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Towards Feedback Control of High–Speed and 
High–Reynolds Number Jets 

Aniruddha Sinha*, Kihwan Kim†, Jin-Hwa Kim‡, Andrea Serrani§, and Mo Samimy** 
Gas Dynamics and Turbulence Laboratory, The Ohio State University, Columbus, OH, 43235 

We present a first attempt and preliminary results on the development and application of 
feedback control to high-speed and high Reynolds number axisymmetric jets. In particular, 
we demonstrate control authority on the near pressure field of a Mach 0.9 jet with a 
Reynolds number based on jet diameter of 7.8 × 105. Open-loop forcing experiments are 
presented wherein our in-house developed plasma actuators are shown to have two distinct 
effects on the near pressure field. At low forcing Strouhal numbers (StDF’s) near the jet 
column mode instability, a sharp peak in the pressure fluctuations is observed. At higher 
StDF’s (close to the initial-shear-layer instability) a broad minimum is observed in the near-
field pressure fluctuations, and especially in its axisymmetric mode. An online gradient-
based extremum-seeking feedback control scheme is implemented; it uses the RMS of the 
azimuthal-mode-filtered pressure fluctuations to optimize the StDF. The actual cost function 
for optimization can be selected as the RMS of various individual pressure azimuthal modes, 
or a combination thereof. The controller can be setup to either seek a maximum or a 
minimum with negligible reconfiguration. Preliminary experimental results are presented to 
demonstrate satisfactory performance in both operating regimes. Starting from either side 
of the minimum or maximum, the controller is shown to drive the StDF to the respective 
optimum and maintain the value over time. 

Nomenclature 
a = perturbation amplitude in the extremum–seeking control loop 
D = jet nozzle exit diameter 
dc = duty-cycle 
f = spectral frequency 
fF = forcing frequency 
f  = nominal forcing frequency in closed-loop 
�f  = error in estimation of optimum forcing frequency in closed-loop 

fF
0 = initial value of forcing frequency in the extremum–seeking control loop 

fF* = optimum forcing frequency 
fn = most amplified initial shear layer frequency 
fp = jet’s preferred-mode or column-mode frequency 
h = static map from input forcing frequency to output RMS of a selected pressure azimuthal mode 
kes = gain parameter in the extremum–seeking control loop 
LAFPA = localized arc filament plasma actuator 
mp = azimuthal mode number of pressure in the near-field (see Appendix) 
mf = azimuthal mode number of forcing 
Nf  = number of actuators arranged in a symmetric azimuthal array at the jet lip 
Np  = number of pressure sensors arranged in a symmetric azimuthal array in the jet near-field 
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OASPL = overall sound pressure level 
pk = pressure signal from kth pressure sensor in the near-field azimuthal ring array; k = 1, …, 8 

[ ]pmp  = near–field pressure signal filtered at azimuthal mode mp (see Appendix) 
r = tip-circle radius of near-field pressure azimuthal ring array 

[ ]RMS( )pmp  = root mean square of near–field pressure signal filtered at azimuthal mode mp 
ReD  = Reynolds number based on jet nozzle exit diameter and exit velocity 
SPL = sound pressure level 
StD = Strouhal number based on spectral frequency and nozzle exit diameter = fD/Uj 
StDF = Strouhal number based on forcing frequency and nozzle exit diameter = fFD/Uj 
St� = Strouhal number based on the boundary layer momentum thickness at the nozzle exit = f�0/U� 
Uj = jet exit velocity 
U� = freestream velocity for a planar free shear layer 
x = streamwise distance downstream from nozzle exit 
�fF = perturbation of forcing frequency in the extremum–seeking control loop 
�OASPL  = difference in OASPL in a forced case compared to the unforced baseline case 
�0 = boundary layer momentum thickness at the nozzle exit or at the trailing edge of a splitter plate 
�k = azimuthal location of kth pressure sensor on the azimuthal ring array 
�i = internal signals in the extremum–seeking control loop shown in Figure 9, i = 1, 2, 3, 4 
�a = perturbation frequency in the extremum–seeking control loop 
�h = high-pass filter cutoff frequency in the extremum–seeking control loop 
�l = low-pass filter cutoff frequency in the extremum–seeking control loop 

I. Introduction 
E present a first attempt at feedback control of a high-speed high-Reynolds number jet. In particular, we 
demonstrate control over the near-field pressure with two different goals. We can either increase the pressure 

fluctuations for mixing enhancement, or decrease the fluctuations for potential far-field noise attenuation. In this 
section we will motivate the discussion and establish the background. 

A. Motivation 

 
We implemented the feedback control strategy shown in Figure 1. An axisymmetric jet was operated at Mach 0.9 

and the Reynolds number based on the jet nozzle exit diameter was ReD = 7.6 × 105. The jet was forced using an in-
house developed plasma actuator system consisting of eight azimuthally placed electrode pairs at the jet nozzle exit. 
Each actuator generates square-pulse-like localized heating with fixed amplitude but the forcing frequency, the 
azimuthal mode, as well as the duty cycle can be independently controlled. Details of the actuators and their 
application are given in Samimy et al. (2007a & b). The forcing frequency was chosen as the control input for 
implementing the feedback controller. The near-field pressure was measured using an azimuthal ring array of eight 
transducers. The azimuthal-mode-filtered pressure fluctuation level was estimated in real-time and supplied to the 
feedback controller. The latter, in turn, supplied the appropriate forcing frequency to the actuators based on an 
online gradient-based extremum-seeking optimization algorithm. The control scheme used can be setup either to 
seek the maximum fluctuation level (corresponding to mixing enhancement) or the minimum level (corresponding 

W

 

Figure 1. Feedback control system for jets using plasma actuators. 
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to potential noise attenuation). In the rest of this section, each of the choices made above will be rationalized based 
on previous research. 

B. The Axisymmetric Jet Mixing Layer and Far-field Noise 
A planar free shear layer is known to be unstable and act like an amplifier of disturbances in the flow over a 

range of frequencies. The instability of free shear layers is referred to as Kelvin–Helmholtz (K–H) instability. At 
sufficiently high Reynolds numbers, the effect of viscosity in the amplification of disturbances is relatively small, 
and thus this instability is also called inviscid instability. Michalke (1965 & 1977) used linear instability analysis to 
show that the most amplified frequency, fn, is directly proportional to the freestream velocity, U�, and inversely 
proportional to the momentum thickness at the trailing edge of the splitter plate �0. The Strouhal number based on 
this was found to be St� = fn�0/U� � 0.013. Subsequent experiments (Ho & Huerre 1984) have not only confirmed 
this, but have also shown that the initial waves due to K-H instability roll up into large-scale coherent structures 
(Brown and Roshko 1974). These structures entrain the fluid into the mixing layer from both sides and play a major 
role in bulk mixing of the fluids (Winant & Browand 1974). In the absence of seeded perturbations, natural 
disturbances do exist in the shear layer but are random in nature; as a result, the process of vortex roll-up and 
subsequent merging is random too. Therefore, the large-scale structures are not spatially or temporally coherent, and 
the merging locations are not spatially fixed. By the introduction of a low-amplitude forcing, the events could be 
manipulated and made much more organized (Winant & Browand 1974; Ho & Huang 1982; Ho & Huerre 1984). 
Axisymmetric jets add two more complexities to the planar shear layer. The first one arises from azimuthal modes in 
the axisymmetric shear layer, which compete for energy and grow selectively. The second one arises from the 
inward growth of the free shear layer toward the jet axis and its eventual interaction around the centerline, which 
ends the jet potential core. 

