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Multi-body aerodynamic analysis is crucial whenever a store is designed to separate from its
parent aircraft, so as to predict the safe flight envelope. This involves a meticulous analysis of the
store trajectory across a large range of operating parameters (i.e., freestream conditions). The
present work demonstrates an efficient albeit approximate technique that marries a well-known
technique – viz. reduced-order model (ROM) based on proper orthogonal decomposition (POD)
– with a domain-decomposed methodology, for predicting the flow field around a store-aircraft
dyad. The domain-decomposition approach allows POD-based ROM to be used for the majority
of the flow domain, keeping only a small region that must be addressed by full-order simulations,
that too Euler calculations. We had exemplified the approach earlier with a toy two-dimensional
case; here we extend it to a much more realistic three-dimensional benchmark problem. As
it stands now, the final result from our foray is actually subpar vis-à-vis the much simpler
linear interpolation. However, we have identified several components of the approach that when
modified should deliver a much more satisfactory performance.

I. Introduction

Whenever a new aircraft and/or its stores (missiles, drop tanks, etc.) are developed, or an existing aircraft/store
combination undergoes some modifications, the dyad has to undergo an extensive investigation to certify the

safe-separation flight envelope. During the analysis, trajectories followed by the store under various operating conditions
are predicted to ensure that it does not strike back at the aircraft itself. There are mainly three conventional approaches
to conduct such investigations – flight testing, experiments in a wind tunnel, and simulation using computational fluid
dynamics (CFD). All of them pose some challenges related to economic and practical viability; moreover, they are all
time-consuming.

There are mainly two types of computational approaches to the store-trajectory separation problem, mimicking the
corresponding experimental techniques. The first one assumes the instantaneous problem to be quasi-steady (see fig. 1).
That is, when the store is at a particular position from the aircraft, then this may be considered to be a steady problem.
The aerodynamic forces and moments on the store may be calculated from the corresponding steady flow solution
(typically steady Reynolds-averaged Navier Stokes – RANS – is used). The resulting linear and angular accelerations
of the store may then be integrated over a short time horizon (Δ𝑡) to obtain the new position and orientation of the
store. Then these steps may be iterated to obtain the overall store separation trajectory. The overall strategy mimics
the captive trajectory system (CTS) experimental approach to the problem. The alternative experimental approach is
flight testing. Its computational counterpart replaces steady RANS with the unsteady variant to account for the small
effect this may have on fidelity. Moreover, unlike in the first approach, the instantaneous linear and angular velocities of
the store are applied as boundary conditions in the simulation instead of being neglected. It turns out that the second
approach, although appearing to be more complex, is actually more efficient since the flow solution only changes by
small increments at each time step.

Here, we carry forward a store trajectory estimation approach based on empirical reduced-order modelling (ROM)
integrated with domain-decomposition that we proposed recently [1, 2]. It is an efficient, albeit approximate, alternative
to the steady RANS-based approach described above. The empiricism in the ROM implies the existence of a prior
‘learning’ database, which typically comes from a small set of preliminary CFD calculations that sparsely sample the
parameter space. Such computations are referred to as full-order model (FOM) results in this work, to distinguish
them from the output of the proposed ROM. Subsequently, the ROM predicts the flow and/or derived quantities at
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Fig. 1 Flow chart representing the iterative steps involved in store trajectory prediction with the FOM approach,
using time integration with a step size of Δ𝑡.

unsampled parameter values. ROM is a well-known tool to predict the characteristics of the flow field very efficiently.
Its ability to predict flows with a small turnaround time requiring minimal computational resources makes it suitable
for applications where rapid design decisions have to be made – e.g., multi-disciplinary analysis and optimization.
Evidently, the prediction of store-separation trajectory is a candidate for the employment of ROMs.

The proposed ROM uses proper orthogonal decomposition (POD) to identify the underlying reduced-order topology
of the flow. Most of such spatial modal analyses, including POD, necessitate that all the empirical flow data supplied are
for the same geometry (and mesh). In the case of store trajectory prediction, the store changes its relative position with
respect to the aircraft continuously after its release. The corresponding empirical database thus has arbitrary alteration of
the flow geometry. Consequently, the usual POD-ROM approach for single-body aerodynamics cannot be employed for
the full-flow domain here. Considering this limitation, the proposed approach decomposes the full-domain into multiple
subdomains such that POD-ROM can be employed for the maximal portion of the flow domain; the remaining subdomain
that involves changing geometry/mesh is solved using the full-order model (FOM). The flow has to be matched at the
interfaces of the subdomains through a few iterations of the ROM(s) and FOM calculations. The overall approach is
termed domain-decomposed ROM (DDROM). Our previous work [1, 2] in this regard were on a toy two-dimensional
problem, where we did not actually calculate the store separation trajectory but demonstrated the feasibility of the
approach. Here, we extend the work by addressing a much more complicated and realistic three-dimensional problem.

The paper is organized as follows. The background of the work is established in section II, and the theory underlying
the approach is described in section III. This is followed by a presentation of the results and associated discussions in
section IV, and is concluded in section V.

II. Background
We start with a brief background of existing methods for trajectory prediction in Section II.A; subsequently, we

discuss the previous applications of ROMs to similar problems in Section II.B.

