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The linear stability of high-Reynolds-number corrugated jets is investigated by
solving the compressible Rayleigh equation linearized about the time-averaged
flow field. A Floquet ansatz is used to account for periodicity of this base flow
in the azimuthal direction. The origin of multiple unstable solutions, which are
known to appear in these non-circular configurations, is traced through gradual
perturbations of a parametrized base-flow profile. It is shown that all unstable modes
are corrugated jet continuations of the classical Kelvin–Helmholtz modes of circular
jets, highlighting that the same instability mechanism, modified by corrugations,
leads to the growth of disturbances in such flows. It is found that under certain
conditions the eigenvalues may form saddles in the complex plane and display axis
switching in their eigenfunctions. A parametric study is also conducted to understand
how penetration and number of corrugations impact stability. The effect of these
geometric properties on growth rates and phase speeds of the multiple unstable
modes is explored, and the results provide guidelines for the development of nozzle
configurations that more effectively modify the Kelvin–Helmholtz instability.

Key words: jet noise, instability control, absolute/convective instability

1. Introduction
There is today a general acceptance that high-Reynolds-number jet turbulence

has large-scale organized flow structures that are intrinsically related to jet noise,
especially in the case of circular jets and their low-frequency aft-angle noise radiation
(Jordan & Colonius 2013; Cavalieri, Jordan & Lesshafft 2019). A number of studies
support the view that solutions from linear stability theory, with the turbulent mean
field used as a base flow, can capture the essential aspects of such coherent structures
underpinning sound radiation (Michalke 1970; Crighton & Gaster 1976; Michalke
1984; Tam & Burton 1984; Suzuki & Colonius 2006; Gudmundsson & Colonius
2011; Cavalieri et al. 2013; Jordan & Colonius 2013; Sinha et al. 2014). It is
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Spatial stability analysis of subsonic corrugated jets 767

therefore important to investigate the linear stability of non-circular jets, particularly
for nozzle shapes and passively or actively controlled configurations associated with
noise reduction (Zaman, Bridges & Huff 2011).

Early work on the stability of an elliptic vortex sheet can be traced back to
Crighton (1973). Morris (1988) later extended the analysis to finite-thickness shear
layers, with an analytic base-flow representation that allowed solutions to become
separable in elliptical coordinates. For most non-circular jets, however, the stability
equations are not separable, and further work was carried out on the development
of more general methods to account for arbitrary cross-sections (Koshigoe & Tubis
1986, 1987; Koshigoe et al. 1988; Tam & Thies 1993; Baty & Morris 1995). The
attention was, nonetheless, mostly restricted to elliptic, triangular and rectangular jets.

The interest in corrugated mean flows appears more recently. Kawahara et al.
(2003) investigated the temporal stability of a corrugated plane vortex sheet, with a
particular choice of conformal mapping, as a model for the instability of streaks in
turbulent boundary layers. Corrugations were found to be always stabilizing in the
case of free sheets, for both varicose and sinuous modes. The wall influence was
also addressed, given their main focus in boundary layers. The obtained solutions
were related to oblique Kelvin–Helmholtz waves, with eigenfunctions following local
intensifications of streamwise vorticity, aligned with geometric features of the sheet.
A spatial stability analysis, which is more in line with the jet problem, was carried
out by Ostrikov, Kopiev & Kasyanov (1998) with a sinusoidal form of corrugation.
The model was later extended to cylindrical coordinates by Kopiev et al. (2004), and
further investigated under subsonic conditions (Kopiev & Ostrikov 2012). From these
studies it was revealed that even small corrugation amplitudes, apart from promoting
a mixture of azimuthal wavenumbers in the solution, were able to couple m= 0 with
m = ±N (the other wavenumbers that are multiples of the N number of periodic
corrugations) at St < 0.1. This occurred only for N > 3. Since the most azimuthally
coherent turbulent structures are also the most efficient in driving the near-field
pressure at lower frequencies (Tinney & Jordan 2008; Cavalieri et al. 2013), it was
suggested that this mechanism could be significant for jet aeroacoustics.

More realistic situations were addressed by Gudmundsson & Colonius (2007),
with stability calculations performed using mean flows acquired by Bridges &
Brown (2004), consisting of velocity measurements in Mach 0.9 jets issuing from
circular and serrated nozzles; such nozzle serrations are called chevrons. Their
results were summarized by Sinha et al. (2016a). Most recent developments are
now more concerned with solutions that account for the mildly non-parallel base
flow by using a reformulation of the parabolized stability equations (PSE) for
non-axisymmetric configurations (Uzun et al. 2015; Sinha, Rajagopalan & Singla
2016b). The closeness of the stability results from the inviscid (Uzun et al. 2015)
and the viscous formulation (Sinha et al. 2016a) also reflects the minor role that
viscosity plays in the problem. The fair agreement between these solutions with
results from experiments and large eddy simulations supports the applicability of
linear stability theory to describe the behaviour of coherent turbulent structures that
exist in corrugated jets.

In the present study, our aim is to investigate the effect of base-flow changes on the
spatial stability of corrugated jets. The attention will be restricted to a locally parallel
framework, as we aim to explain some puzzling features that were observed in our
simultaneous prior studies (Lajus, Cavalieri & Deschamps 2015; Sinha & Colonius
2015). In particular, somewhat different trends were found in the two independent
locally parallel investigations of the same jet. These are hereby explained as arising
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(a) (b) (c)

(d) (e) (f)

FIGURE 1. Sample of investigated base-flow deformations corresponding to: (a) the
original mean flow (Bridges & Brown 2004), (b) zeroth-order approximation, (c) increased
penetration, (d) perturbation only applied to the shear-layer position, (e) perturbation only
applied to shear-layer thickness and ( f ) increased number of periodic lobes.

from the two distinct approaches pursued for modifying the base flow, and to the
focus on different axial stations (x/D= 0.5 and x/D= 2.0) of the jet. Here we propose
a more systematic approach to explore the effect of corrugations on jet stability, with
the introduction of a parametrized base flow that allows us to track solutions as a jet
is incrementally deformed from a circular to a corrugated shape. The stability results
are also expected to help in the development of better noise suppression devices,
highlighting the most relevant features of the base flow.

The paper is organized as follows. First, in § 2, the linear stability equations
and the numerical solution scheme are presented. The mean-flow parametrization
is discussed in § 3. In § 4, the origin of multiple unstable solutions is explained by
tracking eigenvalues as the parametrized base flow is gradually varied from circular to
corrugated. In § 5, we report growth rates and phase speeds for base-flow deformations
related to usual design parameters of corrugated nozzles, namely penetration and
number of corrugations. The influence of penetration is also investigated separately,
by varying only the shear-layer position and shear-layer thickness. A sample of such
base-flow deformations is shown in figure 1. In § 6 we discuss the limitations of our
theoretical exploration and how we expect that the obtained results could be relevant
to the radiated noise of corrugated jets. The main conclusions are presented in § 7.

