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This paper studies the jet noise modelling based on two different approaches - Lighthill’s
and Lilley’s. Lighthill’s approach is an exact acoustic analogy, while Lilley’s approach is an
approximate one with an additional assumption of a locally-parallel base flow. Both approaches
are based on rearranging the flow equations into a linear propagation operator and a noise source.
The noise propagation is determined by calculating the Green’s functions of the corresponding
linear wave-like propagation operators. In both models, the sources are described as a statistical
model of the two-point cross-correlation of the velocity fluctuations, which are characterized by
the turbulent length and time scales. To predict the far-field noise, the two models are used
for an isothermal and a heated ideally-expanded Mach 1.5 round jets. Lilley’s model results
demonstrate a good match with the direct predictions from the time-resolved LES data using
the Ffowcs Williams-Hawkings (FW-H) method. On the other hand, Lighthill’s model results
exhibit a good agreement with the FW-H results at higher polar angles of observer locations,
but some under-prediction at lower polar locations.

I. Introduction

Jet noise is one of the most challenging fluid mechanics problems that researchers have been working on for the last
few decades and it is also one of the loudest noises ever produced by mankind. The introduction of the turbofan

engine with a progressively higher bypass ratio has reduced jet noise by a significant amount. Further reduction in jet
noise while maintaining other performance characteristics is extremely challenging. A considerable amount of research
has been conducted towards developing quieter nozzle designs. The development of such designs is challenging because
of the cost constraints and the high complexity of the flow field. The understanding of the flow field and sources of jet
noise will guide the development of noise prediction tools and that eventually will lead toward quieter designs.

A typical jet noise prediction methodology has the following elements – the formulation of a linear wave-like
propagation operator, the designation of the corresponding noise source, calculation/modelling of these noise sources,
and solution of the radiated sound. There are numerous possible choices for decomposing the nonlinear governing
equations for flows, written compactly here for flow field vector 𝑞 as 𝑁 (𝑞) = 0, into a noise source S and a propagation
operator 𝐿 as 𝐿𝑞 = S (𝑞). If the latter is an exact rearrangement of the original 𝑁 (𝑞) = 0 equation then it is called an
acoustic analogy; otherwise it is simply a noise model. The first such theoretical formulation for aerodynamic noise
prediction was the work of Lighthill [1]. Lighthill formulated his acoustic analogy by reworking the Navier-Stokes
equation (NSE) into an inhomogeneous wave equation by combining the time derivative of the continuity equation
with the divergence of the momentum equation. He chose the propagator 𝐿 as the free-space wave operator (i.e.,
propagation through a quiescent medium), and the corresponding source was found to have a quadrupolar character.
The exact solution to the Lighthill’s equation can be determined by evaluating the convolution integral of the Green’s
function of the free-space wave operator with the corresponding source term. Lilley [2] modified Lighthill’s equation by
considering the propagation of sound through a locally-parallel medium, as is appropriate for many shear flows, and jets
in particular. Unlike Lighthill’s analogy, the Lilley’s propagation operator accounts for the convection and refraction of
the sound waves; in Lighthill’s approach these effects are subsumed in the source term. Later, Goldstein [3] proposed a
generalized acoustic analogy that was an exact consequence of NSE, considering the propagation of sound through
an arbitrary medium. These successive developments were geared towards shifting the burden from modelling of the
source S to solving the propagation operator 𝐿.