A. Existing methods for trajectory prediction
Store trajectories have historically been predicted using flight tests, wind tunnel experiments and/or computational

fluid dynamics (CFD) simulations. We briefly summarize these approaches; see Ref. [3] for an all-round review.
The very first attempts to predict the trajectory of stores were pursued using flight testing. The store was repeatedly

dropped from the aircraft flying at gradually increasing speeds, until the store was observed to come back closer to
the aircraft after its release instead of separating monotonically. This method was based on trial-error, and in some
cases, this led to the store hitting the aircraft itself. Although flight testing continues to be the ultimate evaluation, it is
used very sparingly due to the costs and risks involved. In the early 1960’s, wind tunnel model testing for trajectory
prediction was developed using the Captive Trajectory System (CTS) [4, 5]; its flowchart is shown in fig. 1. The store
model was fixed below the aircraft model on a sting with a 6-axis force/moment balance. The ‘Solve for steady flow
field’ step was performed by the wind tunnel flow itself. The forces and moments determined in this configuration
were used for integrating the 6-DOF (six degrees of freedom) rigid body equations over a small time horizon using
an online computer, and the changes in position and orientation of the store thus calculated were implemented for
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the sting-mounted store model. This procedure was repeated until the store was deemed to have moved out of the
influence region of the aircraft. Essentially, this was a quasi-steady simulation of the separation trajectory with the
online computer affording much faster evaluation than could have been achieved with human intervention. Since wind
tunnel tests typically use small-scale models, large deviations were observed sometimes in comparison with the more
reliable reference flight test data. Moreover, the quasi-steady nature of the simulation as opposed to a time-accurate one
could also have been a source of error. Thus, the wind tunnel tests were employed to identify potentially critical flight
parameters that then were used to design a more pared down flight test matrix.

In the 1980’s, the Influence Function Method (IFM) [6] was developed to reduce the wind tunnel test matrix.
Detailed experiments needed to be conducted for a reference store geometry in the influence of a parent aircraft, as well
as any new store geometry in isolation. The IFM used these as inputs to predict the trajectory of the new store in the
vicinity of the aircraft. It was assumed that while the aircraft influences the stores’ aerodynamics, the stores had no effect
on the aircraft. Over time, as CFD capabilities were growing, it was used to predict the flow field around the aircraft,
whereas wind tunnel tests continued to be used for accurate characterization of the isolated store’s aerodynamics [7].

Today CFD capabilities have matured sufficiently so as to minimize the dependence on flight and wind tunnel
tests. However, it is these diligent tests that have provided indispensable validation to the CFD approaches so that
they could arrive at their present state. Of particular note are three programs sponsored by U.S. Air Force and Navy
research organizations in the 1990’s that made available detailed test data of well-documented cases and challenged
the CFD community to submit their attempts at replicating the same [3]. Over the years, CFD models went through
linear potential flow models [8], nonlinear full potential methods coupled with thin viscous layers [9], (inviscid) Euler
calculations [10], and (viscous) Reynolds Averaged Navier Stokes (RANS) methods [11]. These advances in fidelity
have been made possible by the exponential growth of computational power, as well as rapid developments in algorithms,
particularly regarding overset or Chimera grids [12]. At present, most production simulations of store separation
trajectories are pursued with RANS [e.g. 13].

The CFD approaches to this kind of problems can be categorized as quasi-steady or time-accurate. The former
mimics the CTS method of wind tunnel testing whose flowchart is given in fig. 1. In particular, the fluid solver assumes a
stationary store (relative to the parent aircraft), and solves for the steady flow field. The time-accurate CFD method refers
to unsteady RANS (URANS) simulation of the flow field, with the time-varying flow field and moving store accounted
for in the fluid dynamic equations. An early comparison of the two approaches [14] showed that the quasi-steady method
indeed replicated CTS data, and differed slightly in its results from the time-accurate approach. Owing to the improved
availability of computational resources, most current production simulations are carried out in the time-accurate mode
[e.g. 15–18]. However, they continue to be validated against CTS data [19], which indicates their minimal differences
from the quasi-steady approach.

In our work, we will develop a ROM for the quasi-steady viscous store-separation trajectory prediction problem in a
three-dimensional setting. Extension to the time-accurate approach will be pursued in the future.

B. Application of ROM to similar problems
Applications of reduced-order modelling in flow problems can be broadly divided into three categories – steady

(parameter-varying) ROM, unsteady (time-varying) ROM for a single parameter set, and a combination of the two. In
problems dealing with time-varying flow characteristics, unsteady ROM is employed to predict the flow behaviour at
different time instants. Steady ROM finds its applications in the problems where steady (or time-averaged) flow features
(for a particular parameter in a set) are sufficient for the engineering purpose at hand. In the present work, we are
interested in steady ROMs for the reason described in section II.A.