2. Linear stability equations
2.1. Mathematical formulation

The usual approach of stability analysis involves the linearized version of non-
dimensional Euler or Navier–Stokes equations, under some simplifying assumptions
regarding the base flow (Sipp & Lebedev 2007; Taira et al. 2017). Such a linearized
and non-dimensional (by the jet diameter D, ambient sound speed a∞ and density ρ∞)
set of Euler equations for the disturbances q(x, t) = [ux, ur, uθ , ρ, p]T, in cylindrical
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Spatial stability analysis of subsonic corrugated jets 769

coordinates (x≡ (x, r, θ)), can be written schematically as

Lq̄{q(x, t)} = 0. (2.1)

Here Lq̄{·} is the linearized operator, which has the form

Lq̄{·} =
∂{·}

∂t
+A(q̄)

∂{·}

∂r
+B(q̄)

∂{·}

∂x
+C(q̄)

∂{·}

∂θ
+D(q̄){·}. (2.2)

The coefficients A through D are only dependent on the mean flow q̄(x),

q̄(x)= [ūx(r, θ), ūr(r, θ), ūθ(r, θ), ρ̄(r, θ), p̄(r, θ)]T, (2.3)

which in turn does not depend on time or axial coordinate (with the parallel-flow
assumption). It follows that the solutions for q(x, t) become separable in these
directions using normal modes

q(x, t)= q̃(r, θ)eiαxe−iωt, (2.4)

where α and ω are the axial wavenumber and circular frequency, respectively. In the
case of spatial stability formulation, the interest lies in finding (possibly complex)
solutions for α for a given real-valued ω. When considering strictly parallel (ūr = 0,
ūθ = 0) flows, algebraic manipulations to eliminate all variables other than pressure
p̃ lead to a generalized form of the compressible Rayleigh equation (Koshigoe et al.
1988; Gudmundsson & Colonius 2007)

1
r
∂

∂r

(
r
∂ p̃
∂r

)
+

1
r2

∂2p̃
∂θ 2
− f

∂ p̃
∂r
− g

1
r2

∂ p̃
∂θ
− hp̃= 0, (2.5)

where f , g and h are coefficients related to the mean flow

f (r, θ)=
2α

αūx −ω

∂ ūx

∂r
+

1
ρ̄

∂ρ̄

∂r
, (2.6)

g(r, θ)=
2α

αūx −ω

∂ ūx

∂θ
+

1
ρ̄

∂ρ̄

∂θ
, (2.7)

h(r, θ)= α2
−
ρ̄(αūx −ω)

2

γ p̄
. (2.8)

Previous derivations of this equation assumed implicitly that p̄= 1/γ , with γ being
the specific heat ratio, which may not be valid for supersonic conditions having shock
waves in the pressure mean flow. Thus, a more general formulation is presented herein,
where we invoke the ideal gas law for the mean flow, which, under the prevailing
non-dimensionalization, is given by p̄= (γ − 1/γ )ρ̄T̄ .

It is possible to apply a further treatment to this Rayleigh equation using the
base-flow periodicity in the azimuthal direction. This follows the Floquet theory
(Floquet 1883; Bender & Orszag 2013) of ordinary differential equations with periodic
coefficients, sometimes used to investigate secondary instability in boundary layers
(Herbert 1988). If we consider the base flow consisting of N identical corrugations
in θ

ūx(r, θ)= ūx(r, θ + 2π/N), (2.9)
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770 F. C. Lajús and others

p̃ can be written as

p̃(r, θ)= p̂(r, θ)eλθ , (2.10)

where p̂ has the same periodicity in θ as in (2.9) and the Floquet exponents (λ =
λr + iµ) could be in principle any complex number. In order to ensure azimuthal
periodicity of p̃, however, we are restricted to λr = 0 and integer values of µ. The
Rayleigh equation then becomes

1
r
∂

∂r

(
r
∂ p̂
∂r

)
+

1
r2

∂2p̂
∂θ 2
− f̂

∂ p̂
∂r
− ĝ

1
r2

∂ p̂
∂θ
− ĥp̂= 0, (2.11)

which has the same form as (2.5), with a slight change in the coefficients,

f̂ (r, θ)=
2α

αūx −ω

∂ ūx

∂r
+

1
ρ̄

∂ρ̄

∂r
, (2.12)

ĝ(r, θ)=
2α

αūx −ω

∂ ūx

∂θ
+

1
ρ̄

∂ρ̄

∂θ
− 2iµ, (2.13)

ĥ(r, θ)= α2
−
ρ̄(αūx −ω)

2

γ p̄
+
µ2

r2
+ i
(

2α
αūx −ω

∂ ūx

∂θ
+

1
ρ̄

∂ρ̄

∂θ

)
µ

r2
. (2.14)

The Floquet ansatz allows us to obtain, using (2.11), direct solutions of (2.5)
confined to only one of the N identical sectors of the base flow, thus reducing
the computational cost.

If the base flow is axisymmetric (i.e. if ∂/∂θ ≡ 0) equation (2.11) readily reduces to
its usual axisymmetric form, well known from studies in circular jets (Michalke 1984).
In this case, the Floquet exponents (µ) reduce to azimuthal wavenumbers (m), which
appear when the equation is separable. If the base flow is azimuthally inhomogeneous
(i.e. ∂/∂θ 6= 0), one can still decompose p̂ in a Fourier series owing to its 2π/N
periodicity

p̂(r, θ)=
∞∑

j=−∞

p̌j(r)e−ijNθ . (2.15)

Substitution in (2.10) yields

p̃(r, θ)=
∞∑

j=−∞

p̌j(r)ei(µ−jN)θ . (2.16)

The above Fourier decomposition shows the correspondence of each Floquet
coefficient µ with the central azimuthal wavenumber m in the flow solutions. For
instance, if we consider N = 6 lobes, the solution for µ= 0 comprises the azimuthal
wavenumbers m = (. . . , −18, −12, −6, 0, 6, 12, 18, . . .); for µ = 1 the solution is
formed by m = (. . . , −17, −11, −5, 1, 7, 13, 19, . . .), and so on. The entire set
of unique solutions can then be recovered when we reach µ = 3. This observation
is consistent with previous works (Kopiev et al. 2004; Gudmundsson 2010; Sinha
& Colonius 2015; Sinha et al. 2016a). Given that these solutions are formed by a
sum of azimuthal modes coupled by the base-flow periodicity, their classification
is no longer straightforward. What is usual, at least regarding most non-circular

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

57
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 II

T 
In

di
an

 In
st

itu
te

 o
f T

ec
hn

ol
og

y 
Bo

m
ba

y,
 o

n 
13

 A
ug

 2
01

9 
at

 1
1:

48
:5

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.573
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Spatial stability analysis of subsonic corrugated jets 771

jets studies, is resorting to the symmetries of the eigenfunction shape to classify the
solutions. Thus, centre and corner modes appear for rectangular jets (Tam & Thies
1993), modes that peak at flats or vertices are found for triangular configurations
(Koshigoe et al. 1989) and solutions with peaks at the flats or tips can be found in
corrugated sheets (Kawahara et al. 2003) and jets with chevrons (Gudmundsson &
Colonius 2007; Sinha et al. 2016a). In this work we will restrict our attention to
µ= 0, since, as the only case involving the axisymmetric mode, it is likely the most
relevant one for the peak jet noise (Michalke 1970; Cavalieri et al. 2012). We expect
the conclusions reached in this work to extend to other µ cases (Kopiev et al. 2004;
Sinha et al. 2016a).