The ratio of the nozzle exit diameter to the boundary-layer momentum thickness at the nozzle exit (D/�0) seems 
to be the principal factor in deciding which of the azimuthal modes would grow in the jet. Linear stability analysis 
(Michalke 1965 & 1977; Plaschko 1979) and experimental work (Cohen & Wygnanski 1987; Corke et al. 1991; 
Corke & Kusek 1993) have shown that for large D/�0, both the axisymmetric mode (mf = 0) and the first helical 
mode (mf = 1) are unstable in the initial jet shear layer. Linear stability analysis (Cohen & Wygnanski 1987) also 
showed that for a very thin boundary layer (or very large D/�0), many azimuthal modes are unstable in the initial 
shear layer region. Michalke (1977) used linear stability analysis to show that farther downstream in the jet, where 
the velocity profile has gradually changed from being top-hat-shaped to bell-shaped, the jet can only support helical 
modes. It has also been reported that the growth region of helical modes moves farther upstream toward the nozzle 
as the jet velocity increases (Ho & Huerre 1984).  

In an axisymmetric jet, the inward growth of the jet shear layer and its interaction around the jet axis ends the 
typical merging of successive large-scale structures and starts an additional interaction: azimuthal interaction. The 
average location at which the jet centerline velocity begins to decay is called the end of jet potential core. This 
interaction, which is dynamic and nonlinear, adds tremendous complexity to the problem. Standard linear stability 
analysis, which has been a guiding light in the understanding of free shear layers and is applicable only in the early 
development of the shear layer up to roll-up, is no longer helpful. Many researchers have shown experimentally that 
the passage Strouhal number of large-scale structures at the end of potential core, called the jet preferred mode or jet 
column mode Strouhal number, scales with the nozzle exit diameter, StD =  fpD/Uj � 0.2 to 0.6 (Crow & Champagne 
1971; Zaman & Hussain 1980; Reynolds & Bouchard 1981; Hussain & Zaman 1981). Although the StD seems to 
vary over a large range, it is often close to 0.3 (Ho & Huerre 1984). Recent experimental results in our laboratory 
reported in Samimy et al. (2007a & b) for high-Reynolds number and Mach 0.9 and 1.3 jets show StD � 0.3.    

The modern study of jet aeroacoustics started with the work of Lighthill (1952, 1954). In the initial stages, 
researchers tried to model the noise sources in the Lighthill equation in terms of the random turbulence present in 
the jet mixing layer (Ffowcs-Williams 1963, Ribner 1969). The scenario was dramatically changed in the late 1960s 
and early 1970s when the presence of large-scale coherent structures was demonstrated in the axisymmetric jet 
mixing layer as mentioned above. Researchers soon realized that these structures are important as potential 
contributors to the radiated far-field noise in addition to the random turbulence (Mollo-Christensen 1967; Crow & 
Champagne 1971; Lau et al. 1972; Fuchs 1972; Brown & Roshko 1974). However, in spite of sustained effort ever 
since, the exact mechanism of influence has not been pinned down as yet. The following source mechanisms have 
emerged as popular candidates though: vortex-pairing (Laufer & Yen 1983), wavy-wall type mechanisms (Ffowcs-
Williams & Kempton 1978; Crighton & Huerre 1990; Coiffet et al. 2006), and vortex eigen-oscillations (Kopiev et 
al. 1999). All of these are believed to be active in the initial mixing-layer region of the flow. An additional 
postulated mechanism is the violent intermittent events associated with the collapse of the potential core (Juvé et al. 
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1980; Citriniti & George 2000; Bogey et al. 2003; Guj et al. 2003; Hileman et al. 2004; Viswanathan et al. 2006). A 
recent review article by Jordan and Gervais (2008) provides a detailed account of these developments. 

An important character of the far-field noise is its directivity. In particular, the noise radiated in the downstream 
direction is louder than the noise radiated at right angles to the jet exit. This has been predicted by theory (Lighthill 
1952; Michalke & Fuchs 1975; Ribner 1981; Kopiev & Chernyshev 1997), and confirmed experimentally (Mollo-
Christensen et al. 1964; Lush 1971; Stromberg et al. 1980) and in direct numerical simulation (Freund 2001). 
Further, large-scale coherent structures are implicated in the radiation of noise preferentially in the downstream 
direction (see Tam 1998 and references therein). 

From the above discussion, it is clear that the large-scale coherent structures in the jet mixing layer play an 
important role in mixing as well as noise radiation. In the sequel, we will show that feedback control attempts to 
manipulate these structures to achieve either one of two desired goals: mixing enhancement or potential noise 
attenuation. 

C. The Near-Field Pressure and its Correlation with Mixing Enhancement and Far-field Noise 
In general, jet actuation techniques strive to alter the characteristics of the initial shear layer; for feedback 

control, a real-time measurement of this effect of forcing is needed. Present technology does not allow real-time 3D 
measurement of the velocity field in the jet mixing layer. It is also not practical to require direct sensing of far-field 
noise levels for control applications. In this subsection, we invoke past research efforts to show that the pressure 
field in the irrotational near-field offers an estimate of both the mixing-layer velocity field as well as the far-field 
noise. The measurement of the near-field pressure presents some unique opportunities: (i) it is a relatively non-
intrusive technique; (ii) pressure, being a scalar variable, is considerably easier to measure than the velocity field 
inside the flow; and (iii) unlike some of the velocity measurement tools like PIV and PDV, pressure sensors are 
robust and can be feasibly transferred from the laboratory setting to real-world applications. 

For the same reasons as above, researchers seeking a better understanding of the large-scale flow dynamics and 
its sound production mechanisms have studied the near irrotational pressure field of the axisymmetric jet over the 
past 50 years. Among them, we mention Mayes et al. (1959); Howes (1960); Mollo-Christensen (1963); Keast & 
Maidanik (1966); Fuchs (1972); Arndt et al. (1997); Reba et al. (2005); Coiffet et al. (2006); Barré et al. (2006); and 
Suzuki & Colonius (2006).  

The Poisson equation governs the pressure in the incompressible irrotational near-field of the jet. In analyzing 
the Green's function solution of the Poisson equation, George et al. (1984) found that the mean-square pressure is 
related to the Reynolds stress by a weighting function W(k) (k being the wavenumber), 

 
2

4 .
(4 )

( )
| |

W k
k
π=  

The nature of the rapid roll-off of this weighting function indicates that the pressure spectrum will be dominated by 
the larger turbulent scales. This is termed wavenumber filtering. Arndt et al. (1997), Coiffet et al. (2006), and 
Guitton et al. (2007) showed that the near-field pressure consists of two distinct components. The ‘hydrodynamic’ 
pressure fluctuations carry the convective footprint of the underlying turbulence in the mixing layer, whereas the 
‘acoustic’ pressure fluctuations are characterized by spherical waves propagating with sonic speed. The far-field is 
dominated by the acoustic component due to the rapid decay of the hydrodynamic component (Arndt et al. 1997). 
However, in the immediate periphery of the jet, the hydrodynamic component supersedes the acoustic (Arndt et al. 
1997; Freund 2001; Coiffet et al. 2006; Tinney et al. 2007). Due to the wavenumber filtering effect, the 
hydrodynamic pressure itself is dominated by the large-scale coherent structures in the jet mixing layer (Lau et al. 
1972; Petersen 1978; Arndt et al. 1997; Picard & Delville 2000; Ukeiley & Ponton 2004; Hall et al. 2005; Coiffet et 
al. 2006; Tinney et al. 2007). Thus, in order to detect the behavior of the actuation-modified large-scale structures, 
the pressure sensors must be positioned close to the mixing layer without actually impinging on it. 

An efficient way of looking at the near-field pressure is via its azimuthal modal decomposition (see the 
Appendix for an explanation of the procedure). Hall et al. (2005) measured the near-field pressure of a Mach 0.6 jet 
using an azimuthal array of 15 transducers; they found the azimuthal pressure spectrum to be dominated by the 
lower azimuthal modes (0, 1, and 2). Hall et al. (2006) also showed that the instantaneous pressure signal can be 
almost completely reconstructed from the axisymmetric and 1st azimuthal-mode-filtered pressure signals only. The 
dominance of the lower azimuthal pressure modes was found to increase with downstream distance up to x/D � 3 
and decrease subsequently up to x/D � 6, before increasing slightly again (Hall et al. 2006). This basically 
demonstrates the low-dimensionality of near-field pressure. 

