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Abstract  
We describe several automatic classification techniques      
for distinguishing the acoustic signature of a gunfire’s        
muzzle blast from that of the bullet’s shock wave. This is           
a prerequisite for automatic acoustics-based localization      
of gunshots. We use the spectral content of the acoustic          
signal to perform the classification. The simplest method        
uses thresholding based on the full-width-at-half      
-maximum bandwidth of the signature. It demonstrates       
excellent results for a database of gunshots that we have          
collected. A more sophisticated approach based on       
convolutional neural networks (ConvNet) is also      
evaluated, with a view to future use in classification of          
signatures by the make of the gun and the calibre of the            
bullet. This method also delivered encouraging results in        
validation tests.   
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I.  INTRODUCTION  
A gunshot is characterized by two acoustic signatures that         
are useful for its localization: the muzzle blast associated         
with the explosion of the charge, and the shock wave          
trailed by the bullet if it is moving supersonically. We          
assume here that an acoustic event of the gunshot, be it           
the muzzle blast or the shock wave, has been detected in           
the recorded microphone signal already. Then, the next        
step prior to the application of the localization algorithm         
is the classification of the event. In this paper, we propose           
to pursue this in two ways – a simple frequency-domain          
thresholding, and a more complicated application of       
artificial intelligence in the form of a convolutional neural         
network (ConvNet). The former is appropriate for the        
gunfire data that we have at present; the latter is necessary           
for a richer dataset [2]. 

A.  Muzzle Blast 
A conventional firearm uses an explosive propellant in its         
muzzle to discharge the bullet. The muzzle blast wave         
diverges with propagates spherically at the speed of sound         
in the ambient. The blast wave follows the inverse-square         
law of decay. Although the sound from this explosion         
travels in all directions at sonic speed, it is loudest in the            
direction of firing. Also, The blast wave interacts with the          
ground, buildings or any other objects that it encounters,         
which introduces the effects of reflections and absorption        
in the acoustic signature. A typical muzzle blast        
time-signature is presented in Fig. 3(a). 
  
B. Shock wave 
If the bullet fired by a gun travels faster than the speed of             
sound then it trails a shock wave (actually a Mach wave)           
in the form of a cone behind it. The leading edge of the             
bullet suddenly compresses the air in front of it and its           
trailing edge creates a corresponding expansion. This       
gives rise to the characteristic ‘N’ wave of a shock shown           
in Fig. 3(a). The period of this wave is related to the            
calibre of the bullet. The amplitude is primarily a function          
of the ‘miss distance’ – how far away from the          
microphone the bullet passes.  
 
II.  METHODOLOGY 
A.  Data Collection 
An experiment was conducted at a firing range to record          
gunshots using an omni-directional Sennheiser MD-42      
dynamic microphone. Frequency response and sensitivity      
of the microphone was 40-18000 Hz and 2.0mV/Pa ±         
2.5dB respectively. Two firearms – a Glock pistol and an          
AK-47 rifle – were fired several times, and the         
microphone was placed at different distances with range        
between 5-25 meters and orientations (12°-243°) with       
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respect to the guns and their firing direction. Data was          
recorded for about 20 seconds at a time, within which          
expert shooters were requested to fire two shots from one          
of the two firearms. In total, data was recorded for 16           
firings of the AK-47 rifle and 16 shots of the Glock pistol.            
The data were acquired at 50 kHz sampling rate using          
Measurement Computing data acquisition card     
USB-1690FS.  
 
B. Feature Extraction 
The spectral content of the time series recorded at a          
microphone is most suitable for event classification. In        
order for the method to be appropriate in a real-time          
scenario, we use a short-time segment of the timeseries. A          
study of the gunfire signals recorded in the firing range          
suggests that the event signature lasts no longer than 3          
msec (see Fig. 3(a)). Moreover, the initial rise time of the           
signal from the noise floor is very sharp. The gunshot          
event detection algorithm was implemented using      
constant size sliding window technique based on       
thresholding to detect the time indices of the events and          
computed standard deviation of signal values in time        
window for thresholding. Thus, we select a window        
around the event peak starting from 1 msec before the          
peak and ending at 2 msec after the peak. Window is           
further used to center the data cloud around zero. It          
involves subtracting the mean from each window before        
applying FFT. It is therefore used to focus on the          
fluctuating part of the data, and retains only the relevant          
variations for analysis. Further, the amplitude of the        
signal in each segment was normalized to have an         
absolute maximum of unity. Fig. 3(b) shows the power         
spectral density of the signals within a segment calculated         
using short-time Fourier transform (STFT)[4]. Evidently,      
the broader muzzle blast signature in the time domain         
corresponds to a narrower peak in the frequency domain,         
and vice versa for the shock wave. The full width at half            
maximum (FWHM) is calculated in the standard manner,        
and they come out to be 0.6 and 2.6 kHz respectively for            
the two events shown. Thus, thresholding based on        
FWHM is a natural choice for primary classification of         
the two gunshot signatures. 