In our present formulation, solutions are eigenfunctions p̂(r, θ) defined in an
azimuthal slice of the jet, that can be transformed back to the whole domain by
application of (2.10). Invoking the linear governing equations, velocity components
can be obtained as

ũr(r, θ)=−
1

iρ̄(αūx −ω)

∂ p̃
∂r
, (2.17)

ũθ(r, θ)=−
1

iρ̄(αūx −ω)

1
r
∂ p̃
∂θ
, (2.18)

ũx(r, θ)=−
(

1
r2

∂ ūx

∂θ

∂ p̃
∂θ
+
∂ ūx

∂r
∂ p̃
∂r
+ (αūx −ω)αp̃

)/
ρ̄(αūx −ω)

2, (2.19)

and density fluctuations are given by

ρ̃(r, θ)=−
ρ̄

i(αūx −ω)

(
iαũx +

1
r
∂(rũr)

∂r
+

1
r
∂ ũθ
∂θ

)
. (2.20)

2.2. Numerical solution
To obtain the direct solution for the spatial stability problem, equation (2.11) is
rearranged into a generalized eigenvalue problem that is cubic in eigenvalues α.
Collocation methods, with Chebyshev polynomials along the radius and trigonometric
polynomials in the azimuth (Trefethen 2000; Boyd 2001), lead to a discrete version
of the problem

(F 3α
3
+ F 2α

2
+ F 1α + F 0)p̂= 0, (2.21)

where F j are matrices and p̂ are values at collocation points. A standard linear
generalized eigenvalue problem is obtained rearranging the system, 0 I 0

0 0 I
−F 0 −F 1 −F 2

 p̂
αp̂
α2p̂

= α
I 0 0

0 I 0
0 0 F 3

 p̂
αp̂
α2p̂

 . (2.22)

The boundary conditions (in the r direction) normally consider asymptotic solutions
at r→∞ (with Bessel or Hankel equations), which allow numerical solutions via
shooting procedures (Michalke 1964; Morris & Bhat 1995; Gudmundsson 2010).
However, here we employ a Dirichlet boundary condition at a large but finite
distance from the centreline, rM (Batchelor & Gill 1962). The Chebyshev polynomials
are mapped from ξ space, [−1, 1], to (0, rM], where most collocation points can
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772 F. C. Lajús and others

be concentrated within the shear-layer region by a two-parameter transformation
(Lesshafft & Huerre 2007),

ξ(r)=
rc

r
−

√
1+

r2
c

4r2
+

2rc

rM
−

rc

r
, (2.23)

r(ξ)= rc
1− ξ

1− ξ 2 + 2r/rM
, (2.24)

so that approximately half of the points r(ξ) are placed in the interval 0 < r 6 rc,
concentrated around r = rc/2. Values of rc = 0.9 and rM = 50 have been used in
all calculations. Close to the centreline, r = 10−6, we apply Neumann boundary
conditions.

Periodic boundary conditions (in the θ direction) are inherited by the application
of evenly spaced periodic grids (Trefethen 2000). These are simply scaled to the
[0, 2π/N] domain. Every calculation throughout this work is repeated with a coarser
grid, in order to check discretization convergence. We verify that approximately
240 collocation points in the radial direction and 20 points along the azimuthal
slice are sufficient to obtain converged numerical solutions for Strouhal numbers,
St=ωD/(2πUj), up to 3.0, with Uj the jet exit velocity. A validation of the numerical
approach is carried out by comparisons with Morris (1988) and Gudmundsson (2010),
who have studied elliptic and serrated jets, respectively. Results are shown in figure 2
and figure 3 where we see a close match in growth rates and phase speeds of the
most unstable mode found for each configuration.

3. Mean-flow parametrization
The streamwise mean velocity fields of two corrugated subsonic jets are considered.

The first database consists of velocity measurements obtained from stereoscopic
particle image velocimetry (PIV) by Bridges & Brown (2004) in the Small Hot Jet
Acoustic Rig (SHJAR) at NASA Glenn Research Center. These data correspond to
mean velocity fields of a circular jet (nozzle SMC000) and a jet issuing from their
SMC001 nozzle with N = 6 chevrons. The nozzle exit diameter for the circular
nozzle was 50.8 mm, whereas an equivalent diameter of 52.2 mm was reported for
the SMC001 case using mass flow rate measurements. Both jets were operating at
the same condition: M∞ = Uj/a∞ = 0.9, Tj/T∞ = 0.85, Rej = 16× 105. Here, Tj and
T∞ are respectively the nozzle exit and ambient temperatures, and Rej is the jet exit
Reynolds number, based on jet equivalent diameter.

The second database is of a jet with steady fluidic actuation reported by Maury
et al. (2011), performed in the anechoic jet-noise facility ‘Bruit et Vent’ at the
Centre d’Etudes Aérodynamiques et Thermiques (CEAT) in Poitiers. The round
nozzle, with 80 mm diameter, operated at M∞= 0.42 and Rej= 7.4× 105, and N = 8
converging pairs of micro-jets (each with diameter 2.1 mm) were applied around the
circumference of the nozzle exit.

