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Extremizing Feedback Control of a High–Speed 
and High Reynolds Number Jet 

Aniruddha Sinha*, Kihwan Kim†, Jin-Hwa Kim‡, Andrea Serrani§, and Mo Samimy** 
Gas Dynamics and Turbulence Laboratory, The Ohio State University, Columbus, OH, 43235 

We present results of the development and application of extremizing feedback control to 
high-speed and high Reynolds number axisymmetric jets. In particular, we demonstrate 
control authority on the near-field pressure of a Mach 0.9 jet with a Reynolds number based 
on jet diameter of 7.8 × 105. Open-loop forcing experiments are presented wherein localized 
arc filament plasma actuators are shown to have two distinct effects on the near-field 
pressure, similar to their effect on the far-field acoustics reported earlier. At low forcing 
Strouhal numbers (StDF’s) near the jet column mode instability, a large amplification in the 
pressure fluctuations is observed. At higher StDF’s (close to the initial shear layer instability) 
a broad attenuation is observed in the near-field pressure fluctuations, especially in the 
axisymmetric mode. Previous experiments have shown that forcing the jet with these low 
and high frequencies result in jet mixing enhancement and far-field noise reduction, 
respectively. Two different gradient-free extremizing feedback control algorithms have been 
implemented, each of which can perform online minimum-seeking as well as maximum-
seeking. Both methods demonstrate fast convergence to the optimum followed by steady 
operation. 

Nomenclature 
an, a1, amin = generic, initial, and minimum value of step size in a stochastic optimization process 
AgeLimit = user-specified age limit of successively retained best vertex in simplex-based searches 
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 = various designated simplex vertices pertinent to simplex-based searches 

cn, c1, cmin = generic, initial, and minimum value of perturbation in a stochastic optimization process 
D = nozzle exit diameter 
fF = forcing frequency 
h = generic cost-function for optimization 
I/O  = input/output, typically referred to a plant in a control system 
KWA, mKWA = original and modified Kiefer-Wolfowitz algorithm for stochastic optimization 
LAFPA = localized arc filament plasma actuator 
MaxS, MinS = user-specified simplex size constraints for simplex-based searches 
mF = azimuthal mode number of forcing 
NMA, mNMA = original and modified Nelder-Mead algorithm for direct search 
NF  = number of actuators arranged in a symmetric azimuthal array at the jet lip 
p = near-field pressure signal 

[ ]pmp  = near–field pressure signal filtered at azimuthal mode mp 
ReD  = Reynolds number based on jet nozzle exit diameter and exit velocity 
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S = set of vertices in simplex-based searches 
SISO = single-input single-output control system 
Ss0 = initial simplex size for simplex-based searches 
StD = Strouhal number based on spectral frequency, f, and nozzle exit diameter = fD/Uj 
StDF = Strouhal number based on forcing frequency and nozzle exit diameter = fFD/Uj 
t = time 
Uj = jet exit velocity 
x = streamwise distance downstream from nozzle exit 
yk = independent variable at the kth step of a stochastic optimization process 
�, �, � = various simplex transformation coefficients pertinent to a simplex-based search 
� = exponential decrement for perturbation levels in a stochastic optimization process 

I. Introduction 
E present experimental results of feedback control of a high-speed high Reynolds number jet. In particular, 
we demonstrate control over the near-field pressure with two different goals: increasing the pressure 

fluctuations for mixing enhancement, or decreasing the fluctuations for potential far-field noise attenuation. In this 
section we will motivate the discussion and establish the background. 

A. Motivation 
The feedback control strategy implemented is shown in Fig. 1. An axisymmetric jet was operated at Mach 0.9 

with ReD = 7.6 × 105. The jet was forced using a localized arc filament plasma actuator (LAFPA) system consisting 
of eight electrode pairs placed azimuthally near the jet nozzle exit. Each actuator generates square-pulse-like 
localized heating with fixed amplitude; the forcing frequency, the azimuthal mode, as well as the duty cycle can be 
independently controlled. The forcing frequency was chosen as the control input for implementing the feedback 
controller. The near-field pressure was measured using an azimuthal ring array of eight transducers. The azimuthal-
mode-filtered pressure fluctuation level was estimated in real-time and formed the plant output to be fed back to the 
controller. The controller, in turn, provided the appropriate forcing frequency to the actuators based on an 
optimization algorithm. The control scheme used can be setup either to seek the maximum fluctuation level 
(corresponding to mixing enhancement) or the minimum level (corresponding to potential noise attenuation). In the 
rest of this section, each of the choices made above will be rationalized based on previous research. 

 

B. Axisymmetric Jet Mixing Layer and Far-field Noise 
The turbulent axisymmetric jet is known to be susceptible to three different instability mechanisms: (i) initial 

shear layer instability, (ii) jet column mode instability, and (iii) azimuthal mode instability. The initial shear layer 
instability amplifies disturbances in a narrow range of frequencies that scale with the boundary layer momentum 
thickness at the nozzle exit; the associated Strouhal number is ~ 0.01 to 0.02. The initial waves created thereby at the 
nozzle lip roll up into large-scale coherent structures. These structures entrain fluid into the shear layer from both the 
high speed potential core and the ambient irrotational near-field and play a major role in the bulk mixing of the 
fluids. The jet column mode instability determines the preferred passage frequency of large-scale structures at the 
end of the potential core; this frequency scales with the nozzle exit diameter and the associated Strouhal number is 
StD ~ 0.2 to 0.6. Recent experimental results in our laboratory for high Reynolds number and Mach 0.9 and 1.3 jets 
show that StD ~ 0.31,2. The azimuthal instability causes certain helical structures to dominate in the mixing layer. The 
reader is referred to Samimy et al.1 for a detailed review of jet mixing layer instabilities. 

W

 

Figure 1. Feedback control system for a jet using plasma actuators. 
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Since the discovery of large-scale coherent structures in the late 1960s and early 1970s, researchers have 
recognized their importance as potential contributors to the radiated far-field noise in addition to the random 
turbulence. However, in spite of sustained effort ever since, the exact mechanism of influence has not been pinned 
down as yet. The following source mechanisms have emerged as popular candidates though: vortex-pairing, wavy-
wall type mechanisms, and vortex eigen-oscillations. All these effects are believed to be active in the initial mixing-
layer region of the flow. An additional postulated mechanism is the violent intermittent events associated with the 
collapse of the potential core. A recent review article by Jordan & Gervais3 provides a detailed account of these 
developments. An important character of the far-field noise is its directivity. In particular, the noise radiated in the 
downstream direction is louder than the noise radiated at right angles to the jet exit. Further, large-scale coherent 
structures are implicated in the radiation of noise preferentially in the downstream direction (see Tam4).  

From the above discussion, it is clear that the large-scale coherent structures in the jet shear layer play an 
important role in bulk mixing as well as noise radiation. Feedback control attempts to manipulate these structures to 
achieve either one of two desired goals: mixing enhancement or potential noise attenuation. 

C. The Near-Field Pressure and its Correlation with Bulk Mixing and Far-field Noise 
In general, jet actuation techniques strive to alter the characteristics of the initial shear layer since this latter is 

most receptive to perturbations; for feedback control, a real-time measurement of this effect of forcing is needed. 
Present technology does not allow real-time 3D measurement of the velocity field in the jet mixing layer. It is also 
not practical to require direct sensing of far-field noise levels for control applications. In this subsection, we invoke 
past research efforts to show that the pressure in the incompressible irrotational near-field of the jet offers an 
estimate of both the mixing-layer velocity field as well as the far-field noise. The measurement of the near-field 
pressure presents some unique opportunities: (i) it is a relatively non-intrusive technique; (ii) pressure, being a scalar 
variable, is considerably easier to measure than the velocity field inside the flow; and (iii) unlike some of the 
velocity measurement tools like PIV and LDV, pressure sensors are robust and can be feasibly transferred from the 
laboratory setting to real-world applications.  