The above discussion shows that the stronger the large-scale structures in the mixing layer, the higher will be 
pressure fluctuations in the near-field. Since stronger coherent structures have been shown to be associated with 
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enhanced mixing, this justifies the choice of the near-field pressure signals for estimating the level of mixing in the 
jet in real-time. However, the relation between the near-field pressure and far-field noise is unclear at this point.  

We now refer to correlation studies performed by Hall et al. (2006) to ascertain precisely this relationship in a 
Mach 0.85 and ReD = 9.8 × 105 jet. They placed 6 microphones on a polar array of radius 75D, with polar angles 
from 15° to 90°, and measured the signals from one of these microphones simultaneously with the pressure 
measurements on the 15-sensor azimuthal ring array mentioned previously. They found that the axisymmetric mode 
(mp = 0) of the near-field pressure is better correlated with the far-field noise than just the pressure signal by itself. 
In particular, they reported a maximum normalized correlation coefficient of 0.34 at x/D = 7.5. (For later reference, 
the correlation coefficient at x/D = 3 was found to be 0.11.) The significance of this finding is that the axisymmetric 
mode of the near-field pressure can be best employed in estimating the far-field noise for feedback control. In 
contrast, the first helical mode (mp = 1) of the near-field pressure was found to have a very weak correlation with the 
far-field noise. We have previously mentioned results showing that both modes mp = 0 and mp = 1 are necessary and 
almost sufficient in recovering the entire near-field pressure signal, the other modes being relatively weaker. The 
above result shows that of these two modes, only the axisymmetric mode radiates noise efficiently to the far-field.  

D. Control of Axisymmetric Jets 
Flow control is divided into two general categories: passive and active. Passive control does not add energy to 

the flow and is often accomplished by geometric modifications. In active control, energy is added to the flow to 
excite flow instabilities or affect the flow by way of generating new flow structures (e.g., streamwise vortices). 
Active control is further divided into open loop and closed loop. In the open-loop control, the actuation takes place 
based on an operator’s command or a predetermined input. In the closed-loop (or feedback) control, information 
from a sensor or sensors in the flow, along with a flow model, guides the actuation process (Gad-El-Hak (2004); 
Aamo & Krsti� (2003); King (2007)).  

Open-loop active control can again be divided into two categories. The first category involves energy addition to 
the flow at a steady rate or at a low-frequency (a frequency that is much lower than any instability frequency in the 
flow). Some applications of this technique to the control of jets include steady fluidic injection through microjets 
(Arakeri et al. 2003; Krothapalli et al. 2003; Castelain 2006) and fluidic chevrons (Henderson et al. 2005). These 
are considered active control due to the energy addition, but they do not have frequency or phase control, which is 
essential when exciting flow instabilities. The second category involves using actuators with frequency capabilities 
in the range of flow instability frequencies. This has been achieved using plasma actuators in our laboratory and will 
be discussed further in this paper.  

The majority of the investigations using open-loop control have been carried out in relatively low-speed and low 
Reynolds number jets. As the speed and the Reynolds number of the jet increase, so do the background noise, the 
instability frequencies, and the flow momentum. Therefore, actuators must provide excitation signals of much higher 
amplitude and frequencies. We have recently developed a class of plasma actuators, called localized arc filament 
plasma actuators (LAFPAs) that can provide excitation signals of high amplitude and high bandwidth for high-
speed, high-Reynolds number flow control (Samimy et al. 2004, 2007a, 2007b; Utkin et al. 2007). These are 
deployed in an azimuthal array slightly upstream of the jet nozzle exit. The actuators’ frequency, phase, and duty 
cycle (the percentage of time an actuator is on in a cycle for a given frequency) can be controlled independently. In 
particular, forcing azimuthal mode mf is achieved by phase shifting the pulse signals to successive actuators by 2�mf 

/Nf radian, where Nf is the number of actuators in the azimuthal array. Therefore, several of these actuators can be 
used to force the jet column instability, shear layer instability, and various azimuthal modes. In the next subsection, 
we briefly review the open-loop control work using LAFPAs.  

To the best of our knowledge, this paper presents the first instance of the application of closed-loop active 
control to axisymmetric jets. We will defer a full discussion of the strategy and results until the background has been 
established. 

E. Review of Open-loop Forcing Results using LAFPA 
Samimy et al. (2007a & b) have reported results of open-loop forcing of axisymmetric jets using LAFPAs; here 

we review these briefly. Experiments were conducted on a Mach 1.3 and ReD = 1.1 × 106 jet to assess the effect of 
LAFPAs on the mixing layer (Samimy et al. 2007a). Laser-based planar flow visualizations, pressure measurements 
inside the mixing layer, and two-component PIV measurements were used to evaluate the effects of forcing. The jet 
responded to the forcing over the entire range of frequencies, but the response was optimum (in terms of generating 
large-scale coherent structures and mixing enhancement) around the jet preferred-mode Strouhal number of StDF = 
0.33 (fF = 5 kHz). The jet, with a thin boundary layer (D/�0 � 250), also responded to the various azimuthal modes 
explored (mf = 0 to 3, and mf = ±1, ±2, ±4). Forcing the jet with the azimuthal mode mf = ±1 at the jet preferred-
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mode Strouhal number provided the maximum mixing enhancement, with a significant reduction in the jet potential 
core length and a significant increase in the jet centre-line velocity decay rate beyond the end of potential core. The 
flow visualization, growth and decay of perturbations observed in pressure measurements, and PIV data all together 
showed that the plasma actuators have control authority over such a high-Reynolds-number and high-speed flow.  

Experiments were also conducted on a Mach 0.9 and ReD = 7.6 x 105 jet to study the effect of LAFPAs on far-
field noise (Samimy et al. 2007b).  The far-field jet noise was measured using two microphones located at polar 
angles of 30º and 90º relative to the jet axis along radii of 83D and 45D from the nozzle exit respectively. The first 
noticeable effect of forcing was the appearance of the forcing tones and its harmonics in acoustic spectra, more 
prominently for mf = 0 than for mf = 3. More pertinently, both azimuthal modes of forcing resulted in an attenuation 
of low-frequency noise attended with an amplification of high-frequency noise, at both measurement stations. The 
directive nature of the far-field noise mentioned earlier was also in evidence with the SPL at 30º being at least 10 dB 
higher than that at 90º. 

A standard metric for comparing broadband noise levels is the overall sound pressure level (OASPL). Samimy et 
al. (2007b) compared the OASPL for the forced jet to the baseline case (the difference is denoted �OASPL) with 
different forcing frequencies and azimuthal modes measured at the two afore-mentioned stations. Several 
noteworthy features were observed. (i) A well-defined attenuation of noise was evident at high forcing frequencies 
for all azimuthal forcing modes at both stations. (ii) The forcing Strouhal number corresponding to the minimum 
OASPL was independent of the forcing azimuthal mode, but varied with the measurement station. At the 30º 
microphone location, a relatively sharp minimum in �OASPL of about –1.2 dB was noted at StDF � 2.0 (fF = 22 
kHz); at the 90º location, a broader minimum of about –0.6 dB occurred at StDF � 3.5 (fF = 39 kHz). (iii) An 
amplification of noise was also noted at low forcing frequencies for all azimuthal modes. However, in this regard, 
the different azimuthal forcing modes had markedly distinct effects. 

The above review of open-loop forcing experiments shows that the in-house developed plasma actuators have 
significant ability to either enhance mixing or attenuate far-field noise, as desired. We next discuss the initial 
development and implementation of feedback control for these tasks. 