We limit the linear stability analysis to stations within the potential core, as these
are expected to be dominated by modal solutions; non-modal behaviour was found
to be more relevant further downstream (Tissot et al. 2017). In fact, our subsequent
results are going to show that the stability effects of azimuthal corrugation variation
are only discernible in a region very near the nozzle exit. Thus, we focus our attention
on three near-nozzle axial stations where experimental mean-flow data are available,
viz. x/D = 0.5, 1.0 and 2.0 for the NASA data and x/D = 1.0, 1.5 and 2.0 for the
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FIGURE 2. Growth rate (a,c) and phase velocity (b,d) comparisons, for ce0 (a,b) and
se1 (c,d) solutions, from A/B= 1.001 (solid line) and 2.0 (dashed) elliptic profiles given
by Morris (1988). Here, ce0 and se1 stand for cosine elliptic and sine elliptic solutions
related to the Mathieu functions, and A/B is the ratio between the major and minor
axes in the considered elliptic mean velocity profile. This notation is the same as that
used by Morris (1988). Circles indicate the present results, and lines show results by
Morris (1988).
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cph
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FIGURE 3. Comparisons with growth rates (a) and phase velocities (b), at x/D= 2.0, for
the SMC000 nozzle (dashed) and SMC001 nozzle (solid). Present numerical results are
represented by the circles, and lines show results by Gudmundsson (2010).

Poitiers data. Prior to fitting the mean-flow field for the purpose of parametrization,
its azimuthal periodicity is averaged over the N equivalent azimuthal sectors. The
hyperbolic tangent profile (Profile II) of Michalke (1984)

ūx(r, θ)=
M∞

2

{
1+ tanh

[
0.5

R
Θ

(
R
r
−

r
R

)]}
, (3.1)

is fitted to the mean axial velocity field along the radial direction at several azimuthal
angles, thereby determining the two characteristic length scales. These two scales are:
the radial position of the shear layer R (where ūx(R)=M∞/2) and the mixing-layer
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(a) (b)

FIGURE 4. (Colour online) Comparison between original mean flows (red) and the
extended hyperbolic tangent formulation (black), for the jet with chevrons (a) and with
micro-jets (b).

thickness Θ . A second fit along azimuth was performed for these two identified
parameters, by expanding them in respective cosine series.

R(θ)= R0

(
1+

∞∑
j=1

Aj cos( jNθ)

)
, (3.2)

Θ(θ)=Θ0

(
1+

∞∑
j=1

Bj cos( jNθ)

)
. (3.3)

The Crocco–Busemann relation is used to determine the mean temperature and density
fields from these velocity profiles (Michalke 1984).

In this form, we note that a zeroth-order approximation (only considering R0
and Θ0) is a circular jet. It should be clear that these zeroth-order approximations are
not equivalent to round nozzles, but instead correspond to an azimuthally-averaged
corrugated jet. We will explore this feature later in our analysis, in order to distinguish
between the influence of shear-layer thickness and azimuthal inhomogeneities, similar
to what is done by Boujo, Fani & Gallaire (2015) and Marant & Cossu (2018) for
the stability of shear layers with streaks. The inclusion of Aj and Bj terms, which
can be seen as fractions multiplying R0 and Θ0, introduces azimuthal variations with
2π/N periodicity.

The goodness of fit for the hyperbolic tangent profile is verified through R-square
statistics, the worst cases being 0.9911 for the SMC001, and 0.9942 for the jet
with micro-jets. For the cosine series, respectively for the jets with chevrons and
micro-jets, the worst cases of R-square fits are 0.9438 and 0.9980 for R and 0.9488
and 0.9986 for Θ . Comparative results are shown in figure 4, highlighting that the
proposed functional form represents fairly the velocity profiles of both jets. The fitting
coefficients are presented in table 1. Values for the circular SMC000 and the circular
counterpart of the jet with micro-jets are also included.

Regarding the fitting coefficients for the SMC001 jet, we can observe in table 1
the pronounced increase in Θ0 that this jet displays along the axial direction,
when compared to the SMC000 case. This suggests that, (on average) chevrons
are stabilizing the jet by the increase of mixing-layer thickness, which is known to
decrease growth rates (Michalke 1984); however, the effect of azimuthal inhomogeneities
should also be considered. For the sections near the nozzle, comparatively more terms
(Aj and Bj) are found necessary to properly characterize the more localized corrugated
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x/D R0 Θ0 A1 A2 A3 B1 B2 B3

0.5 0.547 0.048 0.16 0.07 0.04 0.73 0.39 0.19
Bridges & Brown (2004) 1.0 0.563 0.097 0.21 0.08 0.03 0.68 0.23 —
SMC001 (N = 6) 2.0 0.584 0.208 0.24 0.05 — 0.47 — —

0.5 0.503 0.027 — — — — — —
Bridges & Brown (2004) 1.0 0.513 0.045 — — — — — —
SMC000 2.0 0.533 0.093 — — — — — —

1.0 0.631 0.138 0.10 — — 0.17 0.11 0.02
Maury et al. (2011) 1.5 0.635 0.182 0.13 — — 0.08 0.10 —
micro-jets (N = 8) 2.0 0.639 0.221 0.13 — — 0.01 0.07 —

1.0 0.504 0.067 — — — — — —
Maury et al. (2011) 1.5 0.507 0.102 — — — — — —
micro-jets turned off 2.0 0.508 0.132 — — — — — —

TABLE 1. Obtained fit coefficients of (3.2) and (3.3).

structure of the jet profile. In this case, three terms were verified to be sufficient at
x/D = 0.5, with smaller contributions from higher-order cosine terms (values below
1 % are disregarded). Further downstream, fewer terms need be considered, as the
velocity profiles have smaller azimuthal variation. By comparing the leading-order
coefficients, A1 and B1, we see that large azimuthal variations occur in the shear-layer
thickness Θ (73 % at x/D = 0.5 and 47 % at x/D = 2.0), whereas the shear-layer
position R has azimuthal oscillations of approximately 20 % consistently across the
axial stations considered.

The action of steady micro-jet injection is also observed to mostly increase Θ0 of
the mean-flow field when compared to its circular counterpart, which also reinforces
the idea that micro-jets similarly stabilize the jet by the increase of shear-layer
thickness. In this case, however, the increase is followed by smaller Aj and Bj

amplitudes (approximately 10 %), when compared to the SMC001. Further discussion
on the corrugated mean flows from jets having chevrons or micro-jets can be found
in Alkislar, Krothapalli & Butler (2007).

4. Multiple unstable modes of corrugated jets

The base-flow parametrization of (3.1)–(3.3) is able to fit the mean-flow fields of
both corrugated jets. In this work, we perform the analysis primarily by gradually
varying the SMC001 chevron jet’s corrugation fit coefficients starting from zero
(circular jet). These display greater amplitudes (corresponding to deeper corrugations)
than their counterparts in the jet actuated by micro-jets, as shown in table 1. Thus, the
results and conclusions from the chevron jet can be readily extended to the micro-jet
actuated jet if one considers a flow with lower corrugation amplitudes. Moreover,
given that the two jets have different Mach numbers, compressibility effects may
be expected to be relevant. However, these differences are found to mostly follow
the trends reported by Michalke (1984), i.e. growth rates and phase speeds of low
St-modes are reduced at the higher Mach number. Specific results for the micro-jet
actuated flow have been presented by Lajus et al. (2015).
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FIGURE 5. (Colour online) Eigenspectra of SMC001 at (a) x/D = 0.5, (b) x/D = 1.0
and (c) x/D= 2.0, for St = 0.35. Pressure eigenfunctions are shown by their normalized
absolute values, and are ordered by their magnitude of −αi. Thick red curves represent
the base-flow axial velocity contour at ūx = 0.5.

