time the switches flip and it discharges 
through the coil. The switches are controlled by a 16-channel digital I/O card and National Instruments' Labview 
software, operated by a dedicated computer. The plasma generator provides independent control of the frequency, 
duty cycle/pulse width, and phase of each individual actuator (though not the amplitude). The pulse width was held 
constant at 7	ݏߤ, which was found to be the minimum pulse width at which the actuators consistently arced for all 
frequencies explored in this study27. The circuit is capable of operating at up to 100 kHz, though presently it is 
limited to 20 kHz due to thermal concerns. In order to improve our understanding of the linear and nonlinear 
dynamics of the large-scale structure interactions, the range of forcing Strouhal numbers has been expanded to 
include Strouhal numbers ranging from 0.02 to 0.50; an azimuthal mode of m = 0 was used in all cases. 

B. Data Acquisition 
Near-field and far-field pressure measurements were acquired simultaneously, using Brüel & Kjær ¼ inch 4939 

microphones. The signal from each microphone is band-pass filtered from 20 Hz to 100 kHz using a Brüel & Kjær 
Nexus 2690 conditioning amplifier, and recorded using National Instruments PXI-6133 A/D boards and LabView 
software. The microphones are calibrated using a Brüel & Kjær 114 dB, 1 kHz sine wave generator. The frequency 
response of the microphones is flat up to roughly 80 kHz, with the protective grid covers removed. Voltage signals 
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C. Wavenumber-Frequency Filtering 
The irrotational near field of the jet comprises both the hydrodynamic footprint of the large-scale structures in 

the mixing layer as well as acoustic radiation. As has been discussed by numerous other researchers, interpretation 
of the near-field pressure is hampered by our ignorance of what fluid phenomena are being measured. Recent 
experiments and analyses28,29 have shown that the total near field can be thought of as a linear superposition of these 
two constitutive fields. Therefore, a suitably designed linear filter can, in principle, extract the constitutive fields 
from the experimentally measured near field. In this work, this decomposition is obtained via a Fourier-based 
wavenumber-frequency filtering operation computed separately along the microphone array at each radial position. 
For the jet Mach number explored in this study all hydrodynamic components are expected to have a subsonic 
convection velocity aligned in the axial direction. On the other hand, acoustic fluctuations will appear either sonic or 
supersonic along the microphone array, depending on the source location. Hence, the decomposition can be 
accomplished by setting the filter cutoff based on axial wavenumber to ݇ = ߱ ܽஶ⁄   at each frequency and 
additional Fourier transforms in space are unnecessary24. Therefore, the transformed pressure field is computed as  ̂(݇௫, ߱) = ඵߨ12 ௪ܹ(ݔ, ,ݔ)(ݐ  ݐ݀ݔ݀(ఠ௧ିೣ௫)ି݁(ݐ

Note that the realities of the physical setup require the transform to actually be computed along the microphone 
array angle; from this wavenumber the axial wavenumber is then computed. The window function, ௪ܹ, is defined as 
a Tukey window in order to minimize truncation effects as well as distortions to the original signal after the 
subsequent inverse transforms. To ease in computation of the FFT, the experimental data is interpolated onto a 
regular grid of spacing 1D using a cubic spline. The subsonic and supersonic components are then computed 
separately as  (ݔ, (ݐ = 	ඵ ܹ(݇௫, ,௫݇)̂(߱ ߱)݁(ఠ௧ିೣ௫)݀݇௫݀߱ 

The component weight vector, ܹ ∈ [0,1], is set based on the phase velocity for each ݇௫, ߱ pair. Due to the 
discrete nature of the FFT being performed, an exponential decay about the sonic wavenumber is used, rather than a 
sharp cutoff. This reduces the effects of the windowing (specifically energy leakage) and decreases ‘ringing’ in the 
decomposed waveforms.  

III. Results 
Examination of the acoustic source dynamics must be preceded by a thorough dissection of the near-field 

response of the jet to forcing. This will be accomplished first by inspection of the evolution of the phase-averaged 
waveforms in space and the energy transfer from the near-field to the far-field via two-point correlations. 
Subsequently, the near-field pressure will be decomposed into its constitutive acoustic and hydrodynamic fields 
using the wavenumber-frequency filter. These decomposed fields will be investigated using phase-averaging and 
two-point correlations as well. Finally, details of the noise generation process will be explored using wavelet 
transforms. 