The application of parameter-varying steady ROM to single-body aerodynamics starts with the generation of the
‘learning database’ comprising of ‘snapshots’ of the steady flow field for a sufficiently rich, yet sparsely-sampled, set of
operating parameters (e.g., Mach number, angle of attack, side slip angle, etc.). This is typically obtained by solving
the FOM – i.e., doing Euler or RANS simulations; rarely do we get this empirical data from experiments. This is
the one-time cost of the ROM, albeit a major one. The next step involves the reduction of the order of the problem
by identifying the underlying simplicity in the flow features present in the empirical database. Mathematically, we
compute a minimal set of linear basis functions or modes of the data such that maximal information is captured. The
most common tool used for this is proper orthogonal decomposition (POD) [20–22]. The last step is the prediction of
flow field behaviour for a new set of parameters, typically as a linear combination of the basis modes using appropriate
weighting coefficients. This step can be performed in two ways – (i) interpolation of the coefficients from the learning
database [e.g. 23–25], or (ii) a physics-informed approach called steady ROM wherein the coefficients are determined
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by minimizing the residual of the steady governing equations constrained by the boundary conditions [22, 26–30]. In
the literature, they are also termed non-intrusive vs. intrusive ROM, respectively. The second method is more robust but
computationally expensive compared to the simpler interpolation approach. In the present work, we are interested in the
application of steady ROM in the more complicated 2-body problem.

The present approach builds on top of our previous works. An initial attempt was made at solving the 2D
2-body problem by decomposing the flow domain into three subdomains [2]; this was subsequently augmented to a
five-subdomain strategy [2]. This Domain-Decomposed ROM (DDROM) combines the efficiency of the ROM with the
flexibility of the FOM (i.e., standard CFD). In parallel, we refined the single-body single-domain POD-ROM approach
to efficiently develop the aerodynamic database of a (3D) missile [22]. The first two efforts established the basic
philosophy of the DDROM approach used here, however, it was employed on a simpler 2D problem. The latter paper,
although concerning a simpler problem, presented some valuable improvements in the POD-ROM approach itself that
are of relevance here. Lately, we have used the DDROM approach to solve for the transonic flow around a single 2D
body too [31].

III. Theory and approach

A. POD
Let 𝒒(𝒙; 𝝁) represent the vector field of relevant flow variables in a steady problem, with 𝒙 := (𝑥, 𝑦, 𝑧) in 3D

Cartesian coordinates, and 𝝁 being the vector of operating parameters (e.g., freestream Mach number 𝑀∞, angle of
attack 𝛼 and side-slip angle 𝛽 of the wing). In case of a 3D problem governed by Euler’s equations, the vector field 𝒒
may be [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝑝]𝑇 , where 𝜌 is the density, 𝑢, 𝑣 & 𝑤 are the 𝑥-,𝑦-, & 𝑧-components of velocity respectively,
and 𝑝 is the pressure.

We assume that the flow fields available in the learning database may be subjected to an efficient linear modal
decomposition such that

𝒒(𝒙; 𝝁) ≈ 𝒒̄(𝒙) +
𝑁∑︁
𝑛=1

𝜂𝑛 (𝝁)𝝓𝑛 (𝒙). (1)

Here, 𝒒̄ represents the base flow variable vector field, which is typically obtained by averaging across all the snapshots of
the learning database. The deviation of each solution (snapshot) from the base flow is assumed to be well approximated
by the linear combination of 𝑁 spatial ‘modes’ (or basis flow fields) {𝝓𝑛 (𝒙)}𝑁𝑛=1 weighted by the coefficients {𝜂𝑛 (𝝁)}𝑁𝑛=1.
For an efficient order reduction, 𝑁 is typically much smaller than the number of grid points needed to represent the
flow domain for a converged CFD simulation. For convenience, we will write the vector of weight coefficients as
𝜼(𝝁) := (𝜂1 (𝝁), 𝜂2 (𝝁), . . . , 𝜂𝑁 (𝝁))𝑇 .

In this work, the above basis flow fields are obtained using the very well-established approach of POD [20, 21]. For
brevity, we omit the details here; further discussion of the variant of POD that is most relevant for the present work can
be found in Sinha et al. [22].

B. ROM
The (approximate) prediction of the flow field for a new parameter set outside the learning database, say 𝝁0, is

pursued using the ROM. Rather than simply interpolating the parameter space, a more robust and accurate approach is
to invoke the underlying governing equations of the flow, or a simplification thereof. It is based on the reduced order
modal decomposition of the flow field, i.e., the POD. Equation (1) reveals that this comes down to determining the new
set of (POD) coefficients 𝜼(𝝁0). The basic methodology of POD-based ROM for single-body analysis was proposed by
LeGresley and Alonso [26], which was further refined over the subsequent years [22, 29, 30].

Let the vector of governing unsteady conservation equations be represented as

𝑑

𝑑𝑡
(𝓒(𝒒)) = 𝓡(𝒒), ∀𝒙 ∈ Ω. (2)

Here, 𝓒 is the operator that maps the chosen set of flow variables 𝒒 to the conserved flow variables, 𝓡(𝒒) is a shorthand
notation for the terms other than the local time derivative, and Ω represents the relevant flow domain. For example, if
the mass conservation equation is coded as the first row of the vector equation, then the corresponding entry of 𝓒(𝒒) is
𝜌 and that of 𝓡(𝒒) is −∇ · (𝜌𝒖). These equations are supplemented by the vector of boundary conditions, formally
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represented as
ℬ(𝒒) = 0, ∀𝒙 ∈ 𝛿, (3)

where 𝛿 denotes the boundary of the flow domain. Since the steady solution is desired for 𝝁0, we would ideally have
𝒒(𝒙, 𝝁0) such that 𝓡(𝒒(𝒙, 𝝁0)) = 0 along with ℬ(𝒒(𝒙, 𝝁0)) = 0. Indeed, the FOM attempts to satisfy these constraints
at a multitude of grid points/cells over the flow domain and boundary.