4.1. Classification of modes based on continuation from circular jets

We first explore solutions of the linear stability problem for corrugated jets based on
the analysis of the jet issuing from the SMC001 nozzle. This choice also allows direct
comparison with corresponding results presented by Gudmundsson & Colonius (2007)
and Sinha et al. (2016a). Growth rates αi and phase speeds cph obtained for µ = 0
at St= 0.35 are presented in figure 5. The continuous branch of critical-layer modes,
with αi= 0, which results from a singularity of the Rayleigh equation (2.11) whenever
ω=αūx (Case 1960), can be seen along the real axis. However, since the behaviour of
large-scale turbulent structures near the nozzle is expected to be dominated by unstable
discrete modes, we will focus on these in what follows.

Multiple unstable solutions (discrete) are found near the nozzle region (x/D= 0.5
and 1.0), but only one unstable mode is obtained further downstream (x/D = 2.0).
These are mostly in good agreement with previous studies (Gudmundsson &
Colonius 2011; Sinha et al. 2016a), especially modes (ii) and (iii). The associated
eigenfunctions are also consistent with the results of the cited works, with some
peaking at the lobes of the base flow and others at the flats. Mode (i) that appears
at the first two stations are not reported by previous studies.

Our goal is to trace the origin of these multiple modes, by exploring the features
of our base-flow parametrization. By continuously varying the fitted Aj and Bj

(simultaneously) with a perturbation factor (P) between 0 and 1.3, such that

R(θ)= R0

(
1+ P

∞∑
j=1

Aj cos( jNθ)

)
, (4.1)
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Θ(θ)=Θ0

(
1+ P

∞∑
j=1

Bj cos( jNθ)

)
, (4.2)

we can track the solution behaviour as a continuation of corresponding ones for
circular jets. Note that P = 1 stands for the original base flow of the SMC001 jet
with chevrons, but smaller P values are also found to approximate the base-flow
coefficients of the jet with micro-jets (from table 1). Thus, P can be seen as a
metric for corrugation amplitude, which can be continuously varied from a circular
(azimuthally averaged) jet to increased corrugated profiles. Results are shown in
figure 6, for x/D= 0.5, 1.0 and 2.0.

The starting points are solutions obtained for P=0. For such circular jets, azimuthal
wavenumbers m = 0 and m = ±6 possess unstable Kelvin–Helmholtz modes for
sufficiently thin shear layers. Such modes are contained in the µ= 0 Floquet ansatz,
and are represented in figure 6 with open circles; notice that m = −6 and 6 have
the same eigenvalue (in x/D = 0.5), and are thus degenerate eigenfunctions. As
small azimuthal inhomogeneities are included (P� 1), we verify the break up of the
m=±6 degeneracy. Such behaviour was observed analytically by Kopiev et al. (2004),
and we expect it to be a common feature in both corrugated jets considered here.
Since eigenfunctions for P > 0 can no longer be associated with a single azimuthal
wavenumber m, we identify these solutions according to the azimuthal mode from
which they emerge (now labelled as m̃) and whether the (pressure) eigenfunction has
peaks aligned with the lobes (referred to with superscript ‘c’) or flats (superscript
‘s’), making reference to their cosinusoidal and sinusoidal character (Morris & Miller
1984; Koshigoe & Tubis 1986). Thus the m̃= 0 mode refers to the continuation of the
axisymmetric mode of circular jets (P = 0) for corrugated ones (P > 0), and m̃ = 6c

and 6s refer to the continuations of the m=±6 modes. The solutions for m=±6 are
not visible at x/D= 1.0 and 2.0 for P= 0, but their continuations become apparent
after some level of perturbation (P = 0.5 and P = 1.1, respectively), forming similar
paths to those found in x/D= 0.5. We thus conclude that these modes are stable for
P = 0 at these stations, and cannot be found as solutions of the Rayleigh equation,
unless a deformation of the integration contour is taken to avoid the critical-layer
singularity (Tam & Morris 1980; Boyd 1985).

These results highlight that the multiple unstable modes obtained for non-circular
jets, seen in previous studies (Gudmundsson & Colonius 2007; Sinha et al. 2016a),
are all related to the Kelvin–Helmholtz mechanism, as they can be tracked from the
standard Kelvin–Helmholtz modes of circular jets. The multiple unstable modes are
simple continuations of circular jet modes, keeping in mind that all eigenfunctions that
are consistent with the Floquet ansatz for a jet with N corrugations should be tracked.
For the present base flow, with N = 6 corrugations, three unstable modes were seen
to be continuations of m= 0 and ±6 Kelvin–Helmholtz modes of the corresponding
azimuthally averaged jet.

In general, these gradual base-flow deformations are observed to be more significant
at stations x/D= 0.5 and 1.0, promoting higher growth rates for modes m̃= 6s, but
with minor variations of their phase velocity. Conversely, modes m̃= 6c are found to
increase their phase speeds for higher P, but without much variation in growth rates.
Solutions for m̃= 0 are found to become more unstable with increasing P, presenting
minor variations in their phase velocities. The exceptions here are small values of P
at x/D= 1.0 and the results further downstream, at x/D= 2.0

Regarding the eigenfunction shape, an increase in the base-flow deformation
has a significant effect on the eigenfunctions for the m̃ = 0 and m̃ = 6c modes,
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FIGURE 6. (Colour online) Eigensolution branches traced with gradual increase of
azimuthal corrugation parameter P of (4.1)–(4.2) at x/D= 0.5 (a), 1.0 (b) and 2.0 (c), for
St = 0.35. Open circles are results for P = 0, whereas end dots are results for P = 1.3.
Arrows indicate directions of increasing P. Presentation of eigenfunctions follows the
scheme of figure 5.
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FIGURE 7. Reconstructed pressure disturbances for (a,d,g) m̃ = 0, (b,e,h) m̃ = 6c and
(c, f,i) m̃= 6s. Representative positive and negative of the real part of the pressure (±0.5,
normalized values). Results obtained for P= 0.3 (a–c), 0.6 (d–f ) and 1.3 (g–i). The base
flow is indicated by the ūx = 0.5 contour.

with the former becoming less axisymmetric and the latter becoming more so.
Such redistribution of azimuthal coherence suggests that, in principle, both m̃ = 0
and m̃ = Nc should be considered as acoustically relevant structures in corrugated
jet profiles. The streamwise evolution of the pressure fluctuations is illustrated in
figure 7, from solutions obtained at x/D = 0.5 applied to (2.4). We have presented
the magnitudes of the pressure eigenfunction in all other figures; here we depict
isocontours of their real part to better represent the wavepacket shape in the
near-nozzle region.

