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This paper makes contributions towards reduced-order models of wave packets in
supersonic, turbulent jets. Wave packets are large-scale turbulent structures that are
correlated and advected over distances that are large compared to the integral scales
of turbulence, i.e., many jet diameters at the lowest frequencies. They are thought to
be responsible for the peak noise radiated at shallow angles to the jet axis. Linear
wave packet models based on the Parabolized Stability Equations (PSE) have been
shown in the past to be in excellent agreement with statistical structures educed from
experimental pressure and velocity data in subsonic jets. Here, we extend these models
to supersonic jets and validate them using a Large Eddy Simulation (LES) database
for an isothermal and a moderately heated Mach 1.5 turbulent jets. For supersonic jets,
inlet conditions for PSE models are ambiguous, as a parallel flow stability analysis
shows several unstable modes at the inlet cross section. We develop a bi-orthogonal
decomposition and project the LES data onto the relevant families of instability waves.
These serve as inlet conditions, including the amplitude and shape functions, for PSE
solutions which are then favorably compared to the near-field pressure fields educed
from LES. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824479]

. INTRODUCTION

Reducing the noise emitted by turbulent jets is a technological problem that has received
continuous effort since the appearance of commercial jet airliners in the early 1950s. Numerical
simulations are capable of recovering both the properties of the highly turbulent mixing flow and its
radiated sound with remarkable accuracy. However, a complete theory describing the generation of
turbulent mixing noise that would permit the elaboration of simplified models for noise prediction
and control is still lacking. Over the last decades, a theory based on the existence and dynamics of
wave packets as the prominent noise sources has been elaborated, and extensive comparison with
data from simulations and experiments demonstrated its utility. Jordan and Colonius' review the
wave packet’s theoretical framework and supporting experimental evidence.

Wave packets are intermittent advected disturbances within the turbulent mixing flow that
are correlated over significant distances along the jet axial direction, thus serving as efficient noise
sources. Evidence has been amassed that the peak noise emitted by jets, taking place at relatively low
frequencies and being highly directional, is related to these coherent structures. The noise radiated to
the acoustic far-field is mostly contained in the first few (m = 0, 1, and 2) azimuthal wavenumbers,>

) Author to whom correspondence should be addressed. Electronic mail: dani @torroja.dmt.upm.es. Present address: Escola
de Engenharia de Sao Carlos, Universidade de Sdo Paulo, Brazil.

1070-6631/2013/25(10)/105107/20/$30.00 25, 105107-1 ©2013 AIP Publishing LLC


http://dx.doi.org/10.1063/1.4824479
http://dx.doi.org/10.1063/1.4824479
http://dx.doi.org/10.1063/1.4824479
http://dx.doi.org/10.1063/1.4824479
mailto: dani@torroja.dmt.upm.es
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4824479&domain=pdf&date_stamp=2013-10-15

105107-2 Rodriguez et al. Phys. Fluids 25, 105107 (2013)

whereas the turbulent kinetic energy fluctuations are spread over a significant range of wavenumbers
and peak at higher values of m. However, relatively high correlations between the azimuthally
decomposed velocity field measured using time-resolved Particle Image Velocimetry and far-field
pressure measurements suggest that the peak noise radiation is generated by the lower azimuthal
wavenumbers, regardless of their relatively small energy.> Consequently, if an adequate prediction
of the wave packets corresponding to the first few azimuthal modes at lower frequencies can be
obtained, these would provide a useful reduced-order model to guide noise reduction strategies.

Theories modeling wave packets as instability waves of the mean turbulent flow were discussed
by Crighton and Gaster.* Most of these attempts consider statistical descriptions of the wave packets
in the frequency domain, permitting the derivation of a set of equations that describe the evolution
of each individual frequency and azimuthal mode, while inter-modal nonlinear interactions appear
as Reynolds stresses. However, as was pointed out by Crighton and Gaster* and Mankbadi and Liu,’
when interest is focused on the low frequencies and low azimuthal wavenumbers, the Reynolds
stresses acting on them may be negligible due to their small energy content. A linear model for the
individual modes is then justified, assuming that the overall effect of the nonlinearity, fundamental
to the process of turbulent mixing, is already accounted for in the establishment of the turbulent
mean flow. A further improvement in the linear model can be achieved with the introduction of ad
hoc eddy viscosity models.””’

Following diverse assumptions on the characteristics of the mean flow and wave packets,
different approaches to the computation of instability waves have been employed in the past, in-
cluding locally parallel stability analysis based on the Orr-Sommerfeld equation,® multiple-scales
analysis,* parabolized stability equations (PSE),'*"!? global eigenmode analysis,'* and boundary-
value problems.!> Independent of the particular approach followed for the wave packet modeling,
the governing equations are deterministic and the solution depends on prescribed inlet conditions.
Furthermore, when natural (unforced) jets are considered, the inlet conditions are known only sta-
tistically and the complete wave packet description depends on the disturbance spectrum at the inlet
of the computational domain. Data from experiments and high-fidelity numerical simulations can be
used in order to fill the gap in the modeling process, determining adequate inlet conditions for the
wave packet models and consequently calibrating their amplitudes in order to serve as predicting
tools. In line with this, numerical simulations present two main advantages over experiments: all
the fluid variables are computed, as opposed to experiments in which individual quantities (velocity,
pressure, etc.) are measured, and the data are made available simultaneously at a large number of
spatial locations with adequate temporal resolution.

The usual practice for the determination of inlet conditions for numerical simulations and
PSE relies on forcing by eigenfunctions of the classical linear stability theory (LST) of locally
parallel flows. LST studies the growth or decay of perturbation waves about a base flow assumed
to be homogeneous along the streamwise direction, permitting to recast the equations governing
the perturbations at any given cross section into a local eigenvalue problem (EVP). Typically,
only the eigensolution for each frequency and azimuthal number exhibiting the largest spatial
amplification, i.e., the one corresponding to Kelvin-Helmholtz (K-H) instability, is considered,
ignoring the contribution of the other families of eigenmodes present in the spectrum. This is
partially justified by the fact that, regardless of the particularities of the inlet disturbance spectrum,
the most amplified eigenmode is expected to dominate the disturbance field past a short distance
downstream from the nozzle lip. However, the amplitude of the LST eigenfunction still needs to be
determined. Tam and Chen'® proposed a method for the determination of the stochastic wave packet
amplitudes, by assuming that the K-H instability wave was representative of all the fluctuation
energy content at each frequency and matching it to the turbulent kinetic energy at the nozzle
lip.

Tam and Hu'® computed families of spatially amplified eigensolutions under the parallel flow
approximation for high-speed subsonic and supersonic jet flows showing that unstable solutions
different from the dominant K-H instability are present in supersonic jets. These explain the cross-
hatched radiation patterns observed experimentally by Oertel?’ and may be related to the generation
of screech tones in imperfectly expanded jets. In addition, LST shows that several families of neutral
and damped eigensolution exist, besides the amplified wave solutions.