It is computationally expensive and time-consuming to predict noise from a turbulent jet using Direct Numerical
Simulation (DNS) or Large Eddy Simulation (LES). Tam and Auriault [4] proposed a semi-empirical theory to predict
the far-field noise from fine-scale turbulence that required only the mean flow velocity, density, turbulent kinetic
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energy and dissipation in the near-field region. The much more economical steady Reynolds averaged Navier-Stokes
(RANS) simulation sufficed for this purpose. The turbulent statistics in the source region were modelled using the
turbulent length, time and velocity scales. The authors showed very accurate noise prediction vis-à-vis experimental
measurements over a wide range of jet velocities and temperature ratios for single-stream round jets, especially in the
sideline and upstream direction where the fine-scale contribution dominates. Refs. [5] and [6] introduced an acoustic
analogy based on the linearized Euler equations (LEE) with no assumptions of fine-scale or large-scale noise sources.
The former paper also discussed the similarities in the outputs of Lighthill’s approach and Tam and Auriault’s method,
once consistent assumptions are made for the corresponding source terms. The LEE-based approach was also used in
Ref. [7] for a Mach 0.9 jet, where comparisons were made with the noise results from the asymptotic solutions given
in Refs. [8] and [9]. Miller [10] presented an acoustic analogy that independently predicted the noise from turbulent
mixing and shock interactions based on the LEE. Of late, this methodology has been successfully used to predict the
noise from chevron jets and axisymmetric dual-stream jets for a wide range of Mach numbers and temperature ratios; it
is employed in the present work too. In parallel, Papamoschou [11] has successfully used Lighthill’s approach to model
the noise from complex multistream jets, and our research is guided by this too.

Samanta et al. [12] have evaluated the robustness of a Lighthill-like analogy, Lilley-like analogy and Goldstein’s
generalized acoustic analogy for a two-dimensional mixing layer using a DNS solution. The uniform base flow yields
the Lighthill-like analogy and a globally parallel base flow yields the Lilley-like analogy. They found that the analogy
formulations with the dominant refraction included in the propagation operator are significantly more robust to errors.
In this work, Lighthill’s and Lilley’s acoustic analogy-based noise prediction methods have been studied by modelling
their respective source terms as a function of the local turbulent length and time scales. The turbulent length and time
scales are modelled from the time-averaged values of turbulent kinetic energy 𝐾 and dissipation 𝜖 data using simple
scaling laws and empirical coefficients. A similar statistical model has been used to describe the turbulence in the flow
for both Lighthill’s and Lilley’s models. A well-validated LES database [13] comprising of two supersonic round jets
– one isothermal and the other heated – are used for the analysis. The time-averaged data required for the two noise
prediction models are extracted from the LES database. The accuracy of these models is investigated by comparing
the predicted spectra with the sound propagated directly from the time-resolved LES data using the Ffowcs Williams
- Hawkings (FW-H) approach. Both the models are showing excellent match towards the sideline angles of the jet;
however, Lighthill’s approach is under-predicting the sound at the louder aft angles compared to Lilley’s model.

II. Lighthill’s Model
Lighthill’s acoustic analogy combines the time derivative of the continuity equation with the divergence of the

momentum equation. It can be written in Cartesian tensor notation as

1
𝑎2
∞

𝜕2𝑝′

𝜕𝑡2
− 𝜕2𝑝′

𝜕𝑥𝑖𝜕𝑥𝑖
=

𝜕2𝑇𝑖 𝑗

𝜕𝑥𝑖𝜕𝑥 𝑗
, (1)

where 𝑎∞ is the ambient speed of sound and the Lighthill stress tensor 𝑇𝑖 𝑗 is 𝜌𝑢𝑖𝑢 𝑗 + (𝑝 − 𝑎2
∞𝜌)𝛿𝑖 𝑗 − 𝜏𝑖 𝑗 . Here 𝑝 is the

pressure, 𝑢𝑖 is the velocity vector, 𝜌 is the density, 𝜏𝑖 𝑗 is the viscous stress tensor, and (·)′ denotes fluctuations from the
base (ambient) state.

Morris and Farassat [5] presented two noise prediction schemes based on Lighthill’s acoustic analogy. The
’Lighthill’s Acoustic Analogy: Model 2’ described in Ref. [5] has been followed in this paper. The expression for
spectral density of far-field pressure (eqn. (61) in Ref. [5]) contains the two-point-two-time cross-correlation of the
Lighthill stress tensor, modelled as〈