In the POD-based ROM, we substitute the approximate expansion of eqn. (1) in the above governing equations. Since
the base flow field and the POD modes are known from the learning database, the residual and boundary conditions are
now approximated as

𝓡(𝒒(𝒙, 𝝁0)) ≈ 𝓡̃(𝒙; 𝜼(𝝁0)), ℬ(𝒒(𝒙, 𝝁0)) ≈ ℬ̃(𝒙; 𝜼(𝝁0)). (4)

Moreover, due to the preceding approximation, one cannot expect the above vector fields to vanish exactly on their
respective domains. Instead, we recast the given problem as the following optimization problem:

min
𝜼

𝐽 (𝜼(𝝁0)), 𝐽 (𝜼(𝝁0)) :=
(����𝓡̃(·; 𝜼(𝝁0))

����
𝑝

)
Ω

subject to
(����ℬ̃(·; 𝜼(𝝁0))

����
𝑝

)
𝛿
< 𝜖. (5)

Here, | | · | |𝑝 denotes the ℒ
𝑝 norm of a vector field, and 𝜖 denotes a suitable tolerance specified for approximately

satisfying the boundary conditions. In the present work, we have used the ℒ1 norm of the residue, and it is computed
over the entire domain Ω. Note that for a reasonably small number of retained POD modes, the above represents a very
small optimization problem, that constitutes a significant saving over the corresponding FOM. In this preliminary work,
we do not pursue the very useful strategy of ‘hyper-reduction’ [32] that promises even greater efficiency.

One of the salient conclusions from the POD-ROM modelling of parametric systems is that minimizing the residual
of the Euler equations is sufficient even though the data comes from RANS simulations [22, 28–30]. There are two
reasons why this approximation is successful. The boundary layer close to the wall (the essentially viscous phenomena)
is captured faithfully in all the flow snapshots, and thus is implicitly accounted for in the mean field and POD modes
already. Moreover, the POD modes, by design, only model the large-scale coherent structures, and thus the POD-ROM
is unable to deliver any significant further improvement to the reconstruction of the fine-scale viscous flow structures
anyway.

C. Domain decomposition
Reconsider the quasi-steady two-body aerodynamics problem with the store’s position and orientation relative

to the aircraft being allowed to be arbitrary, albeit within certain bounds. Evidently, the problem geometry as well
as the mesh must change as the store is traversing its separation trajectory. As mentioned before, and substantiated
subsequently in section III.A, standard modal decomposition approaches like proper orthogonal decomposition (POD)
cannot represent the flow field for such cases involving large changes in the geometry and mesh. We adopt the following
domain decomposition strategy so as to deploy POD-based reduced-order model (ROM) for solving the flow problem
over the largest possible portion of the flow domain, along with a full-order model (FOM) solution restricted to the
remaining small subdomain [1, 2, 31].

As shown in fig. 2, the full domain Ω is decomposed into three (overlapping) subdomains as follows:
• Capsule, Ω𝐶 – consists of the region immediately surrounding the store, which may comprise a grid that does not

change as the store moves. Evidently, its extent is limited by the configuration of nearest approach between the
store and aircraft.

• Dropbox, Ω𝐷 – consists of the entire region enveloping the capsule where the capsule is expected to go in the
course of the store-separation trajectory, while still remaining under the influence of the aircraft. Basically, this is
the only subdomain of the flow where the mesh needs to change in the problem.

• Aircraftbox, Ω𝐴 – consists of the rest of the flow domain that remains unchanged in the problem. It envelopes the
aircraft as well as the dropbox, and stretches all the way to the far-field boundary.

We also provide for two narrow overlap regions: the one between the capsule and the dropbox is denoted Ω𝐶𝐷

(:= Ω𝐶 ∩ Ω𝐷), and the other between the aircraftbox and the dropbox is denoted Ω𝐴𝐷 (:= Ω𝐴 ∩ Ω𝐷). In fact, the
‘basic’ aircraftbox domain sans Ω𝐴𝐷 is denoted Ω𝑎 (:= Ω𝐴 \ Ω𝐴𝐷). Similarly, the ‘basic’ capsule domain sans
Ω𝐶𝐷 is denoted Ω𝑐 (:= Ω𝐶 \ Ω𝐶𝐷). Furthermore, the ‘basic’ dropbox domain sans Ω𝐶𝐷 and Ω𝐴𝐷 is denoted Ω𝑑

(:= Ω𝐷 \ (Ω𝐴𝐷 ∪Ω𝐶𝐷)). Indeed, these ‘basic’ subdomains are the ones depicted in fig. 2. One thus has the following
five non-overlapping subdomains of Ω: Ω = Ω𝑐 ∪Ω𝐶𝐷 ∪Ω𝑑 ∪Ω𝐴𝐷 ∪Ω𝐴.
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Fig. 2 Three domain-decomposed ROM approach for the two-body problem.