16,17
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In order to account for the complete spectrum of inlet perturbations in their computations of
linear wave packets and Mach wave radiation, Mohseni et al.'> imposed the perturbation profile
computed from a previous direct numerical simulation as an inlet condition.

The decomposition of a total fluctuating flow field delivered by numerical simulation into the
separate contributions of the different eigenmode families may provide further insight into the wave
packet physics. In particular, it can be used to determine the leading contributions that are relevant to
the wave packets and those corresponding to physical mechanisms that, while possibly dominating
the fluctuation field in some spatial regions, are meaningless to the wave packet evolution. This
eigenmode decomposition can be achieved by making use of the bi-orthogonality between the
eigenfunctions of the direct and adjoint LST problems.?'~23

The approach of modeling wave packets as linear instability waves has been widely employed
in the study of forced supersonic jets,> 122426 for which the measured near-field fluctuations were
found to be in good agreement with the predictions of linear stability theory.? In the case of subsonic
natural jets, this approach has only recently begun to deliver satisfactory quantitative predictions,
both in the near pressure and velocity fields.* >’ One of the difficulties associated with the empirical
observation of the coherent structures in natural jets is the lack of a phase reference that is trivially
determined in forced jets. Advanced measurement technologies such as phased microphone arrays
and time-resolved particle image velocimetry, along with cross-correlation techniques like Proper
Orthogonal Decomposition (POD) were instrumental in extracting the coherent part of the turbulent
motion, thus enabling the comparison and demonstrating the utility of the approach. Comparisons
considering simulations or experiments of unforced supersonic jets with linear wave packet models
are still scarce in the literature: Ray et al.” compared the phase velocity of PSE solutions with pressure
measurements for a M; = 1.41, underexpanded isothermal jet by using two-point correlations, but
comparisons of the wave packet evolution along the axial direction have not been reported for
unforced jets with supersonic exhaust speed.

Details of the jet configurations, LES computations and post-processing are given in Sec. II.
Section IIT describes the theoretical background for the wave packet computation using PSE and
the derivation of the local EVP and the eigenmode decomposition technique. The properties of the
eigenspectrum and the different families of eigenfunctions predicted by linear stability theory in the
vicinity of the nozzle lip, where inlet conditions are imposed, are studied in Sec. IV. The projection
of fluctuation profiles extracted from the LES database on the different families of LST eigenmodes
is performed in Sec. V, where the relevance of the different contributions to the PSE inlet conditions
is also discussed. In Sec. VI, the derived inlet conditions are used in the computation of wave packets
using PSE, and the results are compared quantitatively with the averaged and POD-filtered near-field
pressure from the simulation, showing favorable agreement. The conclusions drawn are summarized
in Sec. VIL.

Il. LARGE EDDY SIMULATION DATABASE AND PROCESSING

Large eddy simulation data corresponding to two ideally expanded supersonic jets emanating
from a convergent-divergent nozzle are used in the present work. The jet Mach number defined by the
jetexit velocity and speed of sound is M; = Uj/c; = 1.5 for both conditions. The first case corresponds
to an isothermal jet with static temperature ratio 7j/T, = 1.0, where subscript j refers to the jet exit
conditions and oo to the ambient conditions. The Reynolds number defined by the jet exit velocity,
density p;, and nozzle diameter D is Re = 300 000 for the isothermal jet. The second configuration,
referred to as hot jet, is a moderately heated (Tj/To, = 1.74) jet at Re = 155000. In both cases,
the fluid surrounding the jet has a small co-flow component it., = u.,/co0 = 0.1 which is chosen
to match the corresponding experimental conditions in the United Technologies Research Center
(UTRC) anechoic facility.”® The LES computations were performed using Cascade Technologies’
flow solver “Charles” on an axisymmetric unstructured mesh containing approximately 42x 10°
control volumes, with mostly hexahedral elements. “Charles” uses a finite volume method on an
unstructured grid with localized adaptive refinement. Vreman’s subgrid model is used in order to
account for the unresolved scales. No perturbations are prescribed inside the nozzle, resulting in a thin
transitional shear-layer at the nozzle lip that becomes fully turbulent over the first diameter. Extensive
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comparisons of the simulation results against measurements performed at UTRC, considering mean
flow quantities and near- and far-field pressure spectra, showed excellent agreement. More details
on the LES simulation and its validation can be found in Brés et al.”

In what follows, physical quantities are made dimensionless with the jet diameter D, the ambient
speed of sound ¢, and the ambient density p~. The dimensionless frequency used to show results
will be the Strouhal number defined as St = fD/U;.

Time-averaged mean flow variables were computed using the total simulation time (after initial
transients) of #o & 215D/c, for the isothermal jet and 112D/c, for the hot jet, considered to be
a long time sample of high-fidelity LES, thus ensuring the statistical convergence of the stationary
quantities and also a reasonable convergence of the low-frequency noise spectra. The fluctuation
profiles used in the eigenmode projection are obtained from the discrete Fourier transform (DFT)
of the LES data. The time segments used in the DFTs correspond to the frequency bin ASt = 0.025
and are overlapped 75% of their length, resulting in 29 and 19 segments for the isothermal and hot
jets, respectively.

lll. THEORETICAL BACKGROUND

The turbulent flow field is decomposed into a time-averaged (or mean) flow and temporal
fluctuations, q(x, 1) = q(x) + q'(X, t). A cylindrical coordinate system is used where x = (x, r, 0) are
the axial, radial, and azimuthal coordinates, respectively. The vector of fluid variables is denoted by
q = [ux, u,, ug, p, ], where u,, u,, and uy are the axial, radial, and azimuthal velocity components,
p is pressure, and ¢ = 1/p is the specific volume.

Assuming statistical stationarity and azimuthal homogeneity, the mean flow is only function
of the axial and radial coordinates (q = q(x, r)) and Fourier modes are introduced for frequency
w = 2w M;St and wavenumber m as

q/(X, f) — Z Z qw,m(x’ r) eimOe—iwt. (1)

[0}

A. Parabolized stability equations

Owing to the slow variation of the mean flow along the axial direction (compared to the radial
variation), PSEs have been used in the past>”-!>!3 as a model for the spatial evolution of the large-
scale wave packets. Based on the multiple-scales approach,* PSE accounts for the slow spread of the
jet mean flow and delivers results comparable to spatial direct numerical simulations for convectively
unstable flows.*" The fluctuations 4, (x, r) are decomposed into a shape function q,, ,, which is
slowly varying along the axial direction, evolving on the same scale as the mean flow, and a rapidly
varying wave-like part:

qw,m = Aw,m(-x) qw,m(X, r)