The mean-square pressure in the irrotational near-field of the jet is related to the Reynolds stresses in the mixing 
layer by a weighting function that is inversely proportional to the 4th power of the wavenumber.5 The nature of this 
rapid roll-off indicates that the pressure spectrum will be dominated by the larger turbulent scales; this is termed 
wavenumber filtering. It is well known that the near-field pressure consists of two distinct components – 
hydrodynamic and acoustic (see the review by Jordan & Gervais3 and the references therein). The hydrodynamic 
pressure fluctuations carry the convective footprint of the underlying turbulence in the mixing layer, whereas the 
acoustic pressure fluctuations are characterized by spherical waves propagating with sonic speed. The far-field is 
dominated by the acoustic component due to the rapid decay of the hydrodynamic component with distance. 
However, in the immediate periphery of the jet, the hydrodynamic component supersedes the acoustic component. 
Due to the wavenumber filtering effect, the hydrodynamic pressure itself is dominated by the large-scale coherent 
structures in the jet mixing layer. Thus, in order to detect the behavior of the actuation-modified large-scale 
structures, the pressure sensors must be placed close to the shear layer without actually being in the rotational field. 

An efficient way of looking at the near-field pressure is via its Fourier azimuthal modal decomposition. Hall et 
al.6 measured the near-field pressure of a Mach 0.85 and ReD = 9.8 × 105 jet using an azimuthal array of 15 
transducers; they found the azimuthal pressure spectrum to be low-dimensional. In particular, they showed that the 
instantaneous pressure signal p(t) can be almost completely reconstructed from the sum of the axisymmetric mode 
p[0](t) and the first helical mode p[1](t). The energy of the lower azimuthal pressure modes was found to increase with 
downstream distance up to x/D ~ 3 and decrease subsequently up to x/D ~ 6, before increasing slightly again. The 
previous discussion has already showed that the stronger the large-scale structures in the mixing layer, the higher the 
pressure fluctuations in the near-field. Since stronger coherent structures are associated with enhanced entrainment 
and thereby bulk-mixing, this justifies the choice of RMS (p[0] + p[1]) in the near-field for real-time estimation of the 
level of mixing in the jet shear layer.  

Hall et al.6 also found that the near-field p[0](t) signal correlates better with the far-field noise than just the 
pressure signal by itself. In particular, they reported a maximum normalized correlation coefficient of 0.34 between 
the signal from a far-field microphone placed at a polar angle of 30° and the p[0](t) signal at x/D = 7.5. (For later 
reference, the corresponding correlation coefficient at x/D = 3 was 0.11.) In the present work, we do not probe this 
relationship further; instead we use the foregoing discussion to justify the choice of RMS (p[0]) in the near-field as a 
surrogate for the far-field noise. 
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D. Control of Axisymmetric Jets 
Flow control is usually divided into two general categories: passive and active. Passive control does not add 

energy to the flow and is normally accomplished by geometric modifications. In active control, energy is added to 
the flow to excite inherent instabilities or generate new structures (e.g., streamwise vortices). Active control is 
further divided into open-loop and closed-loop. In open-loop control, the actuation takes place based on an 
operator’s command or a predetermined input. In closed-loop (or feedback) control, information from a sensor or 
sensors in the flow, possibly along with a flow model, guides the actuation process7-10.  

The reader is referred to Samimy et al.2 for a survey of the previous research in open-loop control of 
axisymmetric jets. We note here that the majority of the investigations using open-loop control have been carried out 
in relatively low-speed and low Reynolds number jets. As the speed and the Reynolds number of the jet increase, so 
do the background noise, the instability frequencies, and the flow momentum. Therefore, actuators must provide 
excitation signals of much higher amplitude and frequencies. We have recently developed a class of plasma 
actuators called LAFPAs that can provide excitation signals of high amplitude and high bandwidth for high-speed, 
high Reynolds number flow control1,2,11,12. These actuators are deployed in an azimuthal array just upstream of the 
jet nozzle exit. The firing of each actuator is governed by a separate square-pulse-train whose frequency, phase, and 
duty cycle can be controlled independently. The intense localized heating perturbations generated by the LAFPAs 
can be used to selectively excite the three different instability mechanisms mentioned in Section I-B.  

Open-loop forcing experiments were conducted on a Mach 1.3 and ReD = 1.1 × 106 axisymmetric jet to assess 
the effect of LAFPAs on the mixing layer1. Laser-based planar flow visualizations, pressure measurements inside 
the mixing layer, and two-component PIV measurements were used to evaluate the effects of forcing. The jet 
responded to the forcing over the entire range of frequencies, but the response was optimal (in terms of generating 
large-scale coherent structures and hence mixing enhancement) around the jet column mode Strouhal number of StDF 
= 0.33. The jet also responded to the various forcing azimuthal modes that could be explored with eight actuators, 
viz. mF = 0, 1, 2, 3, ±1, ±2, and ±4. Forcing the jet with mF = ±1 at the jet column mode Strouhal number provided 
the maximum mixing enhancement, with a marked reduction in the jet potential core length and a significant 
increase in the jet center-line velocity decay rate beyond the end of potential core. The flow visualization, growth 
and decay of perturbations observed in pressure measurements, and PIV data, all together showed that the plasma 
actuators have control authority over such a high Reynolds number and high-speed flow.  

Experiments were also conducted on a Mach 0.9 and ReD = 7.6 x 105 jet to study the effect of LAFPAs on far-
field noise2; this is also the jet on which we implemented closed-loop control.  The far-field jet noise was measured 
using two microphones located at polar angles of 30º and 90º relative to the jet axis. The first noticeable effect of 
forcing was the appearance of the forcing tones and its harmonics in the acoustic spectra, more prominently for mF = 
0 than for mF = 3. More pertinently, all forcing azimuthal modes explored resulted in the attenuation of low-
frequency noise attended with an amplification of high-frequency noise, at both measurement stations. The directive 
nature of the far-field noise was also in evidence with the SPL at 30º being at least 10 dB higher than that at 90º. 

A standard metric for comparing broadband noise levels is the overall sound pressure level (OASPL). Samimy et 
al.2 compared the OASPL for the forced jet to the baseline case (the difference is denoted �OASPL) at the two 
afore-mentioned stations, for a range of forcing frequencies and azimuthal modes. Several noteworthy features were 
observed. (i) A well-defined attenuation of noise was evident at high forcing frequencies for all azimuthal modes at 
both stations. (ii) The forcing Strouhal number corresponding to the minimum OASPL was independent of the 
forcing azimuthal mode, but varied with the measurement station. At the 30º microphone location, a relatively sharp 
minimum in �OASPL of  ~ –1.2 dB was noted at StDF ~ 2.0; at the 90º location, a broader minimum of ~ –0.6 dB 
occurred at StDF ~ 3.5. (iii) The highest azimuthal forcing mode employed (mF = 3) was found to be more effective 
for attenuating noise, compared to the other mF’s. (iv) An amplification of noise was also noted at low forcing 
frequencies for all azimuthal modes; however, in this regard, the different azimuthal forcing modes had markedly 
distinct effects. 

The above review of open-loop forcing experiments shows that the in-house developed plasma actuators have 
significant ability to either enhance mixing or attenuate far-field noise, as desired. We next discuss the development 
and implementation of extremizing feedback control for these tasks. 

E. Schemes for Online Optimization 
The previous results reviewed above suggest that the noise attenuation problem can be cast as an optimization 

problem wherein we seek the forcing frequency of the plasma actuators that minimizes the RMS (p[0]) in the near-
field. Likewise, the mixing enhancement problem can be posed as a problem of seeking the maximum of RMS (p[0]  
+ p[1])  in the near-field. In either case, the optimum forcing frequency will be a function of the operating conditions; 
for instance, the Mach number and temperature ratio. Open-loop control is unable to cope with this uncertainty in 
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operating conditions since it operates at a preset forcing frequency. On the other hand, feedback control can add 
robustness to the performance in the presence of variations in the operating conditions. 