The capsule and aircraftbox are subdomains where the geometry (and even the mesh) can remain same across all
possible configurations of the store, as well as all choices of the operating parameters (viz. freestream conditions).
Thus, we will pursue POD-based ROM in these two subdomains. On the other hand, the dropbox is the only subdomain
whose geometry (and hence the mesh) must change across various possible positions of the store. Hence, POD-ROM is
inapplicable here, and we have to revert to FOM calculations instead. The flow solution must be matched at the two
interfaces.

The iterative algorithm of DDROM is presented in the form of a self-explanatory flowchart in fig. 3.

D. Overall trajectory computation
We employ the built-in overset mesh method and 6-DOF rigid body dynamics solver of ANSYS Fluent [15] to

calculate the trajectory. In the FOM, all the calculations are performed in Fluent. In particular, the procedure starts
with a steady RANS calculation corresponding to the initial position of the store relative to the aircraft. The predicted
forces and moments on the store are then supplied to the 6-DOF solver to compute the incremental linear and angular
displacements and velocities of the store after Δ𝑡 = 0.005 s. The displacements are used to move the capsule subdomain
appropriately using the overset mesh method. The store velocities are used in its no-slip boundary condition. Then the
transient or unsteady RANS solver is invoked to compute the change in the flow (with the changed geometry and grid)
over the subsequent Δ𝑡, and the cycle repeats. The calculations proceed for about 0.3 s. In the reference wind-tunnel
tests [19], the store was initially subjected to ejector forces at two locations for 0.006 s. This is not modelled in our
preliminary work here.

In the DDROM approach, we replace only the flow solver, keeping all other components intact. Owing to the greater
ease of code manipulation, the FOM solver for the dropbox subdomain is chosen to be SU2 [33]. This allows ready
specification of ‘custom’ boundary condition on the subdomain interfaces; unlike usual boundary conditions, these are
not constant throughout the surface. The mesh modification is computed in Fluent, and then passed on to SU2. The
DDROM-predicted force and moment coefficients of the store are passed back to Fluent’s 6-DOF solver that calculates
the new position and velocity of the store. In our preliminary DDROM implementation here, the velocity information is
ignored when formulating the no-slip boundary condition of the store; it may be incorporated in the future.

IV. Results
We evaluate the proposed domain-decomposed POD-based ROM methodology on a three-dimensional problem

involving a store-like body in the influence region of a wing, as depicted in fig. 2. Here we present preliminary results
from this endeavour.
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Fig. 3 Flowchart for 5-subdomain DDROM solution procedure for store separation analysis.

A. Geometry and mesh
The geometries of the aircraft and the store shown in fig. 4 are borrowed from a standard test case performed by

[19]. The 3D model as well as coordinates systems employed for the present store separation problem are shown in
the fig. 5. The wing is a clipped delta wing (NACA 64A010 airfoil section) with a detachable pylon. Its root chord is
𝑐0 = 15 inches, and this will be used for normalizing all length quantities subsequently. The store is a generic finned,
but otherwise axisymmetric, body with tangent-ogive forebody and truncated tangent-ogive afterbody. The diameter of
the cylindrical middle body is 𝑑 = 1 inch (i.e., 𝑑/𝑐0 = 0.067); the overall length is ℓ = 5.941 inches. The four fins have
NACA0008 section and 60◦ leading edge sweep. The CG of the store is on its longitudinal axis and 73 cm behind its
nose. Other parameters of the geometry, including those of the pylon, may be found in Ref. [19].

The mesh is generated using the commercial software Pointwise (v18.2). As the position (𝑋,𝑌, 𝑍) and orientation
(pitch-yaw-roll Euler angles (𝜃, 𝜓, 𝜙)) of the store are changing throughout its travel, a different mesh needs to be
generated corresponding to each specific position and orientation of the store. The mesh topology for the present 3D
problem is presented in the fig. 6. Firstly, the surface mesh on the store and wing are generated ensuring that the
underlying geometry is properly captured. Then, subdomain-surfaces for all the subdomains are created around these
geometries with appropriate dimensions. The diameter of the capsule was chosen to be two times the diameter of the
store (𝑑), such that it encompasses the refined mesh around the store while avoiding interference with the dropbox over
the trajectory. The dropbox was created with its top surface as close to the pylon as possible from the meshing point
of view. Thus, the initial position of the store was decided after addressing these meshing constraints. The dropbox
enclosed a region to cover approximately 10𝑑 of vertical drop and sufficient axial displacement of the store. The far-field
of the domain is created at a distance of 10 times the root chord of the wing in all the direction. Note that all these
surfaces have triangular face-cells.

Two different meshes were created: the coarser mesh was used for rapid assessment of the proposed DDROM
approach here, and the finer mesh was intended for subsequent ‘production’ calculations. The two had 0.2 million and
3.54 million cells respectively. Maintaining the mesh topology consistent, the coarser mesh thus had individual cells
that were about 2.5 larger on all sides. The finer mesh is described and depicted here; the above scale factor should be
kept in mind when interpreting the subsequent results.