𝑇𝑖 𝑗 (𝒙𝑠 , 𝑡)𝑇𝑘𝑙 (𝒙𝑠 + 𝜼, 𝑡 + 𝜏)
〉
= 𝐴𝑖 𝑗𝑘𝑙 exp

{
− |𝜂𝑥 |
𝑢𝑥𝜏𝑠

− (𝜂𝑥 − 𝑢𝑥𝜏)2

ℓ2
𝑥

−
𝜂2
𝑦

ℓ2
𝑦

−
𝜂2
𝑧

ℓ2
𝑧

}
, (2)

where 𝒙𝑠 is the source position vector, 𝜼 := (𝜂𝑥 , 𝜂𝑦 , 𝜂𝑧) is the spacial separation vector, 𝜏 is the time lag, 𝜏𝑠 is the
turbulent time scale, {ℓ𝑖}𝑖∈{𝑥,𝑦,𝑧} are the turbulent length scales, (·) denotes the time-averaged quantity and 𝐴𝑖 𝑗𝑘𝑙 is the
correlation amplitude. The model posits that the correlation has a Gaussian decay in the spacial direction with different
length scales in the axial and cross-stream directions. Since the turbulence is not isotropic because of the convection of
the eddies downstream, the axial extent of the correlation must be larger compared to the cross-stream direction. The
(𝜂𝑥 − 𝑢𝑥𝜏) term accounts for the eddy convection in a fixed frame of reference, invoking the frozen field hypothesis.
Finally, it posits an exponential decay of correlation in time, with time scale 𝜏𝑠 , if one were to move with the mean flow.
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Morris and Farassat [5] simplified the spectral density equation for an observer at Θ = 900, where Θ is the polar
angle of the observer measured w.r.t. the jet downstream axis. That is, the dot product between the spacial lag (𝜼) and
the position vector of the observer (𝒙) was neglected (Eqn. (66) in Ref. [5]). Since the current work is not restricted to
Θ = 900, the spectral density equation can be written as

𝑆𝑝 (𝒙 , 𝜔) =
𝜋−5/2𝜔4

32𝜌∞𝑎5
∞𝑅

2

∫
𝒙𝑠

∫
𝜼

𝛽𝑖𝛽 𝑗 𝛽𝑘𝛽𝑙𝐴𝑖 𝑗𝑘𝑙
ℓ𝑥

𝑢𝑥
exp

{
−𝜔

2ℓ2
𝑥

4𝑢2
𝑥

− 𝑖𝜔(𝜼 · 𝒙)
𝑅𝑎∞

− |𝜂𝑥 |
𝑢𝑥𝜏𝑠

− 𝑖𝜔𝜂𝑥
𝑢𝑥

−
𝜂2
𝑦

ℓ2
𝑦

−
𝜂2
𝑧

ℓ2
𝑧

}
𝑑𝜼𝑑𝒙𝑠 , (3)

where 𝛽𝑖 are the direction cosines, 𝜔 is the circular spectral frequency of interest, and 𝑅 is the radial position of the
observer in polar coordinates. Performing the integral over 𝜼 analytically, the spectral density equation for an observer
located at 𝒙 := (𝑅,Θ, 𝜙 = 0) can be written as

𝑆𝑝 (𝒙 , 𝜔) =
𝜋−3/2𝜔4

16𝜌∞𝑎5
∞𝑅

2

∫
𝒙𝑠

𝛽𝑖𝛽 𝑗 𝛽𝑘𝛽𝑙𝐴𝑖 𝑗𝑘𝑙
ℓ𝑥ℓ𝑦ℓ𝑧𝜏𝑠

𝜔2𝜏2
𝑠

(
1 + 𝑢𝑥 cosΘ

𝑎∞

)2
+ 1

exp

{
− 𝜔2

4𝑎2
∞

(
𝑎2
∞ℓ

2
𝑥

𝑢2
𝑥

+ ℓ2
𝑦 sin2 Θ

)}
𝑑𝒙𝑠 . (4)

The direction cosines for the far-field observer are

𝛽1 = cosΘ, 𝛽2 = sinΘ cos 𝜙, 𝛽3 = sinΘ sin 𝜙. (5)