We have implemented two different feedback controllers for online optimization of the plant output. Here, 
“plant” means the portion of the closed-loop system inside the dashed box Fig. 1. Optimization can mean either 
maximization or minimization and both would be pursued in this work. We will discuss the controllers from the 
perspective of maximization; for minimization one simply performs maximization on the negative of the plant 
output. In the past we have implemented a gradient-based extremum-seeking control strategy13; although its steady 
state operation compared well to the optimal open-loop results, the convergence (transient behavior) was found to be 
very slow. This prompted the exploration of the gradient-free algorithms that are the subject of this article. Most 
feedback controllers require a dynamic model of the actual system; however both our controllers are model-free and 
assume a static relationship between the plant input and output. 

Teel & Popovi�14 showed that the tools of nonlinear programming can be employed for online optimization of a 
large class of dynamic systems with appropriate assumptions. Using this idea as the starting point, we investigated 
the field of offline optimization in search of an appropriate algorithm for our application. In particular, we were 
looking for methods that are gradient-free, robust to noise, and implementable for real-time operation. Among the 
plethora of available algorithms in this area, Nelder & Mead’s simplex-based direct search method15 has a proven 
record of performance in a deterministic setting; surprisingly, the algorithm lacks a convergence proof. Barton & 
Ivey16 recommended modifications to the original algorithm for robust behavior in the presence of noise. Torczon17 
designed another direct search technique, the Multi-Directional Search Method, for provable convergence in a 
deterministic setting. She also provided empirical evidence of reliable optimization of noisy cost functions. Our first 
controller implementation is a direct search algorithm based on all the above results with several additional 
modifications for use in online optimization; the details are discussed in Section V-D.  

The second controller that we implemented was a modified stochastic optimization technique. In 1951, Robbins 
and Monro18 pioneered the field of stochastic approximation, the study of search techniques that successfully reach a 
pre-assigned goal in spite of noise. Their routine was designed to find the root of a noisy function. In 1952, Kiefer 
and Wolfowitz19 adapted the idea to the problem of finding the extremum of a unimodal function obscured by noise. 
Although the original algorithm was gradient-based, a later variant was developed for gradient-free stochastic 
optimization20. The additional modifications that had to be incorporated to adapt this offline technique for online 
optimization will be detailed in Section V-E. 

We also briefly tried some other algorithms for our application, only to reject them for some perceived 
shortcoming. The self-tuning methodology21 seemed to be particularly appropriate for our application; however the 
noise in our application proved to be overwhelming. We also considered the triangular-search method of Zhang22 
and found it to be quite similar to our implementation of the direct-search algorithm. However, Zhang’s method 
lacks the variety of parameters that allowed us to fine-tune the latter for our specific application. 

This brings us back to the motivation for this paper. The axisymmetric mode fluctuations of the near-field 
pressure, being well correlated to the far-field noise, will be treated as the plant output for potential feedback 
minimization of far-field noise. On the other hand, the fluctuations of the sum of the axisymmetric and first helical 
modes of near-field pressure would be maximized online for potential mixing enhancement. In either application, we 
will use one of the two controllers discussed above to determine the optimal forcing frequency in real-time. The 
LAFPA control system will use this information to force the jet. The effect of the forcing will be measured with 
pressure sensors in the irrotational near-field of the jet, which will be processed and fed back to the controller. 

II. Experimental Setup 

A. Flow Facility 
All experiments were conducted in the Gas Dynamics and Turbulence Laboratory (GDTL) at The Ohio State 

University. The ambient air was compressed, dried, and stored in two cylindrical 36 m3 tanks at up to 16 MPa. The 
compressed air was supplied to the stagnation chamber and conditioned before entering into a nozzle. We used an 
axisymmetric converging nozzle with an exit diameter of D = 25.4 mm (1.0 inch) and operated at a Mach number of 
0.9. The air was discharged horizontally through the nozzle into an anechoic chamber.  

The Reynolds number of the jet based on the jet diameter was ReD = 7.6 × 105 for the Mach 0.9 jet. The 
boundary-layer at the exit of the nozzle was very thin, making it challenging to obtain a boundary-layer profile to 
determine its momentum thickness and its state. Kastner et al.23 used a similar converging nozzle and measured a 
few points within the boundary layer. They estimated the boundary layer at the exit to be turbulent, with a thickness 
of about 1 mm and a momentum thickness of about 0.1 mm. The characteristics of the boundary layer in the current 
experiments are expected to have been quite similar.  
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B. Plasma Actuators and Plasma Generator System 
The plasma generator system is detailed elsewhere1,2,11,12; here we briefly describe some of its highlights. Each 

plasma actuator (LAFPA) consists of a pair of 1 mm diameter tungsten pin electrodes, with a tip separation of 3 mm. 
The electrodes are symmetrically distributed around the perimeter of a boron nitride nozzle extension, 
approximately 1 mm upstream from the extension’s exit plane. A 0.5 mm deep and 1 mm wide ring groove is used 
to house the electrodes and to shield and stabilize the plasma. 

The plasma generator enables simultaneous powering of up to 8 actuators with independent frequency, duty 
cycle, and phase control. Each actuator is connected in series with a fast-response high-repetition-rate high-voltage 
MOSFET switch, two 15 k� ballast resistors, and a 10 kV - 1 A DC power supply. Two of these power supplies are 
used to energize the 8 actuators. A Labview program controls the switches using square pulses through an eight-
channel National Instrument (NI) PCI-6713 DAC card running at an update rate of 780 kHz. The switches are 
capable of producing high-voltage pulses at repetition rates from a few hertz up to 200 kHz, with a very short pulse 
rise/fall time (~0.1 �s) and a variable duty cycle (from 0 to 100%). Previous experiments have shown that optimal 
performance is achieved by selecting the duty cycle as a function of the forcing frequency 
  

 
11.4286

0.0006 2,                    if   30,000 Hz
dutycycle (%)

0.0002857 ,     if    > 30,000 kHz
F F

F F

f f

f f+

+ ≤
=
�
�
�

 (1) 

This formula is implemented in the Labview program. The jet can be forced in helical azimuthal mode mF = 0, 1, …, 
NF / 2 – 1 by phase-shifting the pulse signals to successive actuators by 2�mF /NF radians. The system can also 
simulate mixed mode forcing; however these were not employed in the current experiments. 

In closed-loop experiments, a dSpace 1103 DSP board operating at 50 kHz sampling rate was used to implement 
the control algorithm. In such cases, the Labview program was modified to acquire the dictated value of the forcing 
frequency from the DAC output of the dSpace board using one channel of an NI PCI-6036E ADC card. 

C. Near-field Pressure Measurements 
Figure 2 shows a symmetric 

circular array of 8 Kulite pressure 
transducers (model XCQ-062-25A). 
The highest azimuthal pressure mode 
that can be distinguished with this 
configuration is p[3]; this was deemed 
acceptable in view of the low-
dimensionality of the near-field 
pressure discussed previously. The 
inner diameter of the ring that holds 
the transducers is 254 mm (10 inches), 
ten times larger than the nozzle 
diameter. A maximum of six 
additional transducers can also be 
arranged in a linear array aligned with 
the jet axis with consecutive sensors 
separated by 12.7 mm (0.5 inch). This 
linear array was not employed in the 
current experiments. 

During baseline (unforced) 
experiments and open-loop forcing cases, the pressure signals were amplified, low-pass filtered at 100 kHz, and 
acquired using an eight channel NI PCI-6143 ADC card at a sampling rate of 200 kHz. In closed-loop experiments, 
the dSpace board was required to acquire the pressure signals for feedback. In these cases, each of the 8 channels of 
output from the 100 kHz low-pass filter was split in two. One signal from each splitter was connected to the NI 
board for offline computation of the SPL spectrum in steady-state operation. The other set of signals were again 
low-pass filtered at 25 kHz before being routed to the input ADC channels of the dSpace board.  

For all computations of the pressure spectrum, a Labview data capture routine collected 786,432 samples at 200 
kHz on the eight channels simultaneously, for a total duration of ~ 3.9 s. The spectra were calculated using a 
window size of 8192 samples with a 50% overlap, resulting in a frequency resolution of 24.4 Hz. The reference 
pressure for conversion to dB was the standard value of 20 �Pa. 

 
Figure 2. Schematic of near-field pressure sensing system using a 
circular array of eight and a linear array of six pressure transducers. 