The total cell count of the finer grid is 3.54 million. To achieve the 𝑦+ constraint of unity at any wall for the 𝑘 − 𝜔

(SST) turbulence model, prism layers have been generated on the store with the first cell layer height of 1 micron, and
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(a) (b)

Fig. 4 Models used in reference [19] wind-tunnel tests of the (a) wing, and (b) store.

stretching factor of 1.2. We do not aim to capture the boundary layer on the wing, because we need accurate force and
moment predictions only on the store surface. Therefore, a few prism layers were generated on the wing with the sole
aim of capturing the flow gradient around it. Both the overlapping regions – i.e., the capsule-dropbox Ω𝐶𝐷 and the
aircraftbox-dropbox Ω𝐴𝐷 – have at least two layers of cell (preferably prism layers). To generate the grid for a given
store position and orientation, the store and the capsule sub-domain was translated and rotated as a whole, making sure
that the grid inside the capsule remains unchanged. Similarly, the grid for the aircraftbox sub-domain also remained
unchanged across snapshots. This is a crucial aspect for POD to work in these sub-domains. It is only the grid inside the
dropbox that changes across snapshots with changing store positions and orientations.

B. Learning database generation and POD
If the store is released from the aircraft in the same configuration always, then each store trajectory is completely

specified by the particular freestream condition experienced by the aircraft. For 3D problems, these are the freestream
Mach number 𝑀∞, angle of attack of the wing 𝛼 and the side slip angle of the wing 𝛽. The learning database comprises of
the store trajectories (and their corresponding sets of quasi-steady flow solutions) for a number of 𝑀∞ − 𝛼 combinations
(side slip angle is maintained at zero across all the trajectories). For this preliminary work we have generated the
learning database for the combinations of parameters presented in fig. 7.

A point on the trajectory of the store is completely specified by its six degrees of freedom (DOF). These are the three
position coordinates of the CG of the store relative to the wing’s leading edge at mid-span (𝑋,𝑌, 𝑍), and three angles
namely pitch, yaw and roll angle (𝜃, 𝜓, 𝜙) of the store relative to the wing (see fig. 5). In our simulations, all trajectories
were initiated with zero yaw, pitch and roll angles, and the CG of the store was located at 𝑋 = 21.52 cm, 𝑌 = −16.51
cm and 𝑍 = −8.13 cm. Whereas the first two coordinates track the reference, the last one does not. This is because our
domain-decomposed meshing strategy requires a finite thickness of the aircraftbox, dropbox and capsule subdomains to
intervene between the wing’s pylon and the store. In the original reference, the store was initiated such that its gap with
the pylon was only 1.8 mm; in our case, the initial gap itself is 38.1 mm. While the domains can certainly redesigned be
to allow for a smaller initial gap, our DDROM strategy will never be able to accommodate the kind of small initial gaps
found in the reference. This is certainly a disadvantage of the proposed approach. A workaround may be to pursue a
FOM solution approach till the store is far enough away from the pylon, and then to switch to the DDROM strategy.

The learning CFD database has been generated using compressible RANS solver with 𝑘 − 𝜔 (SST) turbulence
model on ANSYS Fluent, for the operating and store position parameter combination as described in fig. 7. While
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Fig. 5 Model and coordinate setup for the 3D store separation problem. The store frame is not used in this
work.

(a) Surface grid: store (b) Domain: Capsule

(c) Surface grid: wing+store (d) Domain: Dropbox

Fig. 6 Topology of ‘finer’ mesh; calculations presented here were on a coarser mesh with individual cells that
were about 2.5 larger on all sides.

generating snapshots, the far-field conditions apart from velocities (defied by wing Mach number, wing angle of attack
and wing side-slip angle) were pressure and temperature, which were set to constant values – 100500 Pa and 300K
respectively – across all the snapshots.

For each of the ‘learning’ trajectories, the entire flow solution is saved at each time step (about 60 in number,
with Δ𝑡 = 0.005 s, as mentioned before). Subsequently, when it comes time for predicting the trajectory for a new
(say, ‘test’) parameter case (see fig. 7), then start from the same initial condition of the store. For this aircraft-store
configuration, the flow solutions from the ‘learning’ trajectories are used to create the DDROM model. In particular,
we extract the data in two subdomains, viz., aircraftbox (Ω𝐴) and capsule (Ω𝐶 ), for performing the POD calculations
separately for each subdomain. The conserved energy variable in the solution is converted to pressure; the remaining
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Fig. 7 Freestream Mach number 𝑀∞ and angle of attack 𝛼 combinations of the wing for the data (i.e., learning)
and test (i.e., verification) trajectories.

Fig. 8 Vector POD eigenspectra for the two subdomains in terms of the fractional energy content – viz. 𝜆𝑖/
∑

𝑗 𝜆 𝑗 ,
where 𝜆𝑖 is 𝑖𝑡ℎ POD eigenvalue.

four conserved flow variables (viz. density, and the three Cartesian components of momentum) are retained as they are.
Density is normalized by the freestream density 𝜌∞, velocity by the freestream sound speed 𝑎∞, and pressure by 𝜌∞𝑎2

∞.
Snapshot-based vector POD is performed on these two subdomains separately. One may remark that the turbulence
variables are neglected in extracting the solution vector field; this is because, as mentioned in section III.B, we will use
the Euler equation in the POD-ROM rather than the RANS equations. With these empirical inputs, the DDROM can be
applied to the initial configuration of the new test trajectory, and the flow field solution can be calculated therefrom.