The amplitude of the two-point-two-time cross-correlation (𝐴𝑖 𝑗𝑘𝑙) is modelled in terms of the shear-noise and self-noise
[14]. The shear noise is directive because it is produced jointly from turbulence and jet mean flow. Papamoschou [11]
has explained each term in shear noise and its modelling. The self-noise is omni-directional because it is assumed to
arise from isotropic turbulence [14]. The total contribution from self and shear noise in the direction of the far-field
observer is modelled as

𝛽𝑖𝛽 𝑗 𝛽𝑘𝛽𝑙𝐴𝑖 𝑗𝑘𝑙 = 𝐴


𝜌2𝑢2

𝑥

(
8
3
𝐾 cos2 Θ + 8𝑔 cos3 Θ sinΘ cos (𝜙𝑠 − 𝜙)

)
︸                                                            ︷︷                                                            ︸

shear noise

+ 𝜌2𝑢4
𝑠︸︷︷︸

self noise


, (6)

where 𝐴 is a constant, 𝐾 is the time-averaged value of turbulent kinetic energy, 𝜙𝑠 is the azimuthal location of the
source, 𝑢𝑠 is the velocity scale and

𝑔 = 𝜈𝑇

����𝜕𝑢𝑥𝜕𝑟 ����,
where 𝜈𝑇 is the turbulent viscosity. The second term in the shear noise component in eqn. (6) does not contribute
anything to the far-field noise for an axisymmetric jet [14]. The azimuthal integral over this term goes to zero in the
spectral density equation.

The turbulent viscosity, turbulent length, time and velocity scales are modelled as [4–7, 10, 11]:

𝜈𝑇 = 𝑐𝜇
(𝐾)2

𝜖
, ℓ𝑥 = 𝑐ℓ

(𝐾)3/2

𝜖
, 𝜏𝑠 = 𝑐𝜏

𝐾

𝜖
, 𝑢𝑠 =

√︂
2
3
𝐾 (7)

where 𝜖 is the time-averaged value of turbulent dissipation and 𝑐𝜇, 𝑐ℓ and 𝑐𝜏 are empirical constants. Further, the
cross-stream length scales are assumed to be one-third of the streamwise length scales at all locations:

ℓ𝑦 = ℓ𝑧 = ℓ𝑥/3 . (8)

The turbulent length scale is expected to depend on the spectral frequency being considered. Let us denote
the frequency-dependent streamwise length scale as 𝑙𝑥 (𝒙𝑠 , 𝑆𝑡), where 𝑆𝑡 = 𝜔𝐷 𝑗/(2𝜋𝑈 𝑗 ) is the Strouhal number
corresponding to the frequency 𝜔 under consideration, 𝐷 𝑗 is the jet’s nozzle-exit diameter, and 𝑈 𝑗 is its nozzle-exit
velocity. Following Ref. [15], all these length scales are modelled as

𝑙𝑖 (𝒙𝑠 , 𝑆𝑡) = ℓ𝑖 (𝒙𝑠)
1 − e−𝑐 𝑓 𝑆𝑡

𝑐 𝑓 𝑆𝑡
, ∀𝑖 ∈ {𝑥, 𝑦, 𝑧}, (9)

where 𝑐 𝑓 = 11.25 was chosen to match the experimental observations. While computing the spectral density, all the
length scales are replaced by the frequency-dependent length scales in eqn. (4).
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III. Lilley’s Model
Our mathematical formulation of Lilley’s model is based on the works of Refs. [4–7, 10]. The governing equations

are the Euler equations as viscous effects are deemed unimportant for both sound generation and propagation. The
equations are

𝐷𝜋

𝐷𝑡
+ ∇ · 𝒖 = 0, (10a)

𝐷𝒖

𝐷𝑡
+ 𝑎2

∇𝜋 = 0. (10b)

where 𝐷 (·)/𝐷𝑡 is the material derivative, 𝑎 is the local speed of sound and 𝜋 := (1/𝛾) ln (𝑝/𝑝∞) is the logarithmic
pressure. The Euler equations are linearized by expanding the flow variables as fluctuations on a time-averaged base
state and retaining terms on the left-hand side (LHS) that are linear in the fluctuations while gathering all remaining
nonlinear terms on the right-hand side (RHS). The nonlinear terms on the RHS are noise sources. The linearized Euler
equations (LEE) are solved by finding its vector Green’s function and convolving it with the sources.