X
= Ay (o) exp (i / aw,m(s)df) Gy 0, 7). @)
Xo
The axial wavenumber «,, , = o, + io; is a complex quantity for which a slow variation has also
been assumed. The axial coordinate xy corresponds to the location where the PSE integration is
initialized, typically a cross-section close to the nozzle lip. In the present computations xy = 0.5D,
which is close enough to the nozzle to obtain consistent results. This issue is discussed further in
Sec. VI. Introducing this decomposition into the compressible Navier-Stokes, continuity and energy
equations and subtracting the terms corresponding to the mean flow we arrive at the system of
equations

0 0 92 92

— +D—+E— +F—— ) q,,(x,7) = Ry - 3
dx ar ar? dxor Qo (- 1) @ )
The linear operators A to E depend on the mean flow quantities, Reynolds number, Mach number,
frequency w, azimuthal wavenumber m, and axial wavenumber «. Details on the derivation of the

d
(A—i——aB—i-C
dx
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system of equations (3) can be found elsewhere.!>3! The system of equations (3) is a linear spatial
operator for each mode (w, m) with the forcing term R,, ,, accounting for mode-dependent Reynolds
stresses. For unforced turbulent jets, the small relative amplitude of the individual modes suggests
that nonlinear interactions between the lower modes can be neglected, as most nonlinear effects are
implicit in the mean flow, so that R, ,, &~ 0.43

After spatial discretization of the radial direction, the system (3) takes the form

04,
ox
where L = C+ FD, and R = —(A + da/dxB + DD, + ED,,) have been introduced. The matrix
operators D, and D, stand for the discrete versions of the first and second order spatial differentiation
along the radial direction, respectively, and also account for the boundary conditions. The numerical
differentiation scheme and the boundary conditions are discussed in Appendix A. The subscripts (w,

m) have dropped for simplicity of notation.
The decomposition of (2) is ambiguous in that the spatial growth can be absorbed into the shape
function q,, ,, or the complex amplitude A, ,,. Following Herbert,*" the normalization condition

* a~wm
/ o 2em gy — o, )
0 ’ ox

where 1, ,, refers to the vector of three velocity components and * denotes complex conjugation, is
imposed individually to every (w, m) mode, removing the exponential dependence from q,, ,,.

Expression (4) is an initial value problem (with the axial distance, x, as a time-like variable) to
be integrated along the axial direction. It requires inlet conditions for the shape function q,, ,, and
amplitude A,, ,, at some location xy. Information provided by locally parallel linear stability theory
(discussed below) is typically employed in the determination of the inlet conditions.

L =Rq, . “)

B. Local stability eigenvalue problem

A local stability eigenvalue problem (EVP) is derived here from the PSE approximation, by
assuming do,, ,/dx ~ 0 and 9q,, ,,/3x ~ idty, m{q,,,- These assumptions are the usual ones in the
derivation of local stability problems of the Orr-Sommerfeld kind, but two differences exist in the
present approach. First, the axial derivatives of the mean flow that are retained in PSE are also
retained here. As shown by Gudmundsson and Colonius,'? these terms have a very minor effect on
the results. Second, the second derivatives of the perturbations in the axial direction appearing in the
viscous term are neglected here as is done in PSE. These terms yield o? terms in the usual spatial
stability problem, requiring a special treatment to recast the equations as a linear EVP that doubles
the size of the matrix EVP. Neglecting these terms alters the results from LST by eliminating two
branches of upstream propagating vortical and entropic waves in the eigenspectrum, as shown by
Li and Malik,*? leaving the other families practically unaltered. The local EVP resulting from these
approximations does not correspond exactly to the parallel-flow stability approach as some of the
first order non parallel terms are kept. However, this formulation is chosen to arrive at an EVP which
is consistent with the PSE operators, also permitting the use of the same characteristic boundary
conditions at the outer flow.

From the approximations above, the following matrix EVP results:

ieL.g =Rq. (6)

where the subscripts (w, m) have been dropped for simplicity. Operators L and R are those in (4), but
particularized for &« = 0. This property is demonstrated in Appendix B. The eigenvalue problem (6)
describes the spatial growth or decay of disturbance waves with a fixed real frequency w and azimuthal
wavenumber m. In addition to the Kelvin-Helmholtz eigenmode, there is a full eigenspectrum of
solutions that is usually ignored when computing initial conditions for the PSE integration, but is
necessary in order to expand an arbitrary perturbation. The eigenspectrum obtained as solution of
the differential problem (6) has discrete and continuous branches, but the spatial discretization of the
problem leads to a discretization of the continuous branches, and consequently only numerable and
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discrete eigenmodes are obtained. To avoid confusion with the notation used so far, the eigenfunction
and eigenvalue corresponding to eigenmode n will be referred to as q,, and &, in what follows. The
properties of the eigenspectrum and eigenfunctions will be discussed in Sec. IV.

C. Bi-orthogonal decomposition and adjoint LST problem

As shown for flat plate boundary layer flows,?!:23:33:3% the eigenspectrum from LST is a com-

plete basis and an arbitrary perturbation profile can be decomposed as a linear superposition of
the eigenfunctions q,(r) = Y, a,4,(r). Due to the non-normality of the linearized Navier-Stokes
equations, the eigenfunctions do not form an orthogonal system, and the solutions of the adjoint
problem are required in order to obtain a bi-orthogonality relation. The discrete adjoint problem,
rather than the analytical adjoint used in the references, is employed here in order to simplify the
computations. Using the usual scalar product between complex vectors, the adjoint problem is

ia"L7q" = RAq", (7

where the superscript H denotes Hermitian transposed and 4 denotes adjoint variables. The adjoint
eigenfunctions will be referred to as §;". The adjoint eigenvalues o, are related to those of the direct
problem (6) by i, = (ie;))*. By construction, the bi-orthogonality relation

(@ —a) (@) Lg =0 ®)

can be used to obtain the weighting coefficients a, in the projection of an arbitrary perturbation
profile ¢ () onto the primal eigenfunctions:

o= (@)"Lw) /(@) La,). ©)

The adjoint eigenfunctions illustrate the spatial regions where the different eigenmodes are more
receptive and serve as a filter of the relative contribution of the individual eigenmodes onto the
arbitrary perturbation profile.?>336

It should be noted that discrete adjoint formulations like the one used here may be inconsis-
tent with boundary conditions assuming continuous derivatives, leading to adjoint eigenfunctions
with unphysical behavior near the boundaries. In those cases, the computed coefficients a,, take
meaningless values and the eigenmode expansion does not converge. In the present computations,
the combination of characteristic boundary conditions with a fine resolution at the outer boundary,
as discussed in Appendix A, resulted in good behavior of the adjoint eigenfunctions at r — oco.
Convergence of the eigenmode expansion is shown in Figure 4.