�

�
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III. Baseline Experimental Results 
One of the first issues to be addressed in our feedback control strategy was the positioning of the azimuthal ring 

array of pressure sensors. In practical applications, one would like to place the sensors as close as possible to the 
nozzle exit for ease of implementation. However, as mentioned earlier, Hall et al.6 reported that the correlation of 
near-field pressure to the far-field noise is low at the jet exit and reaches a maximum at x/D = 7.5. To balance these 
opposing constraints, we chose to locate our ring array at x/D = 3.0. We have already pointed out that at this location 
both the axisymmetric and first helical pressure modes have the maximum energy compared to all other streamwise 
locations6. Recall that at this location the correlation coefficient between the near-field pressure and far-field noise is 
around 0.11. The choice for the tip-circle radius of the pressure sensors is also a compromise between conflicting 
constraints. On the one hand, the pressure sensors should not be within the jet to reduce measurement error. On the 
other hand, as already mentioned, the sensors should be close enough to the mixing layer to capture a strong 
signature of the hydrodynamic fluctuations in the jet. Kim et al.24 performed PIV studies of the same jet in various 
open-loop forcing experiments; their results show the extent of the jet mixing layer in various forcing conditions. In 
particular, the maximum radius of the jet at x/D = 3.0 was observed when the jet was forced at its column mode 
frequency and the first flapping azimuthal mode mF = ±1; this radius was about 0.9 D. Hence, the tip-circle radius 
was chosen as 1 D. All near-field pressure data presented in this paper were measured at this location. 

 
Figure 3 presents the SPL spectra for the baseline (unforced) case. In Fig. 3(a), we show that the 8 channels 

record almost identical SPL spectra, verifying that the jet is axisymmetric and the azimuthal array of pressure 
sensors is coaxially aligned to it.  Henceforth, we use “SPL of the pressure” to denote the mean of the 8 channels. 
Figure 3(b) shows the SPL spectra of the first four azimuthal-mode-filtered pressure signals; this is the most that we 
can resolve with 8 sensors. At this streamwise location, p[1] is the strongest, followed by p[0]. As mentioned earlier, 
Hall et al.6 have reported that that the instantaneous pressure signal can be almost completely reconstructed from the 
(p[0] + p[1]) signal. In Fig. 3(b), we plot the SPL spectrum of this signal and overlay the mean pressure spectrum; they 
are seen to have very similar peak amplitudes. Note that the peak pressure fluctuation is around StDF = 0.3 which 
corresponds to the jet column instability frequency. 

IV. Open–loop forcing results 
The purpose of the open-loop experiments was two-fold. We wished to investigate the effect of forcing on near-

field pressure using plasma actuators. We also wanted to trace the static map between the forcing frequency (our 
control input) and the RMS of the azimuthal-mode-filtered pressure (our control output) to guide the design of the 
closed-loop controller. Therefore, the data for the open-loop experiments will be presented in terms of the RMS 
values of the pressure signals and their azimuthal-mode-filtered components.  

With eight actuators in the azimuthal array, four different helical forcing azimuthal modes can be generated, viz. 
mF = 0, 1, 2, and 3; all of these were explored in our experiments. The forcing Strouhal number StDF was varied from 

 
Figure 3. Baseline near-field pressure spectra for (a) the eight individual channels, and (b) the various 
azimuthal modes.  
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0.09 to 5.44 (fF = 1 to 60 kHz) in varying step sizes. The azimuthal-mode-filtered pressure signals and their 
associated SPL were computed in post–processing. Figure 4 shows the SPL spectra for two representative open-loop 
forcing experiments (mF = 0, StDF = 0.44 and mF = 3, StDF = 2.72) compared to the baseline case. It will be shown 
that the former corresponds to a maximum in the near-field pressure fluctuations, whereas the latter corresponds to a 
minimum. The first noticeable aspect in Fig. 4 is the presence of the forcing tone and its harmonics. The more 
important aspect is the amplification at the lower StDF and the attenuation at the higher one. Similar effects and 
trends have been observed in the far-field noise also2. A peculiar characteristic is the appearance of strong side 
bands to the forcing tone in the StDF = 2.72 case. Although these bands are absent from the primary forcing tone in 
the StDF = 0.44 case, they do appear, albeit less prominently, around the higher harmonics. At this stage, we do not 
have an explanation for this behavior.  

During feedback control, the signals needed to be band-pass-filtered to remove both the DC offset and the high 
frequency noise. Based on the well-defined broadband peaks in the spectra in Fig. 4, we designed a Chebyshev filter 
with a pass-band from StD = 0.04 to 0.73 (0.5 to 8 kHz). For accurate comparison, this filter was also applied to the 
open-loop pressure signals before computing their respective RMS values. 

Figure 5 presents the RMS of the near-field pressure and its various azimuthal-mode-filtered versions for a wide 
range of forcing Strouhal numbers. The mF = 0 and 3 cases are more pertinent for our application; so these forcing 
cases were explored on a finer grid of StDF’s. The peculiar two-peak nature of the axisymmetric forcing case thus 
might be replicated in other modes too. We make the following observations regarding the results. (i) For all forcing 

azimuthal modes explored, the pressure intensity 
as well as the intensity of each pressure azimuthal 
mode have similar characteristics – there is a 
relatively sharp maximum at a low StDF and a 
broad minimum at a higher StDF. The maximum 
clearly corresponds to the jet column mode 
instability frequency; previous flow visualization 
and PIV results have shown that the jet exhibits 
the largest response to forcing around this StDF 1. 
The first (slightly lower) peak in RMS (p) for mF 
= 0 also corresponds to the jet column mode; at 
this time we do not have an explanation for the 
second peak. The attenuation at higher StDF’s is 
thought to be associated with the initial shear 
layer instability frequency which is predicted to 
be between StDF = 3.6 and 4.5 for our jet. (ii) 
Figure 5(a) shows that the peak in RMS (p) is 
largest for mF = 0 and smallest for mF = 2 & 3. 
(iii) For a particular mF, the maximum intensity is 
noted in the corresponding pressure azimuthal 

mode. For example, Fig. 5(c) shows that the maximum value of RMS (p[1]) is obtained by forcing the jet at mF = 1. 
(iv) The RMS of (p[0] + p[1]) shows similar characteristics as the RMS of the pressure. (v) The switchover from 
amplification to attenuation (the crossing of the curves with the baseline pressure intensity line) follows a set pattern 
for the pressure as well as all its azimuthal modes. In particular, the curves for mF = 0 attenuate at the lowest StDF 
and those for mF = 3 attenuate at the highest StDF. (vi) The different pressure azimuthal modes also exhibit a 
progression of crossover locations. For example, all the curves for RMS (p[0]) crossover at StDF ~ 0.9 (but with 
differences therein, as mentioned above). However, this crossover happens at StDF ~ 1.8 for RMS (p[3]). (vii) The 
effects of different forcing azimuthal modes become indistinguishable at higher forcing Strouhal numbers. (viii) The 
location of the minimum shifts to higher StDF’s for increasing pressure azimuthal modes. While the minima for RMS 
(p[0]) and RMS (p[1]) occur at StDF ~ 2.7, the other modes have their minima at StDF ~ 3.6. (ix) The minima become 
flatter for higher pressure azimuthal modes, especially at the high-StDF end. 

Since we are relying on the axisymmetric mode of the near-field pressure signal to estimate the far-field noise, it 
is instructive to compare this result with the effect of forcing on the far-field noise reported by Samimy et al.2 and 
mentioned previously in Section I-D. In particular, they found the minimum far-field OASPL at StDF ~ 2.0 at the 30º 
location and at StDF ~ 3.5 at the 90º location. On the other hand, Fig. 5(b) shows that in the near-field, p[0] is 
minimized at StDF ~ 2.7. This aspect will not be addressed in this paper; here we would minimize RMS (p[0]) without 
any reference to the actual far-field noise level. 