As described in section III.D, this flow solution is then transferred to Fluent for (a) calculation of forces and moments
on the store, (b) application of the 6-DOF solver to calculate the state of the store after a time step of Δ𝑡, and (c)
modification of the mesh to accommodate this new state of the store. Subsequently, we wish to apply DDROM to this
new aircraft-store configuration, but the POD modes calculated for the previous step may be outdated. Thus, we propose
to sample the ‘learning’ trajectories for the nearest 𝑍-location of the store to the one being considered here, and to
develop a new POD basis, before iterating the above-described procedure.

The results presented in this paper are for the initial step only. In the future, we intend to execute the iterative
trajectory calculation strategy outlined above.

C. POD results
The fractional eigenspectra of POD for the aircraftbox and capsule subdomains are presented in fig. 8. Since there

are 9 learning trajectories in our setup and the mean is subtracted, there are only 8 non-trivial POD modes for either
subdomain. In both cases, we observe that the first two modes have significantly more ‘energy’ or salience in the data,
compared to the remainder; this disparity is even more pronounced in the aircraftbox. This will be explained below with
reference to the corresponding POD modes. Even amongst the remaining 6 POD modes, we observe a rapid decline of
energy, with the final mode having two order of magnitude less energy than the third one. However, given the very few
POD modes that we have to work with due to the scarcity of learning trajectories chosen for this work, we do not pursue
any truncation, and instead work with all 8 non-trivial POD modes in both subdomains.
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(a) Mean density (b) POD mode 1 density (c) POD mode 2 density

(d) Mean 𝑥-momentum (e) POD mode 1 𝑥-momentum (f) POD mode 2 𝑥-momentum

(g) Mean 𝑦-momentum (h) POD mode 1 𝑦-momentum (i) POD mode 2 𝑦-momentum

(j) Mean 𝑧-momentum (k) POD mode 1 𝑧-momentum (l) POD mode 2 𝑧-momentum

Fig. 9 Mean field and first two POD modes of aircraft box.

Figure 9 shows the mean values, and the first two POD modes for four flow components – 𝜌, 𝜌𝑢, 𝜌𝑣 and 𝜌𝑤 –
corresponding to the aircraftbox subdomain. For the subsonic speeds under consideration, the pressure modes resemble
the density modes closely, and hence are omitted for brevity of presentation. The mean flow fields are essentially
uniform far from the aircraft and dropbox, since the far-field boundary conditions in any given snapshot is uniform also.
In fact, since side-slip angle is zero across the database, the mean 𝑦-momentum vanishes in the far field. The POD
modes of density and 𝑦-momentum vanish in the far-field since all snapshots in the database have the same density in
the far field (unity) and same 𝑦-momentum thereat (zero). However, there is a variation in the far-field values of the 𝑥-
and 𝑧-momenta due to changes in 𝑀∞ and 𝛼 in the database, and these manifest in non-trivial values of the lower-order
POD modes for these to components. Since such non-zero values prevail over large regions of the domain, the ‘energy’
of the lower-order POD modes is high, as seen in fig. 8. Since these two major variations in the database – viz. 𝑀∞ and
𝛼 – are accounted for in the first two POD modes, the higher-order POD modes tend to have vanishing values over most
of the domain, explaining the sudden drop of energy in the eigenspectrum after mode 2. It is noted that the absolute
values of the POD modes are not particularly meaningful, as they are a function of the normalization chosen for the
essentially scalable eigenfunctions; it is their shapes that convey the most meaning and insight as discussed above.

Figure 10 presents the mean values and first and second POD modes for the same four flow variables corresponding
to the capsule subdomain. The present results are not difficult to understand with the explanation given above for the
aircraftbox counterparts. The reason for the sharp fall-off of POD energy after the second mode is the same; the fall-off
is less steep because the region affected by near-body flow features is now a significant fraction of the far-field region of
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Mean field POD mode 1 POD mode 2

𝜌

𝜌𝑢

𝜌𝑣

𝜌𝑤

Fig. 10 Mean field and first two POD modes of capsule, following same scheme as fig. 9. Each case now shows
two views: 𝑥 − 𝑧 view and 𝑦 − 𝑧 view.

the limited capsule subdomain.

D. Performance of DDROM
The ultimate assessment of DDROM is its capability to predict the trajectory of the store for a new parameter set.