F. Extremum-Seeking Scheme for Online Optimization 
The previous results reviewed above suggest that the noise attenuation problem can be cast as an optimization 

problem wherein we seek the forcing frequency that minimizes the far-field noise. It will be shown later that a 
similar minimum also exists in the near-field pressure. Likewise, the mixing enhancement problem can be recast as a 
problem of seeking the maximum in the near-field pressure fluctuations. In either case, the optimum forcing 
frequency will be a function of the operating conditions; for instance, the Mach number and temperature ratio. 
Open-loop control is unable to cope with this uncertainty since it operates at a preset forcing frequency.  

Extremum-seeking (ES) control (Ariyur & Krsti� 2003) constitutes a simple and effective methodology for 
endowing controllers of fixed structure with self-tuning capabilities. ES control is particularly appealing for 
application in flow control problems (Beaudoin et al. 2006, Becker et al. 2007, Kim et al. 2008) due to the fact that, 
in principle, a detailed control-oriented model of the plant is not required. This is a particularly useful feature for 
dynamic systems of interest described by complex and/or uncertain models, as the jet flow considered in this 
investigation.  In ES control, the goal of the feedback control system is to regulate the output variable by on-line 
optimization of a given cost function. Under nominal operating conditions, this task is accomplished by a model-
based controller of fixed structure. In the presence of model uncertainties, since the cost function changes depending 
on internal conditions and the external environment as mentioned above, an adaptive algorithm is added to the 
control scheme to iteratively search the space of the controller parameters to determine the input that minimizes (or 
maximizes) the given cost function. In our previous study of cavity flow control (Kim et al. 2008), we have 
experimentally demonstrated the advantage of ES control over fixed linear-quadratic controllers in terms of overall 
reduction of sound pressure level and energy consumption, especially when operating in off-design flow conditions. 

This brings us full circle back to the motivation for this paper. The axisymmetric mode of the near-field pressure, 
being well correlated to the far-field noise, will be used for potential feedback minimization of far-field noise. On 
the other hand, the fluctuations of the sum of the axisymmetric and first helical modes of near-field pressure would 
be maximized for potential mixing enhancement. ES control will use this information to determine the local gradient 
of the input/output map in real-time and compute a suitable forcing frequency to optimize the output. The LAFPA 
control system will then force the jet at the dictated frequency. This sequence will be automatically performed 
iteratively by the controller for online optimization based on gradient-descent. 
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II. Experimental Setup 

A. Flow Facility 
All of the experiments were conducted in the Gas Dynamics and Turbulence Laboratory (GDTL) at The Ohio 

State University. The ambient air is compressed, dried, and stored in two cylindrical tanks at a pressure of up to 16 
MPa with a capacity of 36 m3. The compressed air is supplied to the stagnation chamber and conditioned before 
entering into a nozzle. An axisymmetric converging nozzle, which was operated at Mach 0.9, was used. The air is 
discharged horizontally through the nozzle into an anechoic chamber. The exit diameter of the nozzle is D = 25.4 
mm (1.0 inch). A 17.8 mm (0.7 inch) thick nozzle extension, made of boron nitride, was attached to the exit of the 
nozzle to house the plasma actuators. 

The Reynolds number of the jet based on the jet diameter was ReD = 7.6 × 105 for the Mach 0.9 jet. The 
boundary-layer thickness at the exit of the nozzle is very thin, making it challenging to obtain a boundary-layer 
profile to determine its momentum thickness and its state. Kastner et al. (2004) used a similar converging nozzle and 
measured a few points within the boundary layer of a Mach 0.9 jet. They estimated the boundary layer to be 
turbulent, with a thickness of about 1 mm and a momentum thickness of about 0.1 mm. The characteristics of the 
boundary layer in the current experiments are expected to be quite similar.  

B. Near-field Pressure Measurements 

 
 

Figure 2 shows a circular array of Np = 8 Kulite pressure transducers (model XCQ-062-25A). The inner diameter 
of the ring that holds the transducers is 254 mm (10 inches), ten times larger than the nozzle diameter. The eight 
sensors are symmetrically located with an azimuthal separation of 45°. During experiments, the ring was coaxially 
aligned with the nozzle and could be traversed downstream on a metered slide. This configuration allowed flexibility 
in choosing the tip-circle radius of the pressure sensors as well as their streamwise location. Additional transducers, 
a maximum of six, can also be arranged in a linear array aligned with the jet axis with consecutive sensors separated 
by 12.7 mm (0.5 inch). However, the linear array was not employed in the current experiments. 

During baseline unforced experiments and open-loop forcing cases, the pressure signals were amplified, low-
pass filtered at 100 kHz, and acquired using an eight channel National Instrument (NI) PCI-6143 ADC card at a 
sampling rate of 200 kHz. In closed-loop experiments, a dSpace 1103 DSP board operating at 50 kHz sampling rate 
was used to implement the control algorithm. In these cases the pressure signals were amplified, low-pass filtered at 
100 kHz, and then split two ways. One signal from each splitter was connected to the NI board for offline 
computation of the SPL spectrum in steady-state operation. The other set of signals were again low-pass filtered at 

 

 
Figure 2. Schematic of near-field pressure sensing using a circular array of eight and a linear array of six 
pressure transducers. 
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25 kHz before being routed to the input channels of the dSpace board. The dSpace board captured the transient 
pressure data along with a number of control variables. A schematic of the data flow is shown in Figure 3. 

 

C. Plasma Actuators and Plasma Generator System 
Figure 4 shows a schematic of the multichannel high-voltage plasma generator; it was designed and built in-

house. Each plasma actuator (LAFPA) consists of a pair of pin electrodes. The electrodes are symmetrically 
distributed around the perimeter of a boron nitride nozzle extension, approximately 1 mm upstream from the 
extension exit plane. A 0.5 mm deep and 1 mm wide ring groove was used to house the electrodes and to shield and 
stabilize the plasma; in the absence of such a groove, the plasma was swept downstream by the flow. Steel or 
tungsten wires of 1 mm diameter were used for electrodes. Measured center to center at their tips, the spacing 
between a pair of electrodes comprising an actuator is 3 mm. 

The plasma generator enabled simultaneous powering of up to eight plasma actuators with independent 
frequency, duty cycle, and phase control. Each actuator was connected in series with a fast-response high-repetition-
rate high-voltage MOSFET switch; two approximately 15 k� high-power solid body ceramic ballast resistors; and a 
high-voltage high-current (10 kV, 1 A) DC power supply (Glassman High Voltage, Inc.). Two of these power 
supplies were used to energize the eight actuators. If all eight actuators were powered at the same time, the single 
actuator current was limited to 0.25 A. The switches were capable of producing high-voltage pulses (up to 10 kV) at 
repetition rates from a few hertz to 200 kHz, with a very short pulse rise/fall time (~0.1 �s) and a variable duty cycle 
(from 0 to 100%). Each switch was liquid-cooled to allow continuous operation at high frequency, voltage, and 
current. A Labview program was used to control the switches through an eight channel NI PCI-6713 DAC card 
running at an update rate of 780 kHz. 

By turning the electronic switch on and off, positive high-voltage pulses are applied to the corresponding 
actuator. The high initial voltage is needed to produce breakdown in the approximately atmospheric pressure air in 
the gap between the two electrodes of an actuator. After the breakdown, an arc is generated and the voltage across 
the gap rapidly falls to a few hundred volts. The plasma generator is compact, robust, and simple to operate.  