Another feature observed in these solutions is that at x/D= 0.5, the modes forming
the m̃= 0 branch peak at the base-flow flats, while those for m̃= 6c appear to evolve
from something similar to the original m=±6 shape, at small P, to modes that are
more axisymmetric with peaks occurring at the base-flow peaks. Solutions at x/D=
2.0 behave in the opposite manner, with the increase of P modifying the eigenfunction
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FIGURE 8. (Colour online) Saddles for perturbed profiles at (a) x/D= 0.5 and (b) x/D=
1.0, formed by m̃= 0 (blue) and m̃= 6c (red) defined at P� 1. Arrows indicate direction
of increased P, with equally spaced steps of 0.1, from 0 to 1.3. For fixed P, the grey
lines show the trajectory of the modes as frequency is increased from St= 0.15 to 0.35
(from bottom to top).

shape of m̃ = 0 to those with peaks aligned with the base-flow peaks. This will be
further investigated in what follows.

4.2. Axis switching of eigenfunctions of unstable modes
The complex behaviour of the eigenfunctions for the m̃= 0 and m̃= 6c modes can be
understood as an axis switching that occurs when these two modes form a saddle in
the complex α plane as the (real) frequency is varied. Figure 8 shows that at both
x/D = 0.5 and x/D = 1.0, a saddle is formed and the two modes exchange their
identities at the saddle. This is similar to what has been found as the temperature
ratio in a round jet is varied (Michalke 1970), which was later found to be related to
the occurrence of absolute instability in hot jets (Huerre & Monkewitz 1985). In that
case, however, the saddle is formed by two solutions whose group velocities are in the
opposite directions, which is not expected to be the case here. Indeed, by application
of the Briggs criterion (Briggs 1964; Huerre et al. 2000), we confirmed that all these
discrete unstable solutions comprise downstream propagating waves, and thus are not
related to absolute instability. Saddles formed by two downstream travelling waves
also appear in high supersonic cold jets, where the Kelvin–Helmholtz mode blends
itself with supersonic instability wave modes (Tam & Hu 1989).

A peculiarity related to eigenfunctions of the two saddle modes is shown in figure 9.
At very low St values, m̃= 0 closely follows the base-flow shape, while m̃= 6c tends
to present peaks at the flats. For situations where P< 1.1 in x/D= 0.5 (and P< 1.0
in x/D = 1.0), the increase of St is followed by the switch of behaviour between
these two solutions, which alters the azimuthal location of their peaks; this can be
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FIGURE 9. (Colour online) Axis switching of solutions near the saddle point in x/D= 0.5,
for m̃= 6c (a) and m̃= 0 (b). Branches of P= 0.7 (red) and 1.3 (blue) are emphasized,
showing the eigenfunctions for St= 0.15, 0.2, 0.25 and 0.3 from bottom to top.

thought of an axis switching of eigenfunctions. For higher P this is not observed, but
then an exchange of the solutions trajectories occurs, with m̃= 6c taking similar paths
to previous m̃ = 0 solutions, and vice versa. One should observe that the gradual
perturbations at a fixed St= 0.35, shown in figure 6, are therefore not restricted to a
single mode continuation along m̃= 0 and m̃= 6c branches. Our mode classification
thus follows the azimuthal mode continuation found at lower St. Please note the
supplemental material that is made available in the online version of the paper at
https://doi.org/10.1017/jfm.2019.573.

5. Stability implications of mean-flow changes

Some systematic base-flow changes are now considered, in order to quantify the
resulting growth rates and phase speeds of m̃= 0 and 6c. We restricted our attention to
these two modes because the relatively axisymmetric structure of their eigenfunctions
would presumably lead to a more efficient radiation of sound (Jordan & Colonius
2013). Additionally, we focus on those aspects of the base flow that would reduce
either the growth rate and/or phase speed as this would tend to reduce their radiation
efficiency (Kœnig et al. 2016). For later comparison, results for the (circular) zeroth-
order approximations at x/D = 0.5 and 2.0 are first shown separately in figure 10,
where the m= 0 and m=±6 modes are highlighted.

5.1. Azimuthal inhomogeneities of R and Θ

The variation in growth rate and phase speed as P is varied are shown in figure 11.
Recall that varying P alters the magnitude of the azimuthal inhomogeneity, and
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FIGURE 10. (Colour online) Growth rates (top) and phase speeds (bottom) obtained
for the zeroth-order approximation at (a) x/D = 0.5 and (b) x/D = 2.0. Blue lines
highlight m= 0 (solid) and m=±6 (dashed). Others are coloured by increasing azimuthal
wavenumber (black m=±1, lightest grey m=±8)

thus, for instance, mimics the effect of chevron penetration (Bridges & Brown
2004); however, one should bear in mind that increasing penetration is, in a real jet,
invariably accompanied by higher azimuthally averaged shear-layer thickness Θ0. In
the present analysis we are able to isolate these two effects. We concentrate on the
azimuthal variation aspect of penetration only, as the effect of increasing shear-layer
thickness is well understood to be stabilizing (Michalke 1984).

In the near-nozzle region (refer to figure 11a), we notice that the growth rates
and the range of unstable frequencies change more significantly for m̃ = 0, and that
increasing P is destabilizing for this mode; for m̃ = 6c there are only mild changes
in growth rate induced by azimuthal inhomogeneities in the base flow. The tendency
is mostly monotonic with P, until an exchange of m̃ = 0 and m̃ = 6c (in P > 1.1)
due to a saddle around St ≈ 0.2. On the other hand, regarding phase speeds, m̃= 6c

is observed to be the most affected mode. Dominant unstable solutions (those with
highest growth rate) are found to closely follow phase velocities obtained from the
zeroth-order approximations. Downstream (see figure 11b), growth rates of mode
m̃= 0 are slightly reduced, which is opposite to what is seen near the nozzle. Phase
speeds are nearly insensitive to the increase of P.

Further investigation is carried out to ascertain the effect of the applied azimuthal
inhomogeneities in a more decoupled manner. By imposing Bj = 0 in (3.3), the
perturbations are isolated in the R term. Conversely, by enforcing Aj = 0, azimuthal
variations are confined to Θ . The results for the individual influence of R and Θ are
shown in figures 12 and 13, respectively.