Figure 4. Representative near-field pressure spectra with 
open-loop forcing. 
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Figure 5. Effect of open-loop forcing on near-field pressure. RMS of (a) pressure, (b) p[0], (c) p[1], (d) p[2], (e) 
p[3], and (f) p[0] + p[1], vs. StDF. Each graph shows the effect of the four different forcing azimuthal modes explored. 
Also, the RMS of the respective signals in the baseline case are shown for ease of comparison. Note that the mF = 0 
and 3 curves do not have markers since they were collected on a fine resolution. 
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V. Extremizing Feedback Control Algorithms 
In this section, we discuss the two feedback controllers that were implemented for online optimization in our 

application. We remind the reader that in our SISO problem the cost function depends only on the forcing frequency 
fF of the LAFPAs. Also, the cost function is the RMS of a particular azimuthal mode of pressure fluctuation in the 
near-field of a highly turbulent high Reynolds number jet. Preliminary studies have shown that in spite of the 
averaging character of RMS, when performed over meaningful window sizes the resulting RMS value can still be 
noisy. Thus the problem is inherently stochastic. A further issue to be considered is the possible variation of the 
optimal value of fF with time; indeed, this is the motivation for implementing closed-loop control. Although rapid 
changes cannot be expected to be handled by our controllers, they should be able to track gradual variations in the 
location of the optimum due to possible changes in the operating conditions. We must point out that we did not test 
this portion of our implementation for several practical reasons. 

D. Modified Nelder-Mead Algorithm 
The first controller is based on the Nelder-Mead algorithm15 (NMA) with some ideas from the Multi-Directional 

Search Method of Torczon17. Both these algorithms are simplex-based direct search techniques for off-line 
optimization of static deterministic multi-variable cost functions. On the other hand, our application involves the 
online optimization of a stochastic single-variable cost function; moreover the optimum of the function may vary 
with time. Several modifications to the original NMA are proposed below to address these differences. The modified 
Nelder-Mead algorithm (mNMA) will be discussed with reference to function maximization. The flowchart and 
pseudo-code are presented in the Appendix. 

We denote the SISO cost function to be maximized by :h →� � . For this problem, the simplex is a 2-element 
set of vertices representing the end points of a line; let this set be S = {S1, S2}. The initial choice of these vertices 
must be specified by the user, or some other algorithm. In the optimization process, the algorithm adapts the size and 
location of the simplex; however the user specifies the maximum (MaxS) and minimum (MinS) allowable size of the 
simplex. The significance of these constraints will be explained subsequently.  

The process starts with the evaluation of h (•) at the vertices of the initial simplex before entering the iterator. 
The loop starts by ranking the vertices based on their functional values. In a maximization problem, the best vertex 
B would be the one with the highest function value. Since in a SISO problem there are only 2 vertices, the other one 
would be the worst vertex W. Hence one has 
 arg max{ ( )}, arg min{ ( )}.i i

i i
B h S W h S← ←   (2) 

The use of the mere rank distinguishes the “direct-search” techniques from the gradient-descent methods which 
would typically use a finite difference approximation of the local gradient of the cost function.  

The next step is Reflection. It is based on the hypothesis that a more optimal value of the independent variable 
can be found on the opposite side of B away from W. The reflected vertex R is calculated as 
 ( ),R B B Wα← + −   (3) 
where, a typical value of the reflection coefficient � is 1. The expression h (R) is evaluated at this point.  

On Reflection, if it is found that h (R) > h (B), then it is logical to hypothesize that the optimum is further along 
the directed line segment BR . This would then warrant Expanding the simplex, but only if it is smaller than MaxS. 
Also, the Expansion step might itself cause the simplex size to exceed its bound, in which case it must be forcibly 
shortened. Thus, the Expanded vertex E is computed as 

 sign( ) min{ | |, },E B R B R B MaxSγ← + − −   (4) 
where � is the expansion coefficient. Typically, � = 2. At this point, h (E) is evaluated. If h (E) > h (R), then the 
Expansion step is deemed successful and the new simplex is set to {B, E} before looping back to the Reflection step. 
(The return path goes through a Resampling step that will be discussed later.) If on the other hand h (E) 	 h (R), then 
the original NMA would have set the new simplex as {B, R} before the ensuing Reflection. There is an issue with 
this scenario that is peculiar to a SISO problem. With the typical values of � and � as above, the next vertex to be 
evaluated on Reflection of B through R would be E again. Since functional evaluations are typically expensive, one 
should avoid this successive evaluation of E. A better option is as follows. 

Note that this branch of the algorithm is entered only if h (B) 	 h (R) and h (E) 	 h (R); thus the optimum can be 
hypothesized to lie within B and E. Also, it is logical to Contract the simplex to concentrate the search effort in the 
most promising sub-interval. An additional complication is introduced by the lower bound MinS on the simplex size. 
Let us consider the logical step in case the simplex cannot be Contracted any further, i.e. if |B – R| = MinS. (Note 
that |B – R| cannot be less than MinS as � = 1 and |B – W| 
 MinS would have been enforced in the previous 
iteration.) R being the best vertex should be retained in the simplex. E has been newly evaluated, and hence should 
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not be re-evaluated. So, the only option is to re-evaluate B. This can be achieved by setting the simplex to {R, E} 
and looping back to a Reflection. If on the other hand |B – R| > MinS, then we borrow from Nelder and Mead’s idea 
of the Inside/Outside Contraction15. In particular, if h (E) > h (B), then it is logical to Contract the {R, E} simplex 
toward R. For this, C1 is set to R and C2 to E, before proceeding to the Contraction step; the latter is explained 
below. On the other hand, if h (E) 	 h (B), then the {R, B} simplex is Contracted toward R by setting C1 to R and C2 
to B. 

Until now, we have discussed the case wherein h (R) > h (B) and the simplex size has not reached its maximum. 
In case the first condition is satisfied but not the second, then the simplex cannot be Expanded further. However, it is 
hypothesized that the optimum lies on the other side of R away from B (this is what motivated the Expansion). In 
this case, the correct option is to set the new simplex as {B, R}. Note that in the ensuing Reflection, B would be 
Reflected through R to give the E vertex that a normal Expansion step would have explored. This completes the 
discussion for the branch of the algorithm wherein the Reflection creates a new best vertex. 

In case h (R) 	 h (B), the optimum can be hypothesized to lie within W and R; this would warrant a Contraction 
per the above discussion. Following the NMA, an Outside Contraction is performed if h (R) > h (W) by setting C1 = 
B and C2 = R. Otherwise an Inside Contraction is effected by setting C1 = B and C2 = W. There is a (by now 
familiar) problem with the Outside Contraction: if the simplex size is the smallest that it can be, then the 
Contraction would not change the worst vertex R, and it would be evaluated twice in succession. A more preferable 
option in this case would be to set {B, R} as the new simplex before looping back to a Reflection. Note that the 
constraint of the lower bound on the simplex size does not affect the Inside Contraction. In that case, if the simplex 
is at its minimum size, then the Contraction would not change the worst vertex W, and it would be evaluated again, 
but not in twice in succession. This would be the correct option under the circumstances. 

We have already described the four routes by which one can arrive at a Contraction step. By the end of each 
such path, we have indicated the setting of C1 and C2. C1 represents the better vertex that should be retained, while 
C2 is the worse vertex which should be replaced by its Contraction. The actual Contraction step is identical to the 
one in the NMA except for the enforcement of the minimum size constraint on the simplex, MinS. That is, the 
Contracted vertex is calculated as 
 1 2 1 2 1sign( ) max{ | |, },C C C C C C MinSβ← + − −   (5) 
where a typical value of the contraction coefficient � is 0.5. Now h (C) is evaluated. The Contracted simplex {C1, 
C} is accepted unconditionally and the algorithm proceeds to the next Reflection step. The original NMA also 
includes a Shrink step. However, for a SISO problem, it duplicates the Contraction step, albeit with a possibly 
different coefficient; it is therefore not included in the proposed algorithm. 

We now move on to a discussion of the Resampling and Age-test steps that are incorporated to address the noise 
in our application; the ideas are adopted from Barton & Ivey16 and Zhang22, respectively. In essence, although the 
vertex B might not be the true optimum, a single observation of its functional value in a stochastic setting might 
make it seem optimal. So, at the end of an iteration (before the next Reflection step) the algorithm notes the age of B, 
i.e. the number of times it has been retained consecutively as the best. If the user chooses to Resample and if the 
current age of B is greater than a user-specified AgeLimit, then B is re-evaluated and its old functional value is 
replaced with the new one in subsequent rank determinations. 