IV. PROPERTIES OF THE EIGENSPECTRUM

The inviscid LST eigenspectrum was studied for jet profiles in Gill,>” Tam and Burton®® and Tam
and Hu.'” The properties of the viscous eigenspectrum were studied in the framework of temporal
LST by Bertolotti and Colonius®® for a M; = 0.9 jet, and the different families of eigenmodes were
identified and used as initial conditions for the PSE integration. While the physics associated with
the linear waves is the same in the spatial and temporal frameworks, the structure of the spatial
eigenspectrum is different from Bertolotti and Colonius®® and is discussed here. Only the top-
hat velocity profiles representative of the nozzle lip region is considered here. The eigenspectrum
properties are qualitatively identical for the supersonic cold and hot jets studied here.

The solution of the locally parallel linear stability EVP (6) delivers a complete eigenspectrum
of waves. Each eigenmode family is related to a spatial region in the jet mean flow profile. The
outer flow, i.e., the uniform unbounded stream surrounding the jet, supports a continuous spectrum
of pressure (acoustic), vorticity, and entropy waves. The description of these families was done
by Balakumar and Malik* when considering the free-stream of compressible boundary-layers. The
numerical treatment followed here leads to a discretization of the continuous branches; the particular
set of eigenvalues recovered depends on the spatial discretization. Similarly, the potential core can
be regarded as a bounded uniform flow, supporting infinite discrete equivalents of the continuous
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FIG. 1. Spatial LST eigenspectrum for a supersonic jet. (a) Sketch of the different branches of solution. (b) Eigenspectra
for the isothermal M; = 1.5 jet at x = 0.5D, for St = 0.3 and m = 0. Grey lines and symbols correspond to acoustic waves;
vertical solid black lines and asterisks correspond to vorticity and entropy waves in the potential core; vertical dotted black
lines correspond to vorticity and entropy waves in the outer flow; open black circles correspond to core pressure waves; and
the full circle corresponds to the Kelvin-Helmholtz eigenmode.

spectra. Finally, the annular shear-layer gives rise to a discrete eigenmode corresponding to the K-H
mechanism.

Figure 1 shows the structure of the eigenspectrum. The upper plot is a sketch of the theoretical
continuous, discrete infinite, and K-H eigenmodes. The lower plot shows one representative eigen-
spectrum obtained using the mean profile of the isothermal jet at the axial location x = 0.5D for St
= 0.3 and m = 0. The eigenspectrum is qualitatively identical for helical (m # 0) modes.

A. Instability waves

Considering inviscid spatial instability theory, Tam and Hu'® determined three possible kinds
of instability waves. The first kind corresponds to the K-H instability and exists for both subsonic
and supersonic jets. The second and third kinds of instability waves can only exist for supersonic
jets, and correspond to resonances (or reflections’”) of the pressure waves within the potential core,
similar to a Mach wave system confined by the annular mixing layer. Tam and Hu'® considered these
pressure waves as two different kinds according to their subsonic or supersonic phase velocity with
respect to the ambient, since their physical properties and experimental realizability differ notably.?°

The same families of instability waves from Tam and Hu'® are found here, namely, the K-H
eigenmode and a set of resonant pressure waves within the potential core. The phase velocity of the
downstream propagating members of this set is subsonic with respect to the ambient speed, as was
also predicted by Tam and Hu'® due to the relatively small (but supersonic) jet exhaust velocity.
These modes, K-H and core pressure waves, are denoted by the filled and open circles in Figure 1.
The axial velocity and pressure eigenfunctions corresponding to these modes, scaled with the axial
velocity at the lipline, are shown in Figure 2 and are in perfect agreement with those in Tam and
Hu.'"” Inspection of their eigenfunctions suggests that they can be considered as a single branch, and
their elements enumerated according to the number of peaks, k, present inside the potential core.
The first one corresponds to K-H instability; it is characterized by a marked peak at the lipline and
has no peaks inside the potential core (k = 0). Eigenmodes k=1, k=2, ... are core pressure modes
propagating downstream. In a similar fashion, the part of this branch with negative phase velocity
(with «, < 0) is denoted by k = —1, k = —2 and so on. While the k = —1, —2, ... eigenmodes
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FIG. 2. Eigenfunctions of the linear instability waves for the isothermal M; = 1.5 jet at x = 0.5D, for St = 0.3 and
m = 0: axial velocity (a) and pressure (b) components. Solid line with circles: k = —1; solid line: k = 0; dashed line: k = 1;
dashed-dotted line: k = 2.

have negative phase velocity, they correspond to downstream propagating waves; application of the
Briggs criterion*! shows that the group velocity corresponding to these waves is positive.'”

In the outer region, the eigenfunctions decay along the radial direction following the asymptotic
decay rate for hydrodynamic waves in uniform flow ~ r~1/2 exp(—r~+/a? — ?).*? For a fixed fre-
quency o, the decay rate increases with increasing number of peaks k, following the decrease in the
phase velocity. Consequently, only the lower k eigenmodes can contribute noticeably to the pressure
fluctuations in the outer field. Eigenmode k = —1 is characterized by a supersonic negative phase
velocity (o, is a small negative number), and accordingly its radial decay rate is the lowest among
all instability waves: an important contribution to the near acoustic field may be associated with it.
In contrast, Tam and Hu'® argued that states that the core pressure waves moving with supersonic
phase velocity have negligible contribution to the pressure field outside of the annular mixing layer.

B. Acoustic waves in the outer flow

Inviscid instability analysis in the uniform outer flow reduces to the Helmholtz equation, the
solutions of which define branches of acoustic waves. For a free-stream moving at subsonic velocity,
the acoustic branches comprise a finite range of « corresponding to propagating waves and an infinite
range of o corresponding to evanescent waves. The branch points, i.e., locations in the «-plane where
the branches commence, have phase velocity u,;, = w/o,, relative to the outer flow, equal to the speed
of sound: u,; — ifc, = £1 (iic, refers to the co-flow velocity). The propagating parts of the branch
lie between the branch points and the turning point for which & = —wii.,/(1 — ii,), and define
neutral waves with real wavenumber «. The evanescent part of the branches have phase velocity
given by the turning point and extend to o; — *00.

For a mean jet profile, the presence of the finite-thickness mixing layer blurs the distinction
between propagating and evanescent waves, as the branches are no longer composed of straight lines,
but describe curved lines. These branches define the grey cross and the filled squares in Figure 1.
Note that the branch with «; < 0 corresponds to decaying upstream-propagating waves. Figure 3
shows the axial velocity and pressure eigenfunctions corresponding to the four leading, downstream-
propagating acoustic waves. The computational domain used for the computation of the eigenmodes
in the figure extends up to r = 10D. The discrete eigenmode recovered in the solution closest to
the branch point presents a single maximum in the eigenfunctions in the outer flow. The number of
peaks is increased by one as we move along the eigenvalues in the branch. Note that the acoustic
waves exhibit a very slow radial decay compared to the hydrodynamic waves in Figure 2.