The duty-cycle dc is specified as the percentage on-time of the pulses in each time-period. Previous experiments 
have shown that optimum performance is achieved by selecting the duty-cycle as  

 
Figure 3. Schematic of data flow in closed-loop experiments. During open-loop forcing cases, the dSpace 
controller was removed from the loop and the Labview Control Program accepted a user-entry for the forcing 
frequency to generate the pulses. In baseline experiments, both the dSpace controller as well as PC 2 were 
disconnected. The heavy dashed lines indicate 8 channels of data flow. 
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This formula is implemented in our actuator control system. 
In a typical acoustic driver, which has been used extensively in the literature for flow control, the input signal is 

a sine wave of prescribed frequency and peak amplitude. On the other hand, the input signal to a plasma actuator is a 
rectangular wave with a variable duty cycle. Unlike an acoustic driver, the input or forcing amplitude cannot be 
easily altered in a plasma actuator as it is dictated by the breakdown voltage corresponding to a selected electrode 
separation. Although the imparted forcing energy to the flow in a cycle can be adjusted by adjusting duty cycle, the 
effective forcing amplitude is not directly related to the total energy in a cycle. However, due to the same 
independence of forcing amplitude, it is straightforward to force the jet in any simple azimuthal mode; viz. mf = 0, 1, 
…, Nf /2 – 1; Nf being the number of actuators used. As mentioned earlier, a forcing azimuthal mode of mf is 
achieved by phase shifting the pulse signals to successive actuators by 2�mf /Nf radians. The system can also 
simulate mixed mode forcing; however these were not employed in the current experiments.  

 

 

D. Interface between Controller and Actuator Hardware 
As mentioned previously, the forcing frequency is used as the control input for feedback control. Hence, the 

Labview program controlling the actuators is required to acquire the time-varying forcing frequency value from an 
output DAC channel of the dSpace board. The data flow scheme is shown in Figure 3. The PC running the Labview 
program was embedded with two NI PCI cards. One of them is the eight channel PCI-6713 output DAC card already 
mentioned. The second was an eight channel PCI-6143 ADC input card (identical to the one used for acquiring the 
pressure data); only one of its input channels was employed. The input signal from dSpace was sampled at 500 Hz. 
A higher sampling frequency was deemed unnecessary in view of the other delays in the feedback loop, especially in 
the algorithm to compute the RMS of the pressure. Over each interval of 2 ms, eight software signal generators 
created eight packets of pulses at the commanded frequency, one for each actuator. Each packet consisted of 1560 
samples to result in the update rate of 780 kHz. These pulses were simultaneously output from the DAC card. Note 
that the signal generators were run without resetting the phase for each new packet; this is essential for correct 
operation in a desired forcing azimuthal mode. 

 

Figure 4. Schematic of the in-house fabricated plasma generator. 
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III. Baseline Experimental Results 
One of the first questions to be answered in our feedback control strategy was the correct positioning of the 

azimuthal ring array of pressure sensors. In practical applications, one would like to place the sensors as close as 
possible to the nozzle exit for ease of implementation. However, as mentioned earlier, Hall et al. (2006) reported 
that the correlation of near-field pressure to the far-field noise is low at the jet exit and reaches a maximum at x/D = 
7.5. To balance these opposing constraints, we chose to locate our ring array at x/D = 3.0. We have already pointed 
out that at this location both the axisymmetric and first helical pressure modes have the maximum energy compared 
to all other streamwise locations (Hall et al. 2006). Recall that at this location the correlation coefficient between the 
near-field pressure and far-field noise is around 0.11. The choice for the tip-circle radius of the pressure sensors is 
also dictated by conflicting constraints. On the one hand, the pressure sensors should not impinge on the jet to 
reduce measurement error. On the other hand, as already mentioned, the sensors should be close enough to the 
mixing layer to capture a strong signature of the hydrodynamic fluctuations in the jet. Kim et al. (2007) performed 
PIV studies of the same jet in the various open-loop forcing experiments; their results show the extent of the jet 
mixing layer in various forcing conditions. In particular, the maximum radius of the jet at x/D = 3.0 was observed 
for forcing at the first flapping mode mf = ±1; this radius was about 0.9D. Hence, the tip-circle radius was chosen as 
r = 1.0 D. All near-field pressure data presented in this paper were measured at this location. 

A remark is in order about the extreme sensitivity of the near-field SPL to the sensor position. We found that a 
decrease in the radial distance of r = 0.03D resulted in an increase in the SPL peak by about 1 dB. Hence, extreme 
care was needed in properly positioning the sensors so that all of them record similar spectra in the unforced case. 
This was achieved through an iterative calibration procedure. One sensor was located as precisely as possible at the 
above mentioned location, while the other seven sensors were placed close to their desired location. Then, the SPL 
was measured at all the sensors and the difference in their spectra was used as a guide for adjustments.  

The SPL spectra were calculated from data sampled at 200 kHz using a window size of 8192 samples with a 
50% overlap, resulting in a frequency resolution of 24.4 Hz. Each spectrum was obtained by averaging the 
magnitude of the normalized short-time Fourier transform over 64 such blocks. The data was captured in two blocks 
of 1.3 s each. The reference pressure for conversion to dB was the standard value of 20 �Pa. 

Figure 5 presents the spectra for the baseline case. In Figure 5(a), we show that the 8 channels record almost 
identical SPL spectra. In all subsequent figures where we show the SPL spectra of the pressure, we would refer to 
the mean SPL of the 8 channels. Figure 5(b) shows the SPL spectra of the first four azimuthal-mode-filtered 
pressure signals (see the Appendix for a discussion on this topic). At this location, the first helical mode mp = 1 is 
the strongest, followed by the axisymmetric mode mp = 0. The peak pressure is around 3.6 kHz (StD = 0.33) which 
corresponds to the jet column instability frequency. 

 

Figure 5. Baseline spectra for (a) individual channels, and (b) various azimuthal modes. Note that the curve 
marked “pressure” in (b) is the mean of the eight curves in (a). 
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IV. Open–loop forcing results 
The purpose of the open-loop experiments was two-fold. We wished to investigate the effect of forcing on near-

field pressure; to our knowledge, this has not been attempted before. We also wanted to trace the static map between 
the forcing frequency (our control input) and the RMS of the azimuthal-mode-filtered pressure (our control output) 
to guide the design of the closed-loop controller. Therefore, the data for the open-loop experiments will be presented 
in terms of the ensemble-RMS values of the pressure signals and its azimuthal-mode-filtered components.  

Four different forcing actuation modes were employed, viz. mf = 0, 1, 2, and 3. The forcing frequency was varied 
in the range fF = 1 kHz to 60 kHz (StDF = 0.09 to 5.44) in varying step sizes. The azimuthal-mode-filtered pressure 
signal and its associated SPL were computed in post–processing; see Appendix for a discussion. 

Figure 6 shows the SPL spectra for two representative open–loop forcing experiments (mf = 0, fF = 4 kHz and mf 
= 3, fF = 30 kHz) compared to the baseline case. It will be shown that the former corresponds to a maximum in the 
near-field pressure fluctuations, whereas the latter corresponds to a minimum. The first noticeable aspect is the 
presence of the forcing tone and its harmonics. The next visible difference is the amplification at the lower forcing 
frequency and the attenuation at the higher one. Similar effects and trends have been observed in the far-field noise 
also (Samimy 2007b).  

During feedback control, the signals needed to be band-pass-filtered to remove both the DC offset and the high 
frequency noise. Based on the well-defined broadband peaks in the spectra in Figure 6, we designed a Chebyshev 
filter with a passband from 0.5 kHz to 8 kHz; its magnitude diagram is shown in Figure 7. For accurate comparison, 
this filter was also applied to the open-loop pressure signals before computing their RMS values. 