Considering a locally parallel mean flow for a round jet, the LEE has been simplified to the Lilley’s equation [2].
The Lilley’s operator acting on the logarithmic pressure component of vector Green’s function of the LEE (�̂�𝑛𝑔) in the
Fourier domain can be written as

𝐿𝐿 �̂�
𝑛
𝑔 (𝒙 |𝒙𝑠;𝜔) = 𝐷

2
𝜔 (𝛿 (𝒙 − 𝒙𝑠)) 𝛿0𝑛 − 𝐷𝜔

𝜕

𝜕𝑥
𝛿 (𝒙 − 𝒙𝑠) 𝛿𝑥𝑛 −

[
1
𝑟
𝐷𝜔

𝜕

𝜕𝑟
(𝑟𝛿 (𝒙 − 𝒙𝑠)) − 2

𝑑𝑢𝑥

𝑑𝑟

𝜕

𝜕𝑥
𝛿 (𝒙 − 𝒙𝑠)

]
𝛿𝑟𝑛

− 1
𝑟
𝐷𝜔

𝜕

𝜕𝜙
𝛿 (𝒙 − 𝒙𝑠) 𝛿𝜙𝑛 =: S 𝑛 (𝒙 − 𝒙𝑠;𝜔), (11)

where

𝐿𝐿 =

(
𝐷

3
𝜔 − 𝑎2 𝐷𝜔∇2 − 𝑑𝑎2

𝑑𝑟
𝐷𝜔

𝜕

𝜕𝑟
+ 2𝑎2 𝑑𝑢𝑥

𝑑𝑟

𝜕2

𝜕𝑥𝜕𝑟

)
(12)

is Lilley’s wave operator and 𝐷𝜔 := −𝑖𝜔 + 𝑢𝑥𝜕/𝜕𝑥. Here, the governing equation is written in cylindrical coordinates
because we are considering an axisymmetric jet. The vector Green’s functions are indexed by 𝑛, which takes values in
N := {0, 𝑥, 𝑟, 𝜙} corresponding to forcing of the conservation equations for mass and three cylindrical components of
momentum. Let the scalar Green’s function of the above Lilley’s equation be denoted as �̂� (𝒙 |𝒙𝑠;𝜔). Then the pressure
component of the vector Green’s function of LEE can be written as the convolution integral

�̂�𝑛𝑔 (𝒙 |𝒙𝑠;𝜔) =
∭

�̂� (𝒙 |𝒙𝑡 ;𝜔) S 𝑛 (𝒙𝑡 − 𝒙𝑠;𝜔)𝑑𝒙𝑡 . (13)

The Green’s function of the Lilley’s equations are solved numerically using the adjoint approach, as explained by Tam
and Auriault [16] and Raizada and Morris [7]; subsequently, the pressure component of the vector Green’s functions of
LEE are determined using eqn. (13). The far-field pressure fluctuations may be obtained by convolving the four Green’s
functions’ pressure components with the corresponding sources of the LEE. We are interested in the spectral density
of the pressure and we have followed the work of Miller [10] to determine the spectral density from the governing
equations. The two-point–two-time cross-correlation of the nonlinear source terms of the LEE has been modelled using
the local turbulent length and time scales, and is of the form

⟨ 𝑓𝑛 (𝒙𝑠 , 𝑡) 𝑓𝑛′ (𝒙𝑠 + 𝜼, 𝑡 + 𝜏)⟩ = 𝛿𝑛𝑛′𝐴𝑛 (𝒙𝑠) exp

{
− |𝜏 |
𝜏𝑠

− (𝜂𝑥 − 𝑢𝑥𝜏)2

ℓ2
𝑥

−
𝜂2
𝑦

ℓ2
𝑦

−
𝜂2
𝑧

ℓ2
𝑧

}
, (14a)