Interestingly, the R effect seems to control the change in phase speed observed in
the combined R/Θ effect, but with little change in growth rate, whereas Θ variation
has the opposite effect. In both cases the changes are pronounced at x/D= 0.5, but
by x/D = 2.0 the phase speeds and growth rates are again insensitive to R and Θ

modulations applied independently, as they were when applied in unison.
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FIGURE 11. (Colour online) Top: base-flow deformation, iso-lines for M = 0.9 and 0.1.
Growth rates and phase speeds for perturbed P (a) near the nozzle, x/D = 0.5 and
(b) downstream, x/D = 2.0. Solid lines are m̃ = 0 and dashed m̃ = 6c, coloured by
increasing P within the range: 0.25, 0.5, 0.75, 1.0 and 1.1 (lightest grey P= 0.25, black
P= 1.1). Zeroth-order results are solid blue for m= 0 and dashed blue for m=±6.

5.2. Flow periodicity N
Similar to penetration, the effect of increasing the number of corrugations in real
jets may be accompanied by a total increase of the azimuthally averaged mixing-
layer thickness Θ0 (Bridges & Brown 2004). Again, our focus is restricted to the
azimuthal variations. In order to investigate the influence of base-flow periodicity, all
fit results for the SMC001 nozzle from table 1 are maintained fixed, while the number
of identical domain corrugations N is varied. This has the outcome that more modes
appear together, especially when larger pieces of the flow domain are considered. Our
attention is restricted to m̃=0 and Nc (here only considering 8c, as it overtakes m̃=0).
Results are shown in figure 14.

The increase of N is found to mostly reduce growth rates and phase speeds of the
dominant unstable solutions in the near-nozzle region. There is an apparent trade-off
in growth rates, increasing with N (when St < 0.7) and decreasing (when St > 0.7).
Such behaviour is related to a second saddle, between m̃ = 0 and 2Nc (not shown
here), that appears with further increase of N (around N > 7). The behaviour of these
modes around the saddle mostly follows the findings from § 4.2, and for this reason
is not further discussed. For the downstream region, solutions are again found to be
quite robust, depending only weakly on the number of corrugations.

6. Discussion
Before the concluding remarks, some additional comments are made here in order to

clarify the underlying assumptions in our theoretical analysis. We follow with a brief
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FIGURE 12. (Colour online) Growth rates and phase speeds for the R effect (a) near
the nozzle and (b) downstream. Solid lines are m̃ = 0 and dashed m̃ = 6c. Coloured by
increasing P, within the range: 0.25, 0.5, 0.75, 1.0 and 1.1 (lightest grey P= 0.25, black
P = 1.1). Zeroth-order results are shown in solid blue lines for m = 0 and dashed for
m=±6.

discussion on how we expect our results to be relevant for non-circular jet stability
and aeroacoustics.

6.1. Connection of parallel-flow results with wavepackets in slowly diverging jets
First, there is the assumption of locally parallel base flow. Usually, if the streamwise
jet development is slow over an instability wavelength, one can assume that
perturbations at any streamwise station develop as if the base flow were locally
parallel. This does not seem to be the case here, as significant changes in the stability
properties can be noticed within a short distance from the jet nozzle, thus calling
into question the validity of the parallel-flow assumption. An alternative perspective,
however, is given when we consider the locally parallel assumption as a zeroth-order
approximation of an asymptotic series expansion, where the spread rate of the flow
is taken as the small-scale parameter. Using the method of multiple scales, the
zeroth-order solution becomes the parallel-flow result, with a free amplitude whose
spatial distribution is obtained by a solvability condition found in the higher-order
equations (Crighton & Gaster 1976; Tam & Morris 1980). This in turn leads to the
ansatz used in the parabolized stability equations. Indeed, the close agreement obtained
by Sinha et al. (2016a) between PSE solutions and experiments and simulations of
serrated jets supports the applicability of linear stability theory to corrugated jets.

One important consequence of the linear parallel system, however, is that acoustic
and instability-related wave solutions appear decoupled by the homogeneity along
the axial direction. It is only when the jet becomes non-parallel, or when the
perturbation amplitude reaches a level that triggers nonlinearity, that acoustic and
instability modes may become coupled in this framework (Jordan & Colonius 2013).
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FIGURE 13. (Colour online) Growth rates and phase speeds for the Θ effect (a) near
the nozzle and (b) downstream. Solid lines are m̃ = 0 and dashed m̃ = 6c. Coloured by
increasing P, within the range: 0.25, 0.5, 0.75, 1.0 and 1.1 (lightest grey P= 0.25, black
P = 1.1). Zeroth-order results are shown in solid blue lines for m = 0 and dashed for
m=±6.

By assuming a locally parallel flow and undertaking the investigation only on
azimuthal inhomogeneities, we have restricted our attention strictly to the changes in
instability waves promoted by corrugations. If one were to model the jet spread, the
acoustic implications of the results would have been clearer. Some modes possibly
have better acoustic efficiency than others. In principle, both m̃ = 0 and m̃ = Nc

are candidate solutions expected to be relevant for the noise radiation due to their
quasi-axisymmetric shape (Michalke 1970; Michalke & Fuchs 1975), as discussed in
§ 4.1. The influence of the saddle studied in § 4.2 on the radiating noise, however,
is more difficult to predict. A more definitive determination would require analysis
of well-resolved experimental or simulation data that are unfortunately unavailable at
present. Here we are restricted to an indirect assessment of the acoustic relevance
of our results, invoking their well-established connection with the Kelvin–Helmholtz
modes found at the near-nozzle region. In this perspective, reducing growth rates and
phase speeds are expected to lead to noise reduction (Jordan & Colonius 2013; Kœnig
et al. 2016), if properties such as wavepacket jitter or coherence decay (Cavalieri
et al. 2011; Cavalieri & Agarwal 2014; Baqui et al. 2015) are not affected.

Although the peak noise is related to axially extended wavepackets, going beyond
the jet potential core, these are crucially determined by their near-nozzle instability
characteristics. Our analysis shows that the stability effects of corrugated base flows
are limited to a region very near the nozzle; however, downstream profiles, are still
influenced by the nozzle serrations, as their averaged shear-layer thickness Θ0 is
larger than what is seen for a circular nozzle. For our results, despite low azimuthal
inhomogeneities for the serrated nozzle at x/D= 2, its averaged shear-layer thickness
is considerably larger than the SMC000 result, as shown in table 1. Such differences
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FIGURE 14. (Colour online) Growth rates and phase speeds for varying N (a) near the
nozzle region and (b) downstream. Solid lines are m̃= 0 and dashed m̃=Nc. Colours are
for increasing N, within the range: 1, 2, 3, 4, 5, 6, 7 and 8 (lightest grey N = 1, black
N = 8). Zeroth-order results are shown in solid blue lines for m= 0.

persist downstream of the potential core, as shown by Sinha et al. (2016a). Hence, the
effect of nozzle serrations in jet stability should be felt throughout the development
of wavepackets; in the near-nozzle region azimuthal inhomogeneities should play an
important role, but at downstream locations the higher momentum thickness would
still impact wavepacket growth rates and phase speeds.