 

 
Figure 8 presents the RMS of the near-field pressure and its various azimuthal-mode-filtered versions for a wide 

range of forcing frequencies. The following observations can be made regarding these results. (i) Regardless of 
forcing azimuthal mode, the pressure intensity as well as the intensity of each individual pressure azimuthal mode in 
the near–field has similar characteristics – there is a relatively sharp maximum at a low fF and a broad minimum at a 
higher fF. Th e maximum clearly corresponds to the jet column-mode instability frequency fp; earlier flow 
visualization and PIV results have shown that the jet exhibits the largest response for forcing around this frequency 
(Samimy et al. 2007a). The minimum is more difficult to explain; it is thought to be associated with the initial-shear-
layer instability frequency fn which is predicted to be between 40 kHz and 50 kHz in this case. (ii) Figure 8(a) shows 
that the peak in the pressure fluctuation intensity is largest for forcing in the axisymmetric mode (mf = 0) and 
smallest for forcing in the second and third helical actuation modes (mf = 2 & 3). It is to be noted that in this regard, 
forcing at mf = 3, the highest actuation mode possible in the current setup, is somewhat anomalous compared to the 
other forcing cases. In particular, the pressure intensity shows a broad peak around fF = 8 kHz for forcing at mf = 3, 
whereas a sharp peak occurs at fF = 4 kHz for all other forcing cases. (iii) For a particular forcing azimuthal mode 
mf, the maximum intensity is noted in the corresponding pressure azimuthal mode mp. For example, Figure 8(d) 
shows that the maximum RMS value of the first helical mode of pressure (mp = 1) is obtained by forcing the jet at 
the first helical mode (mf = 1). (iv) The RMS of (p[0] + p[1]) shows similar characteristics as the RMS of the pressure 
for azimuthal forcing modes mf = 0 and 1, although the actual values are about 50 Pa lower. The same cannot be said 

Figure 6. Representative open-loop forcing spectra. 
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Figure 8. Effect of open-loop forcing on near-field pressure. RMS of (a) pressure, (b) mp = 0+1, (c) mp = 0, (d) mp

= 1, (e) mp = 2, (f) mp = 3 vs. forcing frequency, fF. Each graph shows the effect of the four different forcing 
azimuthal modes explored. Also, the RMS of the respective signals in the baseline case is shown for ease of 
comparison. 
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about the forcing azimuthal modes mf = 2 and 3. (v) The switchover from amplification to attenuation (the crossing 
of the curves with the baseline pressure intensity line) follows a set pattern for the pressure as well as all its 
azimuthal modes. In particular, the curve for the axisymmetric forcing mode attenuates at the lowest forcing 
frequency whereas the curve for the third helical forcing mode attenuates at the highest forcing frequency. (vi) The 
different pressure azimuthal modes also exhibit a progression of crossover locations. For example, all the curves for 
the axisymmetric pressure mode (mp = 0) crossover at fF � 10 kHz (but with differences therein, as mentioned 
above). However, this crossover happens at at fF � 20 kHz for mp = 3. (vii) The effects of different forcing azimuthal 
modes become indistinguishable at higher forcing frequencies. This is most strikingly visible for the first and third 
helical pressure modes (Figure 8 (d) and (f)). (viii) The location of the minimum shifts to higher forcing frequencies 
for increasing pressure azimuthal modes. While the minima for the first two pressure azimuthal modes occur around 
30 kHz, those for the 2nd and 3rd helical modes are around 40 kHz. (ix) The minima become flatter, especially on the 
high-frequency end, for higher pressure azimuthal modes. (x) Since we are relying on the axisymmetric mode of the 
near-field pressure signal to estimate the far-field noise, it is instructive to compare this result with the effect of 
forcing on the far-field noise reported by Samimy et al. (2007b). They found that the far-field OASPL is minimized 
at a Strouhal number of StDF � 2; the corresponding forcing frequency being fF = 22 kHz. On the other hand, Figure 
8(c) shows that in the near-field, p[0] is minimized at about 30 kHz. This difference will not be addressed in this 
paper; here we would minimize RMS(p[0]) without any reference to the actual far-field noise. 

V. Extremum–Seeking Control of Near-field Pressure 
Our first effort at feedback control of the irrotational near pressure field of an axisymmetric jet is implemented 

as an adaptive extremum–seeking algorithm. This is an online gradient-based optimization scheme. The structure of 
the control system is adopted from Kristi� & Wang (2000), and is shown in Figure 9. 

 

A. Assumptions 
The extremum-seeking control scheme requires very little information about the structure of the plant. However, 

as for any gradient descent algorithm, one crucial assumption must hold true: the input/output (I/O) map of the plant 
must have a well-defined extremum that we are attempting to seek closest to the initial guess of the input. For our 
experiments, the open-loop results presented in the previous section established the maps between forcing frequency 
as input and the RMS of the various pertinent azimuthal modes of near-field pressure as output. The maps exhibit 
well-defined extrema and are suitable for the application of gradient-based optimization. The control scheme shown 
in Figure 9 can be used for both minimum-seeking as well as maximum-seeking by simply switching the gain from 
–1 to +1.  

Figure 9. Extremum-seeking control scheme for real-time minimization of jet near-field pressure fluctuations. 
For maximization of the cost function, the ‘-1’ gain is changed to ‘+1’. 
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The second important assumption is regarding the relative dynamics of the plant and controller. For ES control, 
the plant is defined as shown in Figure 9. In particular, the closed-loop system is considered to be a feedback loop 
wrapped around a plant seen as a map from the forcing frequency fF to the RMS of the mp

th pressure azimuthal 
mode. For the proper operation of the extremum-seeking control, we assume that the dynamics of the plant are much 
faster than the perturbation dynamics �a. In other words, the I/O map is assumed to be static in the controller 
analysis. 

B. The Concept of Extremum-Seeking Control 
The following brief analysis is akin to ones presented by Ariyur & Krsti� (2003). We will focus on the 

minimum-seeking scheme; the maximum-seeking is very similar, as mentioned earlier.  
Let us denote the plant I/O map by 

 
[ ]

:  RMS( ).pm
Fh f p→  

The above map will be different for each pressure azimuthal mode considered; however we do not reflect this in h 
for ease of notation. The forcing frequency can be viewed as the perturbation �fF superimposed on the nominal 

value 0
: 4F Ff f ξ= + . The static-map assumption allows us to expand h(fF) in a Taylor series in the vicinity of the 

nominal value as 

 ( ) ( ) ( ) ( ) ( ) sin .F F F FF F ah f h f h f f h f h f a tω′ ′≈ + ∆ = +  (1) 

Being the output of an integrator, �4 varies much slowly compared to the perturbation. Then, by choosing the 

high-pass filter cutoff frequency �h << �a, the filter output becomes 1 ( ) sinF ah f a tξ ω′≈ − . The subsequent 

demodulation by the perturbation signal results in 2 2
2 cos( ) / 2 { ( ) 2 } / 2F F ah f a h f a tξ ω′ ′≈ − + . Selecting the 

parameter of the low-pass filter �l << �a, we find that its output is 2
3 ( ) / 2Fh f aξ ′≈ − . Finally, the application of 

the integrator results in the adaptive update law 2
4 ( ) / 2Fesk h f aξ ′≈ −� . 

We wish to show that the control scheme drives fF to fF*, where fF* is the forcing frequency corresponding to the 

minimum value of [ ]RMS( )pmp  nearest to the initial value 0
Ff ; necessarily, *( ) 0.Ffh′ = Consequently, we define 

the error in the current estimate as � * 0 *
4: ( )F F F F Ff ff f f ξ= − = − + . Then the error dynamic is 

 
�

2( )
( ) / 2.F

Fes

d f
k h f a

dt
≈ ′−  (2) 

If all the previous assumptions are valid, then this update law will drive the error to zero and [ ]RMS( )pmp will attain 
its minimum. 

It follows that for stable and effective extremum-seeking optimization, the following cascade of frequencies 
must be established: 

 

Sampling frequency of pressure fluctuations  Higher end cutoff frequency of bandpass filter 

 Lower end cutoff  frequency of bandpass filter  Update rate for RMS calculation 

 Perturbation frequen

>>

> >>

>> cy,    Filter cutoff frequencies,  , .a h lω ω ω>>

 (3) 

The first and second inequalities are obvious. The third inequality will be discussed in the sequel. The fourth 
inequality validates the assumption of a static input/output map. The rationale for the final inequality has already 
been discussed. 