Two additional branches in the eigenspectra, denoted by open squares, are also classified as
acoustic pressure waves. These branches are physically meaningful for m # 0. In the present
computations the momentum conservation equation on the azimuthal direction is also maintained
for m = 0 permitting the appearance of these branches, but it is decoupled from the others and the
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FIG. 3. Eigenfunctions of the acoustic waves for the isothermal M; = 1.5 jet at x = 0.5D for St = 0.3 and m = 0: axial
velocity (a) and pressure (b) components. The first 4 eigenmodes are shown.

branches correspond to spurious modes. These acoustic waves are evanescent and propagate at the
speed of sound with respect to the outer flow. In the numerical solution, finite resolution distorts
these branches towards higher phase velocities. However, these mathematical solutions are irrelevant
for the present application.

C. Vorticity and entropy waves

The spatial framework of the linear stability theory for uniform base flow dictates the existence
of two vorticity and two entropy wave branches. These waves are stable and propagate upstream and
downstream with phase speed equal to the mean flow speed. The approximation of neglecting the
second order axial derivative terms in the linear operators L and R neglects the upstream-propagating
branches, as shown by Li and Malik,*> and consequently they are not recovered in the computed
eigenspectrum (Figure 1, bottom).

Both the outer field and the potential core support vorticity and entropy waves, which are
denoted in Figure 1 by vertical black solid and dotted lines, respectively. The phase velocities of
these branches are equal to the mean flow in the respective spatial regions supporting them: u ,, = i,
in the outer region and u,, = M in the core. Only small deviations from their theoretical uniform
flow description appear as a consequence of the presence of the mixing layer, and the branches
corresponding to vortical and entropic waves appear overlapped. For the present supersonic jet, the
branches of core waves lie close to the K-H and pressure waves in the eigenspectrum. The mean
speed in the outer region is small, so the associated wavenumbers are very high and lie outside of the
window shown in the lower part of Figure 1. Like the pressure waves, the eigenmodes in the vorticity
and entropy branches can be denumerated according to the number of peaks that the eigenfunctions
present in the core or outer regions.

V. EIGENMODE DECOMPOSITION OF SIMULATION DATA

Time-dependent fluctuation data from the LES (discussed in Sec. II) are decomposed here into
the contributions of the different eigenmode families. Following from the completeness of the LST
eigenfunction system, the expansion of an arbitrary fluctuation profile will always deliver an accurate
representation if a sufficient number of eigenmodes is used, but this convergence does not imply that
the flow physics are linear. The bi-orthogonal projection is used here as a tool for the determination
of the local contribution of some distinct physical mechanisms to the total fluctuation. In particular,
three kinds of waves are of interest here: the dominant K-H instability, resonant pressure waves
that may exist within the potential core, and the contribution of the acoustic branches. Branches
of vorticity and entropy eigenmodes are considered to be unimportant in the determination of
representative inlet conditions for the large-scale instability wave packets (as discussed in Sec. VI),
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FIG. 4. Fluctuation profiles from LES (solid lines) and the projection on the first 501 LST eigenmodes (dashed lines with
circles), for the isothermal M; = 1.5 jet at x = 0.5D, St = 0.3, and m = 0. Black and grey lines correspond to the real and
imaginary parts, respectively. Inset shows a zoom on the lipline. (a) i, and (b) p.

even though their contribution to the total fluctuation energy, especially in the mean shear region,
may be significant.

Figure 4 compares the LES profiles of axial velocity and pressure for the isothermal jet, and
the projection on a finite but large number of eigenmodes, for the Fourier mode St = 0.3 and
m = 0 at x = 0.5D, illustrating the convergence of the eigenmode expansion. As explained in
Sec. 111, if adjoint eigenfunctions were not adequately computed, the eigenmode expansion of an
arbitrary fluctuation profile would not converge. A linear plot is used here in order to show the match
in phase. The K-H eigenmode and the 500 eigenmodes closest to it are used in the projection. Note
that only a few members of the vorticity and entropy waves in the outer region are included, as they
present large o, and lie far from the K-H eigenmode. This results in small differences between the
LES and the projected profiles towards the outer part of the mixing layer, where the contribution of
vortical eigenmodes is expected to be more relevant.

Figures 5-8 show the separate projections of the isothermal jet LES fluctuation profile on the
K-H eigenmode, the first pair (k = £1) of core pressure modes and the acoustic branches, compared
to the original LES profile for different (Sz, m) modes.

The K-H eigenmode is found to be the dominant contributor to the lipline velocity fluctuations in
most of the Fourier modes examined. While it is customarily assumed that the K-H eigenmode is in
fact responsible for nearly all the fluctuations at the lipline, the present results show that many other
eigenmodes can contribute in a non-negligible manner to the total fluctuations in the near-nozzle
cross sections. The pressure component of the K-H eigenmode is also found to be significant in the
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FIG. 5. Fluctuation profiles from LES (thick grey lines), and their projection on the Kelvin-Helmholtz eigenmode (solid
black lines), core pressure modes k = 1 (dashed black lines), and acoustic families (dotted-dashed black lines). Isothermal
jetat St =0.3, m =0, and x = 0.5D. Inset shows a zoom on the lipline. (a) |i,| and (b) | p|.
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FIG. 6. Fluctuation profiles from LES (thick grey lines), and their projection on the Kelvin-Helmholtz eigenmode (solid
black lines), core pressure modes k = %1 (dashed black lines), and acoustic families (dotted-dashed black lines). Isothermal
jetat St =0.5,m =0, and x = 0.5D. Inset shows a zoom on the lipline. (a) |i,| and (b) | p|.

vicinity of the lipline, but its fast decay in the radial direction makes its direct contribution to the
outer field of less relevance.

Attention is turned now to the resonant pressure waves in the potential core. Only the first pair &
= =1 is used in the eigenmode projections shown here. The following pairs (k = +2, 3, ...) were
found to have much smaller amplitudes and to decay faster in the radial direction. The amplitudes
attained by these eigenmodes inside of the potential core surpass those of the LES profiles, but
they cancel out with the contributions of other core pressure modes, and the core vorticity and
entropy waves. The eigenmode k = —1 has, in the range of frequencies and azimuthal wavenumbers
studied, supersonic phase velocity. The radial decay of the eigenfunction, though governed by the
hydrodynamic asymptotic behavior, is very small and the eigenmode contributes to the velocity
and pressure field in the outer flow in a significant manner over the first few diameters from the
jet axis. However, the axial decay rate of this eigenmode is high. The physical meaning of this
particular eigenmode is unclear: the parallel-flow approximation leading to the LST that describes
them'® does not take into account the diverging nature of the real jet and the closure of the potential
core. The appearance of the cross-hatched patterns observed experimentally’ was explained by the
existence of resonant pressure waves inside an infinite potential core. Relating that interpretation
to the present results does not seem to be straightforward, as the wavelengths associated with the
k = —1 eigenmode are of the same order of magnitude as the actual axial extent of the mean
potential core (between 6 and 7 diameters), invalidating the assumptions in LST. A recent study'*
using a global (multi-dimensional) eigenvalue problem recovered resonant pressure waves inside of
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FIG. 7. Fluctuation profiles from LES (thick grey lines), and their projection on the Kelvin-Helmholtz eigenmode (solid
black lines), core pressure modes k = 1 (dashed black lines), and acoustic families (dotted-dashed black lines). Isothermal
jetat St =0.3, m =1, and x = 0.5D. Inset shows a zoom on the lipline. (a) |i,| and (b) | p|.
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FIG. 8. Fluctuation profiles from LES (thick grey lines), and their projection on the Kelvin-Helmholtz eigenmode (solid
black lines), core pressure modes k = %1 (dashed black lines), and acoustic families (dotted-dashed black lines). Isothermal
jetat St =0.5,m =1, and x = 0.5D. Inset shows a zoom on the lipline. (a) |i,| and (b) | p|.