At this point, we explain the incorporation of the constraints on the simplex size; such constraints are absent in 
the NMA. The mNMA is designed to track gradual variations in the location of the optimum due to possible changes 
in the operating conditions. A collapsed simplex will not be sensitive to changes in the local gradient of the cost 
function; the lower bound MinS is applied to keep the process “alive” to such variations. This also corresponds to 
the notion of persistent excitation used in the adaptive control literature since it ensures a minimum amplitude of 
oscillation of the plant input. Note that with this modification, we cannot have a stopping criterion unlike the 
original NMA. In fact, the possibility of variations in the optimum argues against stopping the algorithm except 
through a manual override.  

The upper bound MaxS is implemented as a safety precaution. In a stochastic setting, a few contiguous erroneous 
observations can result in a very large simplex due to repeated Expansions. First of all, this might result in actuator 
saturation. Also, the process may require a large number of iterations to recover from such a large excursion. This 
argues for the imposition of the upper bound. 

In summary, three modifications are proposed for the classical NMA to adapt it to our stochastic situation with a 
possibly time-varying optimum: (i) Resampling with Age-test, (ii) application of a lower bound on the simplex, and 
(iii) imposition of an upper bound on the simplex. Although at first glance, the flowchart of the mNMA looks very 
convoluted (compared to the simple NMA and the even simpler Multi-Directional Search Method), hopefully the 
above discussion has convinced the reader about the purpose of each of its branches. 
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E. Modified Kiefer-Wolfowitz Algorithm 
The second controller is based on the Kiefer-Wolfowitz algorithm19 (KWA) for stochastic optimization. We 

briefly explain the original KWA before presenting the proposed modifications to adapt it to our application. 
Consider the stochastic cost function h (yn), where yn is the independent variable at the nth iteration of the 

procedure. It is assumed that the noise is unbiased and that E {h (•)} is a convex unimodal function, where E {•} is 
the expectation operator. The goal is to iteratively find the y that maximizes E {h (y)} by only evaluating h (•). (For 
minimization, the negative of h (•) can be passed to the routine.)  In the KWA, the derivative E´{h (yn)} is estimated 
as a finite difference using a positive and negative perturbation. The center yn+1 of the next pair of measurements is 
then computed as 

 1 ,
( ) ( )n n n n

n n n
n

h y c h y c
y y a

c
−

+
+ −= +   (6) 

where an > 0 controls the step size and cn > 0 is the perturbation level at the nth iteration. The convergence proof of 
the technique19 makes the following assumptions on the sequences cn and an: 

 
2

1 1
lim 0, lim 0, , .n

nn nn n n n n

aa c a
c

∞ ∞

→∞ →∞ = =

� �
	 

� �

= = = ∞ < ∞    (7) 

One common choice for an is a1/n, with a1 > 0. Then, a possible choice for cn is c1/n
�, with 0 < � < 0.5 and c1 > 0.  

We propose to modify the KWA by applying lower bounds amin and cmin on an and cn, respectively. This would 
provide a persistent excitation to the process to account for a possible gradual time-variation of the optimal value of 
the variable y. Note that this would violate the conditions placed on the sequences an and cn. Hence, we cannot 
expect a convergence to the local optimum; instead, the independent variable can be expected to oscillate in a 
neighborhood of this optimum. 

The KWA is essentially a gradient-descent algorithm, albeit for a noisy function. This is not suitable in situations 
where the cost function, although convex, has a very small slope in the vicinity of the maximum. Also, this will 
delay convergence in case the function has inflection points. The solution described in Wilde20 is termed 
normalization. Essentially, instead of the actual value of the slope, only its sign is used in the optimization. Thus, at 
the end of each iteration, the new center for the next pair of measurements is computed as 

 { }  1
( ) ( )

( ) ( )
2

sign sign .n n n n n
h y c h y cn n n n y h y c h y cn n n ncn

y y a a+
� �� �+ − − + − −� �
� �� �

= + = +   (8) 

The last equality utilizes the fact that cn is positive. This normalization transforms the KWA from a gradient-based 
process to one that uses the rank information of the sampled points only, similar to direct search. 

The other important modification is the acceleration protocol proposed by Kesten25; he argued that a change in 
the sign of the slope would indicate that the optimum was crossed over from one side to the other between the last 
two iterations. Thus such a sign change should be followed by a reduction of the step size, a, for convergence. 
However, far away from the optimum (signified by a constant sign of the slope), reducing a would only serve to 
slow down convergence, and hence must be avoided. In the original KWA, an and cn are modified in lock-step with 
the variable yn; the acceleration method decouples these two processes. So, although yk is still updated for every step 
index k, the index n governing the decrease of an is incremented only on the detection of a change in the sign of the 
estimated slope. Additionally, Kesten stipulated that the perturbation level cn should be a constant. 

We adopted Wilde’s normalization technique in full, and Kesten’s acceleration protocol with one modification. 
In particular, we did not adopt Kesten’s stipulation of keeping the perturbation level constant. In simulations 
preceding the experiments, we obtained the best results by allowing cn to decrease from an initial higher value down 
to the lower bound cmin imposed on it by the first modification proposed above. The reasoning is as follows. The cmin 
cannot be too large, otherwise the variable y as well as the cost function h (•) will make large excursions from their 
respective optima, which is undesirable. However, if following Kesten, this relatively small value of perturbation is 
used from the beginning of the process, then the process is found to be overly sensitive to noise thereby delaying 
convergence. Thus, in our algorithm, we set the initial perturbation level c1 suitably high and used the c1/n

� formula 
for decrementing it in lock-step with the step-size decrements. Of course, since this adaptation of c only occurs 
during the initial stages, we are not constrained anymore by 0 < � < 0.5 and are free to vary this parameter to 
improve performance. Note that this does not really violate Kesten’s stipulation since the perturbation level becomes 
constant at cmin after a short initial period. All these ideas are incorporated in the mKWA; its pseudo-code is 
presented in the Appendix. 
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VI. Results of Extremizing Feedback Control 
We performed closed-loop experiments using two different algorithms: the modified Nelder-Mead algorithm 

(mNMA), and the modified Kiefer-Wolfowitz algorithm (mKWA). Here we present the results and discuss their 
relative merits. Since the controller implementation was in terms of the forcing frequency instead of the Strouhal 
number, all closed-loop results will be discussed in frequency terms. For our jet, fF = 1 kHz implies StDF = 0.091. 

Recall from earlier discussions that the axisymmetric mode of the near-field pressure is best correlated with the 
far-field noise, and that the suppression of the fluctuations of this pressure mode might mitigate the noise. Thus, we 
would strive to seek the minimum of RMS (p[0]) in real-time by extremizing the forcing frequency for potential 
noise attenuation. It was shown in Figure 5(b) that at the high forcing frequency range where the minimum is 
achieved, the effect of different forcing azimuthal modes cannot be distinguished. However, as pointed out in 
Section I-D, the higher helical modes of forcing are more effective for far-field noise suppression. Since mF = 3 is 
the highest helical mode achievable with our eight actuators, this was used exclusively in closed-loop experiments 
aimed at minimization. The details of this particular I/O map obtained in open-loop forcing experiments are shown 
in Fig. 6(f). We would show convergence to the optimal forcing frequency (fF ~ 30 kHz for RMS ~ 230 Pa) starting 
from various forcing frequencies in the range of 10 to 50 kHz.  

We now turn to the goal of mixing enhancement by the maximum amplification of the large-scale structures in 
the jet shear layer. We have discussed before that this is reflected in a broadband increase of the near-field pressure 
fluctuations. The results from open-loop forcing experiments (see Fig. 5(a)) show that mF = 0 generates the largest 
amplification of the near-field pressure fluctuations. Hence, all maximum-seeking experiments were performed in 
this forcing mode. Also, it has been discussed earlier that the near-field pressure is almost fully reconstructed from 
p[0] + p[1]. Hence, the cost function is selected as RMS (p[0] + p[1]). A detailed version of the pertinent cases of open-
loop forcing is presented in Fig. 7(f). We would try to converge to the optimal forcing frequency (fF ~ 4.9 kHz for 
RMS ~ 1600 Pa) from various initial forcing frequencies in the range of 1 to 10 kHz; it will be shown that this is not 
always possible owing to the presence of the other prominent peak at ~ 3.7 kHz. However, since the ordinates of the 
two peaks are quite similar, achieving either of them would result in significant mixing enhancement. 