C. Spectrum Generation 
Apart from requiring a distinction between muzzle blasts        
and shock waves, advanced localization algorithms also       
use more specific information regarding the calibre of the         

bullet[3]. Such details require deeper classification of the        
shock wave event signals than is possible from a simple          
thresholding based on bandwidth. In this paper, we        
evaluate the suitability of ConvNets for this task; in         
particular, we use a flavour of ConvNets designed for         
image classification. To convert the event time series into         
an image suitable for application of ConvNet, we generate         
a spectrogram from the data. Since we are using a single           
segment of data (usually 3 msec long) once the event has           
been detected, and since the STFT is performed on this          
segment as before, the time axis of the spectrogram is          
trivial (see Figs. 1 and 2). Its frequency axis matches that           
of the PSD in Fig. 3(b), and the curve plotted there is            
converted to a contour plot now with the same         
information content. The ConvNet works under      
assumption that points close to each other in the image          
share some correlations, and these complex features may        
be learnt automatically to classify the signatures. 

 

Fig 1: Single segment spectrum representation of AK-47 
muzzle blast 

 
Fig 2: Single segment spectrum representation of AK-47 

shock wave  
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D. Convolutional Neural Network Architecture 
Convolutional neural networks was built by using Keras        
with Tensorflow as the computation back end and it take          
advantage of the fact that the input consists of images and           
they constrain the architecture in a more sensible way [1].          
In particular, layers of ConvNets have neurons arranged        
in 3 dimensions: width, height, depth. Spectrogram       
images constitute an input volume of activations, and the         
volume has dimensions 64x64x3 (width, height, depth       
respectively). The final output would be a class score         
(probability) using sigmoid activation function with single       
output neuron because by the end of the ConvNet         
architecture we will reduce the full image into a single          
vector of class scores. 
 
Layers Used to Build ConvNets 
INPUT [64x64x3] will hold the raw pixel values of the          
image, in this case an image of width 64, height 64, and            
with three colour channels R,G,B. 
CONV layer will compute the output of neurons that are          
connected to local regions in the input, each computing a          
dot product between their weights and a small region they          
are connected to in the input volume. This may result in           
volume such as [64x64x32] if we decided to use 32          
filters. 
RELU layer will apply an element-wise activation       
function, such as the max(0, x) thresholding at zero. This          
leaves the size of the volume unchanged ([64x64x32]). 
POOL layer will perform a downsampling operation       
along the spatial dimensions (width, height), resulting in        
volume such as [32x32x32]. 
FLATTENING layer applied to create single large vector        
that contains all the different cells of all the different          
features maps. We manage to convert input image to one          
dimensional vector that contains some information of the        
spatial structure or some pixel pattern in the image. 
FC (i.e. fully-connected) layer acts as a hidden layer and          
will compute the class score. 
OUTPUT layer consist of a single neuron with sigmoid         
activation function for binary classification; it calculates       
the probability the class prediction. 
 
Binary Cross Entropy Loss Function 
We need to know the derivative of the loss function to           
backpropagate. Cross-entropy loss, or log loss, measures       
the performance of a classification model whose output is         
a probability value between 0 and 1. Cross-entropy loss         
increases as the predicted probability diverge from the        

actual label. A perfect model would have a log loss of 0.            
In binary classification, cross entropy can be calculated as 

-(y log(p) + (1- y)log(1- p)), 

where, y is the binary indicator (0 or 1) if class label c is 
the correct classification for an observation o, and  

 p is the predicted probability that observation o is of class 
c. 

An Adam Optimizer is used instead of the classical         
stochastic gradient descent procedure to update network       
weights iteratively based on training data. Stochastic       
gradient descent maintains a single learning rate for all          
weight updates and the learning rate does not change         
during training. The method computes individual adaptive       
learning rates for different parameters from estimates of        
first and second moments of the gradients. 

 
Fig 3: (a) Time-domain and (b) frequency-domain       
acoustic signatures of an AK-47 rifle firing 
 
III. RESULTS AND DISCUSSION 
Fig. 4 shows that 2 kHz is a suitable bandwidth-based          
threshold for classification of gunshot-related acoustic      
events as either muzzle blast or shock wave. A successful          
classification is obtained in all the cases available in our          
database. An evaluation was also performed using       
ConvNets on a validation set. We used the dataset         
consisting of 48 spectrum images for binary classification.        
They are divided into training and validation sets        
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containing 40 and 8 spectrum images respectively. At        
each epoch, the model was repeatedly learned under        
various condition, especially the structure of the network        
and its parameters on the training set, and at the same           
time evaluated on a validation set. Fig. 5 shows the 100%           
success rate on the validation set throughout after 42         
epochs. Overfitting problem did not occur because       
training accuracy never reached 100%. Time estimation       
for training and classification is highly dependent on        
system specifications. Our training was performed on       
Intel® Core™ i7-4790 CPU @ 3.60GHz × 8 and it took           
1.98 sec to perform learning on training set and recorded          
0.0452 sec to made classification on single image.  

Fig 4: FWHM bandwidth for shockwave and muzzle blast 

 
Fig 5: Classification accuracy on training and validation 

sets  

IV. CONCLUSIONS 
In this paper, frequency bandwidth features appears to        
provide sufficient information for accurate preliminary      
labelling of gunshot-related acoustic events. A more       
detailed classification may be obtained using ConvNets       
based off of spectral data treated as images. Although we          
do not have a rich enough database to fully evaluate this           
approach, preliminary results presented here indicate its       
promise for the future. 
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