the finite-length potential core; their perturbation shape functions do not satisfy the quasi-parallel
approximation indicating that neither LST nor PSE are adequate tools for their study, a more general
approach being necessary. However, the resonant core pressure-wave eigenmodes found by Nichols
and Lele'* exhibit a clear noise radiation pattern emerging from the nozzle lip and propagating
predominantly in the upstream direction, in line with the dominance of the k = —1 eigenmode found
in the present projections.

The contributions of a relatively small number of eigenmodes belonging to the upstream and
downstream-propagating branches of acoustic waves are shown together in Figures 5-8. The number
of discrete eigenmodes that need to be considered for the convergence of the projection depends on
the radial extent of the truncated computational domain. In the present results the projected profiles
are visually indistinguishable when more than 20 eigenmodes in each branch are introduced. The
20th eigenmode has axial damping rate «; & 15 and thus decays several orders of magnitude in one
jet diameter, so its relative importance in the total acoustic field is very small. The projected acoustic
field represents accurately the LES perturbation profiles at the outer domain boundary, and the
agreement is maintained until the jet axis in those cases in which the amplitude of the core pressure
modes is comparatively small. This not only confirms that the outer-field vortical and entropic
waves are practically non-existent in the surroundings of the nozzle lip, as should be expected
from the simulation set up, but also attests to the presence of upstream-propagating acoustic waves.
The separate projection on the upstream-propagating acoustic waves (not shown in the figures)
attains much higher amplitudes than those corresponding to the downstream-propagating ones. This
acoustic radiation must be generated by downstream turbulence and is, therefore, not relevant to the
determination of the inlet conditions for the wave packet computation.

The application of the eigenmode decomposition to the hot jet data delivers qualitatively identical
results, and therefore are not reproduced here.

VI. INLET CONDITIONS AND WAVE PACKETS

The eigenmode decomposition of LES fluctuations is now used to determine inlet conditions
for PSE calculations of the wave packets, by assigning the correct amplitude and phase to each
eigenmode of interest and filtering out the other fluctuations. These inlet conditions could in prin-
ciple be used directly in linearized Navier-Stokes'>!” or Euler simulations,'? or along with global
eigenvalue problems'* in order to compute calibrated wave packets. On the other hand, when the
PSE ansatz (2) is imposed, the resulting instability wave is completely defined by a single slowly
varying wavenumber «(x) and one shape function q(x, r) for each (S¢, m) mode. Consequently,
PSE is unable to retain much of the complexity of the imposed inlet fluctuation. The downstream
integration of the parabolized equations tends to converge to the most unstable local eigenmode
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FIG. 9. Axial velocity component of the PSE solutions for the isothermal jet at St = 0.3 and m = 0, with different inlet
conditions at x = 0.5D. (a) LES profile; contours: —10~2 (10=%) 10~2. (b) K-H eigenmode; contours: —10~2 (1073) 1072,
(c) Resonant core eigenmode k = 1; contours: —5 x 10~%(10~%) 5 x 10~*. (d) First five downstream propagating acoustic
eigenmodes; contours: —2.5 x 1073 (5 x 1076) 2.5 x 107>, Grey lines correspond to negative contours, black lines correspond
to u, = 0 and positive contours.

in the proximity of the solution computed at the previous axial location, or to the imposed inlet
conditions at the first axial step.*”

This is not necessarily a drawback in the computation of the large-scale wave packets in ideally
expanded turbulent jets, as the inflectional instability is the only physical mechanism that can give
rise by itself to convectively unstable hydrodynamic perturbations coherent over significant axial
extents. The presence of systems of resonant pressure waves within the potential core is a possible
noise source, as discussed in Sec. V, but its relative importance is expected to be small for the
present simulations of ideally expanded jets.?’ On the other hand, PSE is not adequate for the direct
integration of the acoustic branches as the solution will converge towards the branch points and
the contribution of most of the branch will be artificially damped by the integration algorithm.
Finally, the upstream-propagating eigenmodes, that are neglected by the PSE approximation and the
PSE-based LST approach used in this work, are unrelated to the wave packets, which are advected
downstream.

Figure 9 shows the PSE solutions corresponding to different inlet conditions, for the same

= 0.3 and m = 0 mode. The axial velocity component is displayed in the comparison in order to
illustrate the fine spatial structure of the fluctuations near the lipline. The isothermal jet is considered
and the inlet section is located at x = 0.5D, but the results do not change significantly for inlet sections
between 0.25D and 1D.* Four inlet conditions are considered: case (a) imposes the perturbation
profile as obtained directly from the DFT of a single time-segment of the LES data, without project-
ing on the eigenmodes; case (b) uses the projection of the above-mentioned LES profile on the K-H
eigenmode alone; case (c) is initialized with the contribution of the core pressure eigenmode
k = 1; and case (d) imposes the projection of the first five eigenmodes in the downstream propagating
branch of acoustic modes. The inlet wavenumber is set to «(xp) = 0 in all cases. The iterative process
in the PSE solution adapts the value of o according to the perturbation profile, so that in the first
solution step it is close to that of the leading eigenmode present in q(xo).
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FIG. 10. Pressure amplitude envelope at the near-field cone for the isothermal M; = 1.5 jet. LES data (thick grey lines); first
POD mode (dashed black lines); average of PSE wave packets (thick solid black lines); average £0.5 standard deviation of
PSE wave packets (thin solid black lines); LES data projected on the K-H eigenmode (grey circles).

Note the different contour scales used in the figure for the different cases. The PSE integration
yields very similar results when the LES data are directly used as inlet conditions compared to when
it is first projected onto the K-H eigenmode, both in terms of perturbation shapes and amplitudes.
On the other hand, the spatial structure of the PSE solution differs remarkably when eigenmode
contributions other than that of the K-H eigenmode are considered. In addition, the perturbation
amplitudes corresponding to these solutions are substantially lower than those of cases (a) and (b).
These observations justify the use of the K-H eigenmode, previously calibrated in amplitude via
the adjoint projection of the LES data, as inlet conditions in the PSE modeling of wave packets in
ideally expanded supersonic jets.