𝐴0 = 𝐵2
0
(𝑢𝑠/𝑎∞)4

𝜏2
𝑠

, 𝐴𝑛 = 𝐵2
>0

(𝑢𝑠/𝑎∞)2𝑢4
𝑠

ℓ2
𝑥

, (14b)

where 𝑢𝑠 is the velocity scale and 𝑓𝑛 are the nonlinear sources of the LEE; specifically, 𝑓0 is the unsteady dilatation and
the other three are the components of unsteady force per unit mass. The model assumes that the four source terms in
the LEE are uncorrelated and the magnitudes of the correlation functions are related by dimensional analysis to the
local turbulent velocity, time and length scales. The Gaussian terms in this correlation model are the same as that of
eqn. (2). Here, the first term in the exponential is slightly different from eqn. (2), where the 𝜂𝑥/𝑢𝑥 term is replaced by 𝜏.
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LES Case 𝑀 𝑗𝑒𝑡 𝑇𝑗𝑒𝑡/𝑇∞ 𝑀𝑎 𝑅𝑒 𝑗𝑒𝑡

B118 1.5 1.0 1.5 300,000
B122 1.5 1.74 1.98 155,000

Table 1 Test cases used from LES database of Ref. [13].

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 1 Contours of mean values of streamwise velocity of (a) B118 and (b) B122 jets, turbulent kinetic energy of
(c) B118 and (d) B122 jets, turbulent dissipation in (e) B118 and (f) B122 jets, and density of (g) B122 jet.

Assuming the convection of the turbulent eddies at a speed of mean flow velocity, the exponential terms of both the
cross-correlation models are the same.

Assuming that the observer is in the far field and the vector Green’s function of two closely-placed source points
differ by only a phase factor [4], we find the spectral density equation for an observer located at 𝒙 := (𝑅,Θ, 𝜙 = 0) as,

𝑆𝑝 (𝒙 , 𝜔)
(𝛾𝑝∞)2 = 2𝜋3/2

∑︁
𝑛∈N

∫ ���̂�𝑛𝑔 (𝒙 |𝒙𝑠;𝜔)��2𝜎𝑛 (𝒙𝑠;𝜔, 𝒙)𝑑𝒙𝑠 ,

𝜎𝑛 := 𝐴𝑛ℓ𝑥ℓ𝑦ℓ𝑧𝜏𝑠
exp

{
−𝜔2 (ℓ2

𝑥 cos2 Θ + ℓ2
𝑦 sin2 Θ)/4𝑎2

∞
}

1 + 𝜔2𝜏2
𝑠 (1 − 𝑢𝑥 cosΘ/𝑎∞)2 . (15)

Here also, the turbulent length, time and velocity scales are computed from the time-averaged values of turbulent kinetic
energy and dissipation using eqn. (7). Similar to the previous model, consistent assumptions have been used in the
cross-stream length scale model (eqn. (8)) and the frequency-dependent length scale model (eqn. (9)).
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IV. Results and Discussion
A steady RANS solution is enough to predict the far-field jet noise using the models explained in the previous

section. However, if we want to validate these models, then we need an independent prediction of the noise, which is
impossible with the RANS data. Instead of using a steady RANS solution, the LES results of Brès et al. [13] are used,
and the required input parameters are computed from it for the two noise prediction models. The database is summarized
in Table 1 and consists of an isothermal ideally-expanded round jet (case B118) and a heated ideally-expanded round
jet (case B122). The unstructured LES grid had 42 million control volumes; for the current analysis, this data was
interpolated to a cylindrical structured grid having about 1.3 million points, and extending 20𝐷 𝑗 in the streamwise
direction and 3.5𝐷 𝑗 in the radial direction.

Fig. 2 Comparison of the far-field noise predicted with the FW-H results for the (a) B118 and (b) B122 jets.
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The input data required for the noise prediction models are the mean flow velocity 𝑢𝑥 , density 𝜌, turbulent kinetic
energy 𝐾 and dissipation 𝜖 . These quantities are computed from the LES database for both the isothermal and heated
jets. The contours of mean flow data extracted from the LES database are shown in Figure 1. The input parameters are
nondimensionalized with respect to the nozzle-exit diameter 𝐷 𝑗 , the ambient density 𝜌∞ and the ambient speed of
sound 𝑎∞. We can see that the turbulent kinetic energy and dissipation are dominant in the shear layer where the noise
sources are active and they are vanishing beyond the inner and outer edges of the shear layer. The noise source models
in eqns. (2) and (14) are also showing that the noise sources are active were turbulent kinetic energy and dissipation are
active. The density plot of the isothermal B118 jet is not shown, as it is essentially uniform throughout.