6.2. Relationship of present findings with previous experiments on jet noise
We may now attempt to connect the stability results with experimental results of
jets with chevrons or micro-jets, mostly to discuss the effect of corrugations on the
radiated noise. From comparisons between the fit coefficients displayed in table 1,
it seems that noise reduction is achieved by an (averaged) increase of mixing-layer
thickness in both jets. However, when azimuthal inhomogeneities are included, such
as in figure 11, a slight reduction of phase speed is observed for low St, together with
a large increase in growth rates, especially for higher St, in the region closest to the
nozzle. This may explain the experimentally observed trade-off encountered between
noise reduction at lower frequencies and increase at higher ones with increasing
chevron penetration (Bridges & Brown 2004; Alkislar et al. 2007).

An interesting result is found in figure 12, where we introduced increasing
azimuthal perturbations of the radial position of the shear layer keeping its thickness
homogeneous. This approximately follows the observed base-flow changes of the jet
actuated with micro-jets. Results for this investigation show a progressive decrease of
the phase speed of the m̃= 0 instability for higher oscillations of radial position, but
without any high-frequency penalty associated with higher growth rates. This may be
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related to the observation that micro-jets lead to much less significant high-frequency
noise (Alkislar et al. 2007), once we disregard much of its high-frequency content
that is apparently related to the injectors themselves (Callender, Gutmark & Martens
2007). However, a definitive confirmation of this theoretical result requires a more
empirical investigation.

It is more difficult to establish the practical connection of our analysis of the
stability implications of the number of corrugations. Bridges & Brown (2004)
reported that increasing the chevron count thickens the mixing layer while reducing
the azimuthal variations of the jet mixing layer, and that this is linked to a reduction
of the radiated noise. In our analysis, on the other hand, the mixing-layer thickness
parameter was retained constant when the number of corrugations was increased,
precluding any conclusion regarding its noise benefits. Thus, this portion of the
analysis is included solely for theoretical completeness of the parametric investigation.

We conclude this section by reiterating how this study represents a preliminary
step towards the creation of a theoretical framework for the design of corrugated
nozzles focusing on their possible aeroacoustic benefit. Our work is also a significant
contribution to the rather limited literature on the research of instability waves in
non-circular jets (Gutmark & Grinstein 1999; Morris 2010). The need for additional
computational and experimental data to confirm the findings is evident, and constitutes
a natural continuation of this line of investigation.

7. Conclusion
In this paper we have investigated the instability wave characteristics of corrugated

subsonic jets, within the assumption of locally parallel base flows. Floquet theory is
applied to the compressible Rayleigh equation in order to explore the azimuthally
periodic base flow. We parametrized mean-flow fields of corrugated jets by introducing
a cosine series expansion of the azimuthal variation of their two characteristic length
scales – the radial position of the shear layer R, and the shear-layer thickness Θ . The
validity of such a formulation was assessed through directly fitting these expressions to
experimentally measured mean-flow fields of two corrugated jets – one with chevrons,
and another with micro-jets.

We focused on solutions for Floquet coefficient µ = 0 at near-nozzle stations as
these are the cases where modal solutions are expected to dominate the behaviour of
axisymmetric large-scale turbulent structures that are more relevant to the peak jet
noise. We introduced a perturbation factor P in our mean-flow field parametrization
such that P = 0 would correspond to a notionally equivalent circular jet, with an
azimuthally averaged mean profile, and P= 1 would correspond to the experimental
data for the corrugated jet. With this device, we were able to track the relevant
unstable solutions found in circular jets (m = 0, ±N, . . . , with N being the number
of base-flow corrugations) as they deform for progressively corrugated jets (P > 0).
Our study shows that previously reported modes in corrugated jets all arise from the
same Kelvin–Helmholtz mechanism. We have introduced an alternative notation in
order to identify these solutions (m̃) based on whether the pressure eigenfunction has
peaks aligned with the lobes of the base flow (referred to with superscript ‘c’) or
with the flats (superscript ‘s’). Saddles in the complex eigenvalue plane are found
to arise between unstable solutions, similar to what occurs in vortex sheet solutions
(Kopiev & Ostrikov 2012). The eigenfunction deformation reveals a redistribution of
azimuthal variation, with m̃ = 0 becoming less axisymmetric and m̃ = Nc becoming
more so, to the point that an exchange (axis switching) of the solution behaviour can
occur.
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The effects of prescribed base-flow changes on the growth rates and phase speeds of
the modes were investigated over a range of frequencies. In general, comparisons with
the azimuthally averaged base flows revealed that phase speeds of the most unstable
solutions have their stability characteristics mostly determined by the averaged shear-
layer thickness, Θ0, even at the near-nozzle region where growth rates were found to
be more sensitive to azimuthal inhomogeneities. Further downstream small deviations
of growth rates with respect to the azimuthally averaged case are observed.

In real jets, the increased penetration (be it through chevrons or micro-jets)
invariably is accompanied by higher azimuthally averaged shear-layer thickness
Θ0, which is well understood to be stabilizing. Here we separately analysed the
stability implications of the azimuthal variations in R and Θ . It is observed that the
gradual increase of the azimuthal inhomogeneities applied simultaneously in R and Θ
results in higher growth rates of m̃= 0 and higher phase velocities of m̃=Nc modes.
These may exchange their identities due to the saddle. By decoupling these azimuthal
variations, where perturbations are selectively confined to R or Θ , it is found that the
R effect controls the change in phase speed observed in the combined R–Θ effect,
but with little change in growth rate. The Θ variation has the opposite effect. These
changes are pronounced at near-nozzle stations, but diminish further downstream. The
recommendations stemming from these findings are: one should azimuthally perturb
the shear-layer position to modify the phase speed of the instability waves, and/or
azimuthally perturb the shear-layer thickness to control their growth rates.

The influence of the number of periodic corrugations N is investigated by
maintaining all fit results fixed as N is varied. At stations near the nozzle, growth
rates and phase speeds are mostly reduced for the dominant unstable solutions with
increasing N. There is an apparent trade-off in growth rates, increasing with N for
St < 0.7 and decreasing for St > 0.7 due to a secondary saddle, which was not
explored further. Downstream, solutions are found to depend weakly on N. These
results suggest that more concentrated azimuthal variations are to be preferred for
their influence on stability characteristics.

In summary, the present work is an exploration of how base-flow features of
corrugated jets influence their characteristic Kelvin–Helmholtz instability mechanism.
It is hoped that the observed effects may help in the pursuit of more efficient noise
reducing devices, targeting relevant wavepacket characteristics such as growth rates
and phase speeds.
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