C. Choice of Parameters in Extremum-Seeking Control Loop 
The real-time RMS computation, which is a component of the augmented plant as shown in Figure 9, will be 

discussed first. One method of computing the RMS in real-time is to perform a moving-average-like calculation. An 
offline study of the open-loop experiment results showed that a sample size of about 2000 offers a balance between 
the need for accuracy and sensitivity of the metric. However, this was beyond the memory capability of the dSpace 
controller. The other method is to buffer a block of data samples, compute its RMS, use this value as the (constant) 
output of the algorithm while the buffer is being refilled, and so on. From the offline investigation mentioned above, 
we decided to use a buffer size of 1500 samples but perform a moving average over 2 such blocks. Note that with a 
50 kHz sampling rate of the controller, the effective bandwidth of the plant is then between 16 Hz and 32 Hz. 
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The choice of the parameters of the extremum-seeking controller is governed by eqn. (3). The perturbation 
frequency is chosen as 2 Hz, i.e. �a = 4� rad/s. This would ensure that the extremum-seeking loop is an order of 
magnitude slower than the plant. Then, the selection �h = �l = 0.4� rad/s ensures that both are an order of magnitude 
lower than �a. 

Two parameters remain to be chosen, viz. a and kes. Both of these choices are dictated by a tradeoff between the 
need for fast convergence and the requirement for the steady tracking of the particular I/O map. The dependence of 
the convergence rate on these two parameters is evident from eqn. (2). The opposite constraint of steadiness is again 
tied to the static-map assumption that validates the Taylor series expansion of h(fF) presented in eqn. (1). Selecting 
too large a value for either of these parameters will lead to an erroneous estimation of the local slope of h(fF), 
thereby causing “hunting”.  

As presented in Figure 8 and discussed before, the minima and maxima of the I/O maps have very different 
characteristics. In fact, for the minima, even the high-frequency approach is much more gradual than the approach 
from the lower frequency end. So, the parameters necessarily need to be chosen differently for optimum 
performance in these different regimes. While seeking the minima of the I/O maps, the range of fF was chosen to be 
from 7 kHz to 63 kHz; also, the breadth of the minima suggests that the control would be relatively insensitive to 
changes in forcing frequencies in this range. Hence, a suitable choice of the perturbation amplitude for these 
experiments is a = 1 kHz. On the other hand, the peak in the I/O map being relatively sharp, a choice of a = 350 Hz 
was found to result in the best performance for maximum-seeking control. 

An analysis of eqn. (2) will show that kes has the dimension of Pa-1-s-1. We present a rationale for the choice of 
kes based on the open-loop forcing results for the axisymmetric pressure mode shown in Figure 8(c). The following 
analysis is only valid for seeking the minima starting from a low forcing frequency; other cases can be analyzed 
similarly. Let us assume that starting from an initial frequency of fF

0 = 10 kHz, we wish to converge to the optimum 

frequency fF* � 30 kHz in 10 seconds. We estimate ( )Fh f′ as the average of the initial and the final slopes on this 
I/O map. At fF = 10 kHz, the slope is around –200 Pa per 10 kHz whereas the final slope is of course zero. Then, 
using the previously established value of a, we see that the required value of kes is 0.4 Pa-1-s-1. Since the slope is 
much gentler on the portion of curve to be traced when seeking the minimum starting from a higher frequency, kes 
necessarily must be chosen larger to obtain faster convergence; the optimum value was found to be 1.0. Finally, the 
peak being sharper, kes was chosen to be 0.2 for maximum-seeking control to prevent hunting. 

VI. Results of Extremum-Seeking Control 

A. Minimum-Seeking 
We first present results for minimum-seeking. Recall from earlier discussions that the axisymmetric mode of the 

near-field pressure is best correlated with the far-field noise. Hence, the cost function for minimum-seeking was 
RMS(p[0]). Open-loop forcing results presented in Figure 8 have shown that at the high forcing frequency range 
where the minimum is achieved, the effect of different forcing azimuthal modes cannot be distinguished. However, 
the I/O map for mf = 3 being the smoothest, this mode was selected for forcing the jet. As mentioned earlier, the p[0] 
signal was band-pass filtered between 0.5 kHz and 8 kHz before supplying it to the RMS calculator discussed 
earlier. 

The parameters of the extremum-seeking loop were chosen as mentioned in the previous section. Namely, for 
seeking the minimum starting from 10 kHz, we used the following set: �a = 4� rad/s, �h = �l = 0.4� rad/s, a = 1000, 
and kes = 0.4. When seeking the minimum from the initial frequency of 55 kHz, the only difference was the choice 
of kes = 1.0 for the reason discussed previously. 

Figure 10 presents the performance of minimum-seeking feedback control. Figure 10(a) shows that the forcing 
frequency was correctly optimized from 10 kHz and settled around 30 kHz within 20 seconds. Higher values of kes 
were tried to speed up this convergence rate; while they did result in faster convergence (with kes = 1, we could 
reach 25 kHz within 5 seconds), significant hunting was observed in the long-term behavior. Figure 10(b) shows that 
the cost function was minimized from 440 Pa to about 230 Pa. A similar minimum can also be observed in the open-
loop experiments (see Figure 8(c)). Note that the hunting that was observed in the forcing frequency when higher 
values of kes were used did not create any corresponding hunting in the cost function. This is to be expected from the 
broad nature of the minimum in the I/O map. 
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Figure 10. Performance of Minimum-Seeking Control. The forcing azimuthal mode was mf = 3 and the cost 
function was RMS(p[0]). (a) Evolution of forcing frequency starting at 10 kHz. (b) Evolution of cost function for (a). 
(c) Evolution of forcing frequency starting at 55 kHz. (d) Evolution of cost function for (c). (e) Steady state SPL 
spectrum of pressure compared with the baseline experiment and the case of open-loop forcing at fF = 30 kHz & mf

= 3. (f) Steady state SPL spectrum of p[0] compared as in (e). Please see the text for the control parameters. Note the 
difference in time scales between (a)-(b) and (c)-(d). 
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Figure 10(c) shows the evolution of the forcing frequency starting from the higher end, viz. 55 kHz. Even with 
the higher value of kes used in this case (1.0 instead of 0.4), the convergence rate was much slower. The frequency 
reached ~30 kHz after 80 seconds. Also, some degree of hunting is evident in the long-term behavior owing to this 
high value of kes. Figure 10(d) shows that the cost function was correctly minimized to 230 Pa starting from 260 Pa.  

Figure 10(e) presents the steady state SPL spectrum of the near-field pressure for the case presented in parts (a) 
and (b). This was identical to the spectrum found in the experiment presented in parts (c) and (d). This spectrum 
bears a striking resemblance with the one obtained in open-loop forcing at fF = 30 kHz and mf = 3. Compared to the 
spectrum for the baseline case, there is a broadband attenuation with a reduction of about 5 dB at the peak frequency 
of 3.6 kHz. The forcing tone and its harmonics in the feedback controlled case are seen to be much smaller, albeit 
broader, than in the open-loop forcing case due to the persistent perturbations in the forcing frequency. For 
completeness, Figure 10(f) presents the SPL spectrum of p[0] in the frequency range supplied to the feedback 
controller; the characteristics are again very similar to the corresponding open-loop spectrum for forcing at 30 kHz. 
Also, the attenuation compared to the baseline unforced case is noteworthy. 

Thus we have hereby demonstrated that minimum-seeking feedback control can automatically replicate the best 
performance found with open-loop forcing. 

B. Maximum-Seeking 
As mentioned previously, by changing the gain in the ES loop from –1 to +1, we can use the same setup to seek 

the maximum of the I/O map. The goal here is mixing enhancement by the maximum amplification of the large-
scale structures in the jet shear layer; this in turn is reflected in a broadband increase of the near-field pressure 
fluctuations. The results from open-loop forcing experiments (see Figure 8) show that the axisymmetric forcing 
mode (mf = 0) results in the largest amplification of near-field pressure. Hence, all maximum-seeking experiments 
were performed in this forcing mode. Also, it has been discussed earlier that the near-field pressure is almost fully 
reconstructed using the sum of its axisymmetric and first helical modes. Hence, the cost function was selected as 
RMS(p[0] + p[1]). As before, the (p[0] + p[1]) signal was band-pass filtered between 0.5 kHz and 8 kHz before 
supplying it to the RMS calculator. 