A. Near-field response to forcing 
1. Wave component 
The hydrodynamic response of the jet to forcing with plasma actuators has been studied in great detail. By 

decomposing the forced near-field pressure into a wave and residual component30, Sinha et al21 showed that each 
plasma pulse produces a coherent structure that is first amplified as it advects through the mixing layer and later 
saturates and decays. As the forcing frequency was reduced, the period between successive seeded structures 
became so great that they evolved independently. In this regime, the response of the jet generating a single coherent 
structure per actuation, dubbed the ‘impulse’ or fundamental response, could be studied. It was found that the 
forcing produced a strong compression wave closely followed by an expansion wave in the irrotational near-field. 
However, as the forcing frequency was increased, the period between structures is reduced to the point where they 
begin interacting with each other as they evolve downstream. It was shown21 that for a certain range of forcing 
frequencies (StDF ≤ 0.50 at x/D = 2, for example), the structures interact in a quasi-linear manner, insofar as their 
near-field pressure signatures are concerned. That is, the response of the jet could be well-predicted by a linear 
superposition of the fundamental response at that particular axial location, repeated at the proper frequency. As the 
structures are amplifying/decaying as they advect through the mixing layer, the frequency at which the structures 
begin interacting is dependent on the axial location. 
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qualitatively similar to those for the unforced jet). The coherent interactions produced by the periodic forcing are 
themselves producing, either directly or indirectly, relatively coherent acoustic radiation. The incoherent interactions 
in the impulse forced jet (the structures generated by forcing are of course interacting with the incoherent 
background turbulence) are producing incoherent radiation.  

This result may seem to contradict those shown previously, in which phase-averaging of the acoustic field 
showed a coherent response to the impulse forcing. It is improbable that the phase-averaged acoustic response to 
periodic forcing could be constructed as a superposition of impulse responses if the impulse response itself did not 
actually correspond to anything physical. Surely, this ‘fundamental’ response is not merely a false artifact of the 
averaging process. Likely, this phase-averaged response to impulse forcing represents the average response of the 
large-scale structure generated by the forcing to the interactions with structures over the entire range of (noise 
producing) scales present in the turbulent jet.  

IV. Conclusions 
The actuators used in this study provide a unique opportunity to investigate the dynamics of large-scale 

structures, the noise sources, and the radiated noise; the well-defined actuation phase enables phase-averaging of the 
pressure signal. Hence, time-resolved (more precisely phase-resolved) measurements over an entire region of the 
near-field may be acquired and correlated, providing additional insight into the noise sources than the conventional 
two-point correlations.  

Results showed that the forcing produces coherent, large-scale structures which grow, interact, decay, and 
generate radiation to the far field. When forcing at very low frequencies (impulse forcing), the structures evolve 
independently (from the other structures generated by forcing, though not the baseline turbulence) as they advect 
through the shear layer, representing the fundamental response of the jet to a perturbation. As the forcing frequency 
is raised, the generated structures begin to interact before passing through the end of the potential core. It was found 
that the waveform amplitude and shape in this forcing regime (0.15 ≤ StDF ≤ 0.50) could be well predicted by a 
linear superposition of the fundamental response of the jet, indicating that the structure dynamics were 
predominantly linear in nature. Two-point correlations between the near field and the far field at aft angles showed 
correlation regions matching the characteristics of convecting large-scale structures in the upstream measurement 
domain and pure acoustic radiation in the downstream. Aside from slight upstream shift in the apparent source 
region, the correlations showed little characteristic changes over the range of Strouhal numbers explored in this 
study, suggesting a consistent dominant source mechanism for the noise generation process between the 
independently and linearly-interacting structure evolution. 

By applying a digital filter to the near-field measurements along each microphone array position, the near-field 
pressure can be decomposed into its constitutive hydrodynamic and acoustic components based on the phase 
velocity for each frequency-wavenumber pair. Examination of the spectra for the individual components revealed 
cross-over between the spectral amplitudes at the critical frequency identified by previous researchers, as well as 
changes in the acoustic spectra in relation to the end of the potential core that match the previously observed features 
of the far-field spectra. Subsequent phase-averaging of the decomposed acoustic near-field, as well as two point 
correlations with the far field found that the forcing resulted in acoustic waves which had their origins in the 
upstream portion of the jet, before the end of the potential core. The apparent source region was observed to shift 
upstream with higher frequencies, in agreement with past results. As with the structures themselves, the acoustic 
response to periodic forcing could be well modeled as a linear superposition of the fundamental response; this 
strongly suggests a consistent source mechanism over the range of large-scale structures encountered in this study.  

Though phase-averaging and two-point correlations remain useful analysis tools for simplifying and 
understanding the dynamics of the turbulent jet, the temporal-averaging inherent in these techniques masks 
important features of the response of the jet. Preliminary investigation of the temporal coherency of the response of 
jet by way of wavelet analysis found highly intermittent acoustic events, over a broad range of scales, when the jet is 
forced in the impulse regime. Increasing the forcing frequency such that the structures began linearly interacting 
resulted in a regularization of the acoustic response. Further investigation into the intermittency of the acoustic 
response is clearly warranted.  
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