An important assumption in the discussion of the control algorithms in Section V is the absence of plant 
dynamics. To verify this, step response experiments were conducted. A delay of no more than 20 ms was noticed 
between a change in the forcing frequency and its effect on the near-field pressure signal. The possible sources of 
this delay are (i) the communication lag between the dSpace controller commanding the forcing frequency and the 
Labview program acquiring it to control the actuators, and (ii) delays internal to the feedback controller and actuator 
controller owing to the finite processor speeds. To account for this delay in the implementation, the control routine 
incorporated a wait of 20 ms between directing the actuators to use a particular forcing frequency and starting to 
record the corresponding pressure data. Once the necessary sample size was collected, its RMS was computed, and 
this was deemed as the plant output to be used by the controller in deciding the next input. This cycle was then 
repeated. Such a strategy makes the plant appear effectively static to the controller. 

An implicit parameter that sets the pace of our closed-loop experiments is the size of the sampling window for 
RMS computation. Instead of referring to the window size, we will discuss this in terms of Trms, the duration over 
which a window of pressure samples is collected. Note that the waiting period of 20 ms described above is included 
within Trms. Turbulent randomness creates variability in the computed RMS value depending on Trms; this is seen in 
the error bars in Figs. 6(f) and 7(f).  For fast response, Trms should be as small as possible. However, the variability 
(or noise) in the output signal also increases with decreasing Trms. Thus a balance is required between an acceptable 
convergence rate and a signal-to-noise ratio (SNR) that can be handled by the inherent robustness of the 
implemented algorithms. We define the SNR as the ratio of the mean value of the plant output to its standard 
deviation when all parameters are held constant. In preliminary experiments of maximum-seeking with either 
algorithm, Trms = 0.1 s proved to be a satisfactory balance. However, this value proved too small for minimum-
seeking and we had to resort to Trms = 0.2 s to have similar robust performance. In analyzing this finding, we tried to 
estimate the SNR from the open-loop experiments. The SNR is obviously a function of Trms as well as the forcing 
frequency. Using Trms = 0.2 s, we estimated the point-wise standard deviation for the map to be minimized; this is 
shown in Fig. 6(f). On the other hand, in Fig. 7(f), the standard deviation is calculated using Trms = 0.1 s for the map 
to be maximized. The average SNRs (calculated over the points indicated in the respective figures) were 
approximately 64 near the respective optima for both maximum-seeking and minimum-seeking. However, if we 
used the same Trms = 0.1 s for both applications, then the SNR in the optimal range of forcing frequencies for 
minimum-seeking turned out to be 45. This explains the need for different Trms for the two applications. 
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Figure 6. Transients in minimum-seeking control with (a) & (b) mNMA and (c) & (d) mKWA. (e) Steady 
state spectra in closed-loop with the open-loop spectrum for the optimal case (fF = 30 kHz and mF = 3). (f) 
Details of pertinent open-loop results with mF = 3. Standard deviations � were obtained with Trms = 0.2 s; the error 
bars are ± �. 
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Figure 7. Transients in maximum-seeking control with (a) & (b) mNMA and (c) & (d) mKWA. (e) Steady 
state spectra in closed-loop with the open-loop spectrum for the optimal case (fF = 4.9 kHz and mF = 0). (f) 
Details of pertinent open-loop results with mF = 0. Standard deviations � were obtained with Trms = 0.1 s; the error 
bars are ± �. 
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The control algorithms have a number of parameters that determine their performance. The initial choice of the 
parameters was based on an analysis of the open-loop results as well as preliminary simulations. Experimental 
results were used to guide the selection of the final set of parameters that produced the best performance. Eventually 
the algorithms were run with these parameter values in at least five cases each to verify their repeatability. We only 
present representative results from this experimental set for space constraints. For ease of comparison, the transient 
behaviors of all the minimum-seeking experiments are shown together in Figs. 6(a)-(d). Similarly, all the transient 
results of maximum-seeking appear in Figs. 7(a)-(d). The steady-state output spectra for closed-loop minimum-
seeking are presented in Fig. 6(e); they are compared with the best result obtained in open-loop, viz. the case of fF = 
30 kHz and mF = 3. The steady-state output spectra for maximum-seeking applications are presented in Fig. 7(e); 
here the reference open-loop case had fF = 4.9 kHz and mF = 0. 

F. Modified Nelder-Mead Algorithm 
We will first discuss the choice of parameters that govern the behavior of the mNMA. We follow previous 

work15-17 and always set � = 1, � = 0.5, and � = 2. Also, we always choose to perform Resampling to correctly 
address the stochastic nature of the process. In a deterministic process where the goal is to converge to a unique 
optimum, it makes sense to set a nonzero value for AgeLimit. In our stochastic setting there is a persistent excitation, 
but the optimal forcing frequency should be evaluated as often as feasible so that the average plant output remains 
close to its optimum. For this, we always set AgeLimit to 0. In preliminary experiments with nonzero AgeLimit, the 
output was definitely steadier, but it was generally slightly less optimal than with AgeLimit = 0. Search techniques 
typically require the user to specify an initial guess of the goal. In our implementation, we use this as S1, the first 
vertex of the initial simplex. Of course, the aim of our closed-loop experiments is to show that this initial guess can 
be chosen in a wide range and still result in optimal plant output within a short time. The other vertex of the initial 
simplex is computed as S2 = S1 + Ss0. The remaining parameters of the algorithm, viz. Ss0, MaxS, and MinS, are 
application-dependent and hence detailed separately below.  
1. Minimum-Seeking 

In this application the mNMA is used to seek the minimum of the I/O map shown in Fig. 6(f); the characteristics 
of this map dictate the choice of the parameters of the algorithm. The value of Ss0 must be chosen such that the 
algorithm can reliably rank its vertices initially; this means that the vertices must be spaced far enough apart so that 
their functional values have the correct rank in spite of noise. The I/O map shows a very gradual slope in the range 
from 30 to 60 kHz; this calls for a large Ss0. Of course, Ss0 	 MaxS. Since we typically desire the fastest 
convergence, we always specify Ss0 = MaxS = 5 kHz. With Ss0 = MaxS = 3 kHz, we could not achieve repeatability 
in converging to the optimum from an initial forcing frequency of 50 kHz. With Ss0 = MaxS = 10 kHz, the 
convergence was repeatable and rapid, but there was a large overshoot that caused delays in settling. (With Ss0 = 
MaxS, the algorithm would typically never encounter an Expansion step; so to validate this portion of the code we 
ran several experiments wherein we set Ss0 < MaxS.) The I/O map also indicates that the minimum is broad; hence 
an appropriate choice of MinS was 1 kHz. Currently, we do not know what would constitute an adequate level of 
persistent excitation in real applications; we simply wish to show that a meaningful level can be feasibly established 
by our algorithm. Experiments with MinS set to 0 and 2 kHz have also shown satisfactory steady state behavior. 
Finally, Trms was set to 0.2 s as discussed before. We could show repeatable convergence with Trms = 0.1 s when fF 
was initiated at 10 kHz, but we could not obtain similar results starting from 50 kHz. This is because the gradual 
slope in the latter case gets obscured by noise. 