The LES data used in the eigenmode decomposition comprise the DFT of a single time-segment
for each projection, but the perturbation profiles corresponding to different segments may differ
notably along the total simulation time, having a strong impact on the projected amplitudes a,,.
Using the LES profile averaged over segments is not correct as the phase relations are not adequately
preserved in the averaging process. In order to compare PSE wave packets with their counterparts
on the LES data, each time-segment is considered as an individual realization of the flow field. For
each segment, the DFT’s profile is projected on the K-H eigenmode for every (St, m) mode and
used as inlet condition in the computations. The solution of linear PSE is independent of the initial
amplitude and phase, so that a single PSE wave packet needs to be computed and then rescaled
using the projection amplitude for each segment. The resulting PSE wave packets are then averaged.
The standard deviation of the PSE solutions is also computed to illustrate the variability of the wave
packets across segments.

In order to streamline comparisons between the LES data and PSE results, the pressure com-
ponent is extracted at a virtual cone representative of the position of an experimental microphone



105107-15 Rodriguez et al. Phys. Fluids 25, 105107 (2013)

St=0.1 St=0.2 St=10.3 St=04 St=0.5
x10~3 x10~3 x10~3 x10~3 x10~3
12 12 12 12 12
m=0
8 8 8 8
~
4 4 4 4
7
7 7
0 5 10 0 ) 10 0 5 0 5 10
x10~3 x10—3 x10~3 x10~3
10 10 10 10
m=1
5 5 5 5 5
=y
oﬁﬁ /

S
W
S
S

[\
N
N
[\

x/D

FIG. 11. Pressure amplitude envelope at the near-field cone for the hot M; = 1.5 jet. LES data (thick grey lines); first POD
mode (dashed black lines); average of PSE wave packets (thick solid black lines); average 0.5 standard deviation of PSE
wave packets (thin solid black lines); LES data projected on the K-H eigenmode (grey circles).

array.”® The cone is located immediately outside of the turbulent mixing region, where the hydrody-
namic component of the pressure is expected to dominate.”’” Analogous comparisons showed very
good agreement between PSE and experiments for subsonic jets,'® especially in the first diameters
of axial development up to the peak in pressure amplitude. The comparison with the averaged pres-
sure became poorer downstream of the peak, as the measurements contained other contributions,
presumably of acoustic nature, unrelated to the wave packets. A POD was used to educe the pressure
contributions with the strongest coherence over the entire microphone array, improving significantly
the comparisons with the PSE computations.

Analogous comparisons are presented here. Pressure amplitude distributions are computed from
the LES data as the square-root of the power spectral density using the same DFT parameters as for
the inlet profiles (see Sec. II). In addition, POD-based large-scale structures eduction is performed
on the LES data considering cross-correlations of the pressure along the virtual cone, following the
procedure described in Gudmundsson and Colonius.'?

Figure 10 compares the PSE results with the averaged and first POD mode of the LES data for
the isothermal jet, at different (Sz, m) modes. In line with related results reported in the literature,>**
the agreement is poor for the lowest (St < 0.2) frequencies. The disagreement may be attributed
to an important influence of nonlinear interactions on these modes'” or to the inadequacy of the
PSE approach for the treatment of low frequencies, as their axial wavelengths become comparable
to the length of the potential core itself, thus violating the separation of scales. On the other hand,
remarkable agreement with the averaged LES data is found from the inlet location up to the location
of the peak amplitude for St > 0.3. Past the amplitude peak, the PSE and raw LES data diverge in
the same manner as was observed for subsonic jets. Considering the first POD mode in this region
improves the comparison, but to a rather modest degree compared with the excellent comparisons
attained for the unheated subsonic jets.'> However, this may be expected for supersonic jets on
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account of the much stronger acoustic field that can require multiple orthogonal POD modes in
order to reproduce adequately the near-field pressure fluctuations.*?

Comparisons for the hot jet are shown in Figure 11. Similar observations to those for the
isothermal jet can be made here. For the hot jet, the solution of the PSE computations initialized
with the projected K-H eigenmode tends to overestimate the peak amplitude at the higher frequencies.

The results presented in Figures 10 and 11 correspond to PSE solutions with amplitudes
determined from the projection of LES data at the section xy = 0.5D. As stated before, the PSE
wave packet models should be consistent in spatial shape and amplitude if the inlet location is
chosen at any cross-section close enough to the nozzle lip. The grey circles in Figures 10 and 11
correspond to the bi-orthogonal projection of the LES data on the K-H eigenmode at the axial
sections xy = 0.25, 0.5, 0.75, and 1D. Comparing these amplitudes with the baseline PSE solution
initiated at xo = 0.5D, it demonstrates that the computed wave packet amplitudes are consistent if
computed in the range 0 < xo < 0.75D. At xy = 1D the K-H amplitude computed from the projection
clearly exceeds the amplitude of the LES solution itself, serving as an indication of the relevance
of other eigenmode families in the projection. From a physical point of view, the reason why the
bi-orthogonal projection is no longer useful for xo > 1D is related to the transitional nature of the
annular shear-layer. As no tripping exists inside the nozzle, the shear-layer is initially laminar and
the growth of the disturbances is likely to be linear for most of the frequency range of interest. In this
case, the bi-orthogonal projection is theoretically well-founded. Between 0.75D and 1D downstream
of the nozzle lip the shear-layer becomes of transitional nature and the projection does not deliver
consistent results for the wave packet amplitude determination.

VIl. CONCLUSIONS

Linear parabolized stability equations are a useful tool for the computation of instability wave
packets modeling the statistical behavior of the large-scale structures in turbulent jets. Previous
experience with subsonic jets showed excellent agreement between the near-field pressure envelope
computed by PSE and phased-array measurements,'? and between the computed velocity field and
the one measured using time-resolved particle image velocimetry.> There, the amplitude calibration
of the linear PSE wave packets was done by fitting directly with the experimental values. Two
main reasons justify this approach. First, LST for subsonic jets shows that the only possible modal
instability is the Kelvin-Helmholtz mechanism, which is convectively unstable except for high
temperature and Mach number jets. Second, the subsonic Mach number implies that the acoustic
component of the pressure near-field is much weaker than the hydrodynamic part corresponding to the
instability wave. Consequently, in the absence of additional disturbance sources (e.g., perturbations
in the potential core originated upstream of the nozzle lip) most of the fluctuations in the first
diameters downstream of the nozzle are associated with the K-H instability. This is not necessarily
the case for supersonic jets, for which linear stability theory predicts the existence of additional
instability mechanisms and a much stronger acoustic field is expected.

The present investigation considered two ideally expanded jets, one isothermal and one moder-
ately heated, for which a high-quality LES database was available. In the simulations, a long time
sample was used in order to achieve reasonable statistical convergence of the low frequencies, and a
relatively fine spatial resolution was used in the vicinity of the nozzle lip to reproduce accurately the
initial shear layer. The quality of the LES database is instrumental in the determination of the inlet
conditions, as well in the subsequent comparisons between the modeled wave packets and those
existing in the turbulent flow.