Here, we take the first step along this path by looking at the accuracy of predictions of the force and moment coefficients
of the store at its initial configuration (i.e., nearest to the aircraft). The performance is evaluated at the ‘test’ parameter
sets indicated in fig. 7, and the results are presented in table 1. All coefficients are multiplied by 100 to obtain numbers
that are easier to present in the table. The ‘truth’ values of the coefficients come from a FOM trajectory calculation for
the test case. The absolute errors of the DDROM predictions are not insignificant as a fraction of the corresponding truth
values; indeed, there is 180% relative error in roll moment prediction for the case of 𝑀∞ = 0.6 and 𝛼 = 7.5◦. However,
this is somewhat misleading as the truth value of the same happens to be very close to zero. A more representative
metric is the maximum absolute error as a percentage of the range of the respective coefficient observed in the learning
database, as presented in the final row. Even in this perspective, the DDROM performance may only be deemed as
adequate, but it leaves much ground for improvement. The prediction of roll is always difficult for such slender bodies,
and we too encounter this challenge here.

A legitimate question to ask in this context is: what if simple parametric interpolation were deemed acceptable so
that the entire complication of the DDROM could be avoided. To answer this, we have used the griddata function
of the scipy.interpolate library of Python. This constructs an interpolant by dividing the convex hull of the
(parameter) grid into triangular tiles using Delaunay triangulation and then performing piecewise linear barycentric
interpolation on each triangle. The result is presented in table 2 following the schematic of the last row of table 1. It
appears that simple linear interpolation is almost twice as accurate as the hugely more complicated DDROM strategy.
Although this is discouraging, we think that significant improvements may be obtained with several tactics in the future,
as elucidated in section V next.

V. Conclusions
We extend our previous work on efficient albeit approximate computation of store-separation trajectories from

aircraft. The adopted strategy has at heart an empirical reduced-order model (ROM) based on proper orthogonal
decomposition (POD) that is applied to the majority of the flow domain. To overcome the issue of the changing grid and
geometry inherent in the store-separation problem, a domain decomposition strategy has been adopted wherein the
remainder of the domain is solved with the full-order model (i.e., Euler equations), and the subdomains’ solutions are
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Table 1 Performance of DDROM in terms of absolute prediction error of force and moment coefficients at
the initial points of the 4 test trajectories. All coefficients and errors are multiplied by 100 before presenting, to
highlight the actual variations in the small values. The penultimate row gives the ranges of these coefficients
encountered in the learning database, and the last row gives the maximum error encountered in tests as a
percentage of the respective ranges.

𝑀∞ 𝛼 [deg] Quantity 𝐶𝑥 𝐶𝑦 𝐶𝑧 𝐶𝑚,𝑥 𝐶𝑚,𝑦 𝐶𝑚,𝑧

0.6 2.5
Truth 28.58 3.92 30.47 -0.28 -56.77 14.47
Error 1.02 1.92 0.36 0.05 9.23 2.43

0.6 7.5
Truth 27.55 -21.66 45.74 0.10 -39.42 6.54
Error 0.56 3.84 4.78 0.18 0.24 1.89

0.7 2.5
Truth 42.31 8.23 42.55 -0.52 -83.62 24.25
Error 1.59 4.97 0.79 0.38 1.57 0.49

0.7 7.5
Truth 40.66 -28.78 62.40 0.19 -57.59 12.56
Error 2.34 5.88 0.30 0.08 7.71 2.20

Range of truth values 30.56 85.32 65.62 1.09 102.16 37.44

Max error as % of range 7.66 6.89 7.28 35.23 9.03 6.50

Table 2 Performance of linear interpolation as in the last row of table 1.

𝐶𝑥 𝐶𝑦 𝐶𝑧 𝐶𝑚,𝑥 𝐶𝑚,𝑦 𝐶𝑚,𝑧

3.03 4.64 4.36 30.55 5.22 3.80

iteratively matched at the interfaces. This approach may then replicate the result from a quasi-steady RANS-based
approach that is considered the truth solution.

Our earlier work in this regard demonstrated the feasibility of this approach in the context of a two-dimensional toy
problem. Here we have extended this to a much more realistic three-dimensional problem where we predict the force
and moment coefficients on the stores for various test cases. The store trajectories are generated using a 6-DOF solver
in ANSYS Fluent, which also saves the flow solution at each trajectory step. To start predicting the trajectory for a
new parameter case, we extract this flow solution for the 9 nearest neighboring trajectories, and solve the consequent
DDROM problem.

Results demonstrate that the DDROM approach needs to be improved substantially before it can compete with the
very simple linear interpolation. We think that the following steps may achieve this.

• A very coarse grid was use for rapid evaluation of the approach, but this may also have been the primary source of
the prediction inaccuracy. A refinement of the grid is essential.

• Following Ref. [22], a very simple tactic was used for calculating the force and moment coefficients of the store
from the DDROM solution, as a linear combination of the counterparts in the POD database. Although this is
guaranteed to be acceptable for the pressure component (since pressure is one of the POD variables), inaccuracies
are expected to a lesser or greater extent in the shear stress component. This source of error can be obviated
by employing Fluent to directly calculate the force and moment coefficients from the POD-reconstructed flow
solution in the capsule subdomain.

Another shortcoming of the present work is that it stops after calculating the flow solution for the initial step of the
trajectory only. Some challenges were encountered in accessing and utilizing the grid from the Fluent solution at the
subsequent steps of the trajectory. We foresee that these will be overcome in the near future, thus delivering a viable
efficient alternative to CFD-intensive store separation trajectory calculation.
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