The far-field noise is quantified using the sound pressure level (SPL) spectra at various observer locations. The polar
angles of these observer locations are ranging from Θ = 300 to 900 and the corresponding polar radii are chosen to
match the location of microphones in the reference experiments of Schlinker et al. [17], wherein a rectilinear array was
used. The reference noise spectra presented in fig. 2 for the two jets are calculated directly from the time-resolved flow
field fluctuation data available in the LES solutions of Brès et al. [13]. For this, the Ffowcs Williams and Hawkings
(FW-H) method [18] is used, as was done in Ref. [13]. The authors reported an excellent match with the reference
spectral data from the experiments of Ref. [17], which validated their LES simulations.

The far-field noise predicted using Lighthill’s and Lilley’s models are plotted along with the reference spectra in
fig. 2. It is evident that the Lighthill’s model predictions are excellent at higher polar angle observer locations (i.e.,
towards the sideline angles). But the model is under predicting as the observer location moves towards the lower polar
angles (i.e., towards the aft angles). The Lilley’s model prediction is showing a good match with the reference spectra
except at high frequencies for both jets. Although there are slight differences, both models are agreeing well with the
reference spectra at sideline angles. This is because the convection and refraction effects are not having a significant
contribution to these observers. The Green’s function of the Lighthill’s model is the free space Green’s function, which
accounts for the propagation of the sound. The source terms contain all the convection and refraction effects in the flow
field and these are modelled as explained in section II. But in the case of Lilley’s model, the Green’s function of Lilly’s
equation consists of both the convection and refraction effects and which is solved numerically. So there is less burden
on the modelling of the sources compared to the Lighthill’s model.

V. Conclusions
This paper studies the jet noise modelling based on Lighthill’s and Lilley’s approaches. Lighthill’s is an exact

acoustic analogy, whereas Lilley’s is an approximate one, with the additional assumption of a locally-parallel base flow.
Barring this, both are rearrangements of the flow equations into a linear propagation operator and a noise source. The
noise propagation is calculated by finding the Green’s functions of the corresponding linear wave-like propagation
operators. In both models, the sources have been described as a statistical model of the two-point cross-correlation of
the velocity fluctuations, characterized by the turbulent length and time scales. The far-field noise has been predicted
using the two models for an isothermal and a heated ideally-expanded Mach 1.5 round jets. Lilley’s model results show
a good match with the direct predictions from the time-resolved LES data using the Ffowcs Williams-Hawkings (FW-H)
method. The Lighthill’s model results show a good agreement with the FW-H results at higher polar angles of observer
locations, but some under-prediction at lower polar locations.

The results above suggest that moving the burden of modelling the sources to solving the wave operator is having
a significant effect on the noise prediction especially at lower polar observer locations. In Lighthill’s model, the
propagation operator is exact and the sources are modelled. Whereas, in Lilley’s model, the propagation operator
is not exact because of the locally parallel mean flow assumption. Since this assumption is a valid one for a slowly
spreading jet, the propagation operator of Lilley’s equation is nearly perfect. So we can conclude that the difference
in the noise spectra between the two schemes is because of the choice of the model used in the cross-correlation of
sources. That means there is a scope for improvement in the modelling of correlation terms in Lighthill’s model. The
correlation model used in eqn. (2) consists of the amplitude of correlation (𝐴𝑖 𝑗𝑘𝑙) and exponential terms that define both
the convection and decay of turbulent eddies [19]. Here, the exponential terms do not contain any directivity terms,
whereas each of the correlation terms are being multiplied by the corresponding direction cosines. So, there is a scope
for extending this work by improving the correlation amplitude of the noise sources used in Lighthill’s model for better
noise prediction at lower polar locations.
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