The parameters of the extremum-seeking loop were chosen as mentioned in the previous section. Namely, we 
used the following set: �a = 4� rad/s, �h = �l = 0.4� rad/s, a = 350, and kes = 0.2. 

Figure 11 presents the performance of maximum-seeking feedback control. Figure 11(a) shows that the forcing 
frequency was correctly optimized from 10 kHz and settled around 5.2 kHz within 10 seconds. Figure 11(b) shows 
that the cost function was maximized from 550 Pa to about 1250 Pa. In open-loop forcing experiments presented in 
Figure 8 (b), the maximum RMS value was found to be 1400 Pa for fF = 4 kHz. This point will be discussed further 
below. We also found very similar results in experiments to seek the maximum starting from the lower frequency of 
1 kHz; they will not be presented here in the interest of brevity. 

Figure 11(c) presents the steady state SPL spectrum of the near-field pressure in closed-loop control. This 
spectrum is shown to be very similar to the one obtained in open-loop forcing at fF = 5.2 kHz and mf = 0. Compared 
to the spectrum for the baseline case, there is a broadband amplification which is an indication of enhanced mixing. 
The forcing tone and its harmonics in the feedback controlled case are seen to be much smaller, albeit broader, than 
in the open-loop forcing case. For completeness, Figure 11(d) presents the SPL spectrum of (p[0] + p[1]) in the 
frequency range supplied to the feedback controller; the characteristics are again very similar to the corresponding 
open-loop spectrum for forcing at 5.2 kHz.  

To investigate the disparity between the optimum open-loop forcing frequency of 4 kHz vis-à-vis the closed-loop 
steady state frequency of 5.2 kHz, we performed further open-loop experiments with a finer grid of forcing 
frequencies. In Figure 12, we show the result for RMS(p[0] + p[1]).  Contrary to the indications of Figure 8(b), the I/O 
map is not smooth in this frequency range. It is surmised that choosing smaller values of a and kes would have 
allowed the controller to seek the very sharp peak at 3.8 kHz starting from 1 kHz. However, even with the currently 
selected parameter values, the controller does not have enough perturbations to overcome the local maximum at 5.2 
kHz when starting from 10 kHz. Choosing smaller values would have further aggravated this problem. This 
represents a shortcoming of extremum-seeking control for maximum-seeking for mixing enhancement; viz. the I/O 
map is not sufficiently smooth in the pertinent forcing frequency range. 
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Figure 12. Exploration of the effect of forcing frequency on RMS(p[0] + p[1]) with a finer grid than in Figure 8. 
The forcing azimuthal mode is mf = 0. 
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Figure 11. Performance of Maximum-Seeking Control. The forcing azimuthal mode was mf = 0 and the cost 
function was RMS(p[0] + p[1]). (a) Evolution of forcing frequency starting at 10 kHz. (b) Evolution of cost function. 
(c) Steady state SPL spectrum of pressure compared with the baseline experiment and the case of open-loop forcing 
at fF = 5.2 kHz & mf = 0. (d) Steady state SPL spectrum of (p[0] + p[1]) compared as in (c). Please see the text for the 
control parameters. 
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VII. Conclusion 
In this paper we have presented and discussed preliminary results of development and application of feedback 

control to axisymmetric jets.  In particular, we have shown control authority on the near-field pressure of a Mach 0.9 
and ReD = 7.6 × 105 jet. To our knowledge, this is the first time that a feedback control strategy in a high-speed and 
high-Reynolds number jet has been attempted. Open-loop forcing using our in-house developed plasma actuators 
has been shown to have two distinct effects on the near-field: a sharp peak in the pressure fluctuations occurs at 
lower forcing frequencies near the jet column mode, whereas a broad minimum is found at higher forcing 
frequencies. The peak corresponds to optimum mixing enhancement in the jet shear layer; the minimum corresponds 
to far-field noise attenuation. The optimum forcing frequency for far-field noise attenuation is somewhat lower than 
the frequency corresponding to the minimum in the near-field pressure fluctuations. In this paper we focus on the 
near-field only; therefore, this difference is not addressed.  

It is shown that azimuthal modal decomposition of the near-field pressure further reveals its structure. Previous 
research by Hall et al. (2006) has shown that the axisymmetric pressure mode is best correlated with the far-field 
noise; hence, this mode was selected for minimization with a view toward noise attenuation. The same researchers 
also showed that the near-field pressure is well-reconstructed by the sum of the axisymmetric and first helical 
pressure modes only; hence, this quantity was selected for maximization for mixing enhancement. 

The actual feedback control was implemented as an online gradient-based extremum-seeking scheme. 
Previously, we have applied this control technique to reduce resonant tones in flow over a shallow cavity (Kim et al. 
2008). In the current experiments, this controller has been used both for maximum-seeking as well as minimum-
seeking. The results presented herein demonstrate that this controller is able to achieve optimum performance in 
both applications within a relatively short time. 

Several open issues need to be addressed in future research. We have already mentioned the difference between 
the near-field and far-field regarding the minimizing forcing frequency. Another challenge is posed by the non-
smoothness of the I/O map near its maximum; in particular, several local maxima are found very close to the global 
maximum of the map. The current selection of controller parameters has resulted in the closed-loop system getting 
“trapped” in one of these local maxima. In spite of these issues, extremum-seeking feedback control of jets 
demonstrates significant promise. 

Appendix 

A. Azimuthal Modal Decomposition 
Azimuthal modal decomposition offers a way to recover essential information from the near-field pressure 

measurements while filtering out the extraneous components. A statistically stationary time signal can be Fourier-
decomposed into its frequency components; similarly, multi-point measurements of a statistically homogeneous 
flow variable can be decomposed into its spatial modal components. For an axisymmetric jet, the most natural of 
such decompositions is in terms of its azimuthal modes. 

The azimuthal modal decomposition of pressure is performed as follows. We measure the pressure at Np points 
on a circle of radius r coaxial with the jet at a given downstream location x. This would be done, for instance, using 
the ring array of pressure sensors shown in Figure 2. The azimuthal location of the kth sensor is denoted by �k, 
measured from any suitable reference direction. Then the pressure measured at time instant t is defined as p(r, x, �k, 
t). Typically, we will be focusing on fixed r and x; hence we will actually denote the pressure as p(�k, t). Also, we 
would assume that the sensors are distributed symmetrically around the circle so that 

2 ( 1) / , 1, , .k p pk N k Nθ π= − = �  

At every instant t, a spatial (in azimuthal angle �k) Fourier transform is applied to the Np pressure signals. We 
arbitrarily choose �1 as the reference and obtain the mp

th Fourier azimuthal mode as 

�

1

,( , ) ( )e , 0, , 1.
p

p k

N
im

p k p p
k

p m t p t m N
θ

θ
−

=
= = −� �  

Due to the symmetric arrangement of the pressure sensors,  
� �( , ) { ( , )}*p pp m t p m t− =  

where * signifies the complex conjugate. The azimuthal mode-filtered pressure signal at the jth sensor is defined as 
the inverse Fourier transform of the above signal with the undesired modes padded with zeros: 
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Typically, we are interested in the signal at the reference sensor; so �j = 0. Also, in an axisymmetric jet, it is 
immaterial whether the mp

th helical mode is clockwise or counter-clockwise. Using the above facts, we define a 
simple helical mode-filtered signal as 

� �
[ ] [ ]

1

,
2 2

( ) : 2 Re{ (0, )} Re{ ( )} ( , ) cos , 1, , 1.
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Of course, for the axisymmetric mode, the expression simplifies to 

[0]

1

1
( ) ( , ).

pN

k
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p t p t
N

θ
=

= �  

This is simply the average over the azimuthal array of pressure signals measured at time t. 
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