The local, spatial linear stability eigenvalue problem under the parallel-flow approximation
was used to derive an eigenmode decomposition technique that permits the projection of the local
fluctuation profiles from LES on different subsets of eigenmodes. These projections showed that the
K-H eigenmode, while being dominant for most of the frequencies and azimuthal wavenumbers of
interest, was only responsible for a fraction of the fluctuations. Additionally, the acoustic branches
and a family of pressure waves resonant within the potential core were found to be of relevance
in the LES fluctuation profiles close to the lip. The core pressure waves from the local stability
analysis are suggested to be related to a global instability mechanism'# that radiates sound in the
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upstream direction. It was also found that most of the acoustic field near the nozzle lip section was
constituted of upstream-propagating waves. These findings, along with the particularities of the PSE
ansatz, suggest that only the contribution of the K-H eigenmode need to be included in the inlet
conditions, as was the case for the subsonic jets discussed above. The averaged PSE wave packets
computed using the projection of different time segments of the LES data on the K-H eigenmode
as the inlet condition was found to be in very good agreement with the LES pressure near-field
up to the location of the amplitude peak, for the range of frequencies St = 0.3-0.5 and azimuthal
wavenumbers m = 0, 1, and 2. An important variability of the wave packet amplitudes, related to
the temporal intermittency observed in experiments,*>4° is also observed in the present results.
Knowledge of the initial K-H amplitude on a statistical basis can be used to calibrate the linear
wave packets. The determination of the initial amplitudes is a receptivity problem that requires of
detailed information of the disturbances existing upstream of the nozzle lip and the state of the inner
boundary layer, and their dependency on the jet parameters such as the jet exhaust Mach number
and temperature ratio. The convective nature of the inflectional instability that gives rise to the wave
packets implies that once the amplitudes at a single near-nozzle cross-section are determined, the
PSE models predict the axial evolution of the wave packet amplitudes without further information.
Experimental or high-fidelity simulation data (like the present LES database) of the upstream and
near-nozzle flow can be used to determine correlations between these parameters and the inlet
perturbations to be used in the calibration of wave packet models for engineering purposes.
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APPENDIX A: NUMERICAL IMPLEMENTATION

The linear operators conforming both the LST and PSE problems are discretized using fourth-
order central finite differences in the radial direction, with an appropriate mapping in order to cluster
points in the lipline region. The outer boundary of the domain is closed with the characteristic
boundary conditions of Thompson.*’ The boundary conditions at the centerline are derived following
Mohseni and Colonius.*® The discretized versions of the linear operators A through E are stored in
sparse format, exploiting the banded structure of the differentiation matrix.

In the discretization of the operators, resolutions larger than those usual in PSE computations are
used. It is found that 200-300 discretization points suffice in order to converge the K-H eigenmode,
but the convergence of the eigenmode decomposition required 950 points on the radial direction. A
maximum of 1500 points was used in order to evaluate the convergence. These high resolutions are
required due to the use of the discrete adjoint: an unphysical behavior appears near the outer boundary
in the adjoint eigenfunctions due to the characteristic boundary conditions that is reduced as the
resolution increases. The eigenfunctions corresponding to acoustic modes are especially sensitive to
resolution. The bi-orthogonal projections shown in Figures 4-8 are computed in a domain extending
up to r = 5D. The acoustic eigenfunctions in Figure 3 were computed in a larger domain to illustrate
clearly the oscillations in the outer flow.

Two different methods were implemented for the solution of the eigenvalue problems (6) and (7).
The first method stores temporally the matrices L and R in dense format, and uses the QZ algorithm
implementation (routine ZGEEV) included in the open library Linear Algebra PACKage (LAPACK)
for the solution of generalized eigenvalue problems of non-symmetric complex matrices. This
approach permits computing the right and left eigenvectors of the problem at the same time, thus
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solving both the direct and adjoint problems simultaneously. However, the dense storage demands
an order of magnitude more memory than the sparse approach, and becomes prohibitive in terms
of central processing unit (CPU) time for the resolutions employed here. The second method for
the solution of the EVP is an sparse implementation of the Arnoldi’s algorithm**>° that permits
recovering a window of the eigenspectrum by means of an iterative method. The sparse linear algebra
package MUMPS®! is employed in the solution of the associated linear problems. A shift-and-invert
transformation is used, transforming the problem to be solved into

(R —ioL)"'Lg = 4, (A1)

where © = —i(e — o)~'. The shift parameter o is used to control the center of the eigenvalue
window: the eigenvalues closer to o will be the first to converge. The present implementation of the
Arnoldi’s algorithm does not permit the direct computation of the left eigenvectors, and (7) must
be solved explicitly. The results delivered by the two different EVP solvers were cross-checked,
obtaining identical results for the converged eigenvalues.

Parabolized stability equations (4) are integrated along the axial direction using an implicit
Euler scheme, in which the solution §,, at the axial step x; 1 | is obtained from q; by solving

Q1 — 4, 3
L (#) =Ry )0, (A2)

where Ax = x; | — x;. Note that L and R depend on the mean flow quantities, and hence their
dependence on the axial location. The solution of (A2) is computed using the sparse library MUMPS.

APPENDIX B: RELATION BETWEEN THE MATRIX OPERATORS OF PSE AND LST

The homogeneous linearized Navier-Stokes equations, after Fourier transform in time and
azimuthal direction, can be written as

Horl, el v v w2 g, =0 B1)
0 ox T oax? "or M oxr o2 ) dom =

Upon introduction of the PSE ansatz (2) into (B1), one arrives at the homogeneous form of Eq. (3)
by defining the operators:

A = Hy + ioH, — o*Hy,, (B2)
B=iH,,, (B3)
C = H, + 2iaH,,, (B4)
D =H, +iocH,,, (B5)
E=H,, (B6)
F=H,, (B7)

so that L and R in Eq. (4) take the form

a
L =H, + 2ieH,, + HX,a—, (B8)
r

0 0 92
R=—(Hy+ioH, — o’H,, + H,— +iaH,, — + H,, — ). (BY)
or or ar?
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On the other hand, introducing in Eq. (B1) the LST ansatz q,, ,,(x, r) = Qw,m(r)ei”, results

a ad 92
(Ho +ioaH, — o’H,, + H -+ iaHX,a— + Hr,ﬁ> a,,, =0. (B10)
r r r ’
Neglecting o terms and recasting as a linear EVP for a:
io |H, + H 9 )4 H Ha H—82 q (B11)
lov X xXr o m =\ — oy = oy me
or ) de. 0 or ar2 ) de.

When particularized for « = 0, the matrices L in (B8) and R in (B9) are, respectively, identical to
the left- and right-hand side matrices in Eq. (B11).
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