The transient behavior is demonstrated with the process initialized at three different forcing frequencies, viz. 10, 
30, and 50 kHz. Figure 6(b) shows that in all three cases, the plant output reaches and settles around 230 Pa within 
5Trms, i.e. using just 5 evaluations of the plant I/O map. This convergence rate represents an order of magnitude 
improvement compared to our results with the gradient-based extremum-seeking controller13. Figure 6(a) indicates 
that fF reaches ~ 30 kHz within the same time but it varies within 25 to 35 kHz subsequently, even though MinS = 1 
kHz. This can be explained by the broadness of the minimum. The three cases have similar steady state behavior, 
hence we only show the case with initial fF = 50 kHz in Fig. 6(e). The spectrum of the output is quite similar to the 
optimal open-loop spectrum, especially in the high amplitude region of interest. The forcing tone in the feedback 
controlled case is smaller due to the persistent perturbations in the forcing frequency. Thus the best open-loop result 
in minimization of the near-field pressure fluctuations can be replicated in closed-loop by the mNMA with a very 
short transient phase. 
2. Maximum-Seeking 

We now focus on the online maximization of the I/O map shown in Fig. 7(f) using the mNMA. It has already 
been discussed that the relevant portion of this map has two distinct maxima – a 1600 Pa peak at 4.9 kHz and a 1530 
Pa peak at 3.7 kHz. Direct search normally cannot guarantee the convergence to a specific peak starting from any 
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point in an interval containing multiple peaks. However, repeated experimentation can lead us to a choice of a 
parameter set that might do so. This is not the goal of model-free optimization, wherein we specifically avoid using 
any significant knowledge of the plant. Instead, through logical arguments and a few experiments, we did arrive at a 
set of parameters that gave repeatable convergence to the higher peak at 4.9 kHz from a majority of the initial 
conditions within 1 and 9 kHz. Since we could not get this result for all initial conditions in the range, we cannot 
make any claim for the basin of attraction of the individual peaks. Instead, our motive here is to explore the 
limitation of the mNMA for this application. 

We chose Ss0 = MaxS following the reasoning laid out in our discussion regarding minimum-seeking.  Owing to 
the smaller range of initial conditions and the sharpness of the peaks, we selected Ss0 = MaxS = 1 kHz. Values of 
800 and 2000 Hz were also tried with similar results, attesting to the relative robustness of the technique to the 
specific choice of this parameter. Further reduction of Ss0 led to delays in convergence due to corruption by noise. 
The sharpness of the peak led us to choose MinS = 100 Hz. A value of 200 Hz did not lead to substantial degradation 
in performance. However, with MinS = 500 Hz, large oscillations were observed in the forcing frequency and the 
average output was reduced since the larger perturbations were keeping the output away from its optimum. As in 
minimum-seeking, we do not know a suitable level of persistent excitation; hence our goal here has been to 
demonstrate the flexibility of the algorithm. Finally, Trms was chosen as 0.1 s as discussed before. In experiments 
with Trms = 0.05 s, we found one case where the process failed to converge when initialized at 9 kHz. 

Figure 7(a) shows that the plant input settles within 10Trms from a variety of initial values. On initialization from 
1, 5, and 9 kHz, the final mean value of the input was around 4.9 kHz; starting from 2.5 kHz, the steady state 
average was around 3.7 kHz. Actually, we tested the algorithm with all initial forcing frequencies in the range from 
1 to 9 kHz in increments of 0.5 kHz. The process repeatedly converged to the peak at 3.7 kHz when initiated from 
2.5 and 3.5 kHz; with all other initial conditions, it repeatedly reached the peak at 4.9 kHz. In Fig. 7(b) we note that 
the output settles around 1500 Pa within 10Trms of initialization for all cases. In steady state, the output is seen to 
have significant oscillations compared to the minimum-seeking case. Also, the mean output is somewhat lower than 
the optimal value found in open-loop experiments (~ 1600 Pa). This can be explained by three factors: (i) from 
open-loop experiments, we already noted a greater variability in the output for maximum-seeking compared to that 
for minimum-seeking (see Figs. 6(f) and 7(f)); (ii) the shorter Trms (0.1 s in maximum-seeking compared to 0.2 s in 
minimum-seeking) further increases the noise content in the processed output; and (iii) the sharpness of the peak 
dictates that minor perturbations from the optimal input create substantial degradations in the output. Figure 6(e) 
presents the steady state output spectrum for the experiment with initial fF = 1 kHz. (The other initial forcing 
frequencies, apart from 2.5 and 3.5 kHz of course, produced very similar steady state behavior, and hence SPL 
spectra.) Within the high-amplitude range of interest, this spectrum closely resembles the optimal open-loop 
spectrum, except around the forcing tone and its harmonics. The disparity is obviously due to the persistent 
excitation of the forcing frequency in closed-loop control. In summary, the mNMA meets expectations in maximum-
seeking: there are two distinct peaks (with similar ordinate values) within the set of possible initial conditions of 
forcing frequency, and the process successfully converges to either one of them in an adequately short time.  

G. Modified Kiefer-Wolfowitz Algorithm 
Before presenting the experimental results, we explain the choice of parameters governing the mKWA. 

Preliminary investigation showed that the normalization and acceleration modifications always produce faster 
convergence without any negative effect on the steady-state performance; hence, these were always performed. 
Next, we set � = 1.0. No degradation of performance was observed (in fact, there was an improvement) even when 
using � = 5.0. With this value of �, the process uses c1 as the perturbation level until the first zero-crossing of the 
estimated slope. Subsequently, as n becomes 2, the perturbation level would become cmin since we always had cmin > 
c1/2

5. The improved performance was obviously due to lower oscillations of the output after the initial rise (or fall) 
period. Although we never noticed it in experiments, a single noise-corrupted observation might cause an erroneous 
zero-crossing of the estimated slope causing the perturbation level to fall to cmin from the beginning itself; this would 
defeat the purpose of implementing the gradual decrement mechanism. At the other extreme, a small value of � 
would result in a large settling time for the perturbation level during which the plant output will continue to make 
large excursions from its optimum. As a compromise, we chose � = 1.0.  

The timing parameter Trms was chosen as in the mNMA experiments; i.e. Trms = 0.2 s for minimum-seeking and 
0.1 s for maximum-seeking. In the mKWA, each decision to issue a new plant input is based on two observations of 
the output – positive and negative perturbations from the central value. On the other hand, in the mNMA, each such 
decision is based on only one observation of the output. This makes the former inherently more robust. 
Correspondingly, we found no issues with convergence even when the values of Trms were halved. However, to 
maintain a decent margin of safety, we settled for the values mentioned above, in line with the mNMA experiments. 
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This leaves four other parameters: c1, a1, cmin, and amin. These had to be chosen differently for the minimum-
seeking and maximum-seeking applications, and will be discussed below.  
3. Minimum-Seeking 

Here we discuss experiments in minimization of the I/O map shown in Fig. 6(f) using mKWA. This map 
possesses a gradual slope at the high-frequency end. If the process noise is higher than the difference in output with 
the positive and negative perturbations introduced by the mKWA, the convergence (if it happens at all) would be 
very slow indeed. To address this, c1 was chosen as 5 kHz. The value of a1 was selected as 5 kHz also to hasten 
convergence. This is similar, but not equivalent, to selecting Ss0 and MaxS as 5 kHz in the mNMA. The parameters 
cmin and amin together play a role similar to MinS in the mNMA implementation. Following the reasoning for the 
latter, we selected cmin = amin = 0.5 kHz. Here amin keeps the optimization process “alive” in the long run whereas cmin 
ensures that the estimation of the sign of the local gradient is relatively insensitive to noise. In this respect, the 
mKWA offers more flexibility than the mNMA since in the latter both these effects are controlled by MinS. 

Figure 6(c) demonstrates that starting from various initial conditions, the plant input reaches around 30 kHz 
within 10Trms, but it varies within 25 and 35 kHz subsequently. Figure 6(d) shows that the output reaches and settles 
around 230 Pa within the same interval in all three cases. Except for the doubled settling time, all other 
characteristics are very similar to the mNMA results, including the representative steady-state output spectrum 
shown in Fig. 6(e). The settling time is doubled because the mKWA makes two observations of the output for every 
observation made by the mNMA. While this makes the mKWA more robust, a price is paid in the delayed 
convergence. Of course, we can obtain the same real convergence time as in the mNMA by halving the Trms to 0.1 s. 
As mentioned before, brief experimentation with this parameter in the mKWA has not revealed any adverse effect 
unlike that found in the mNMA, but we retained Trms = 0.2 s to have some margin of safety. 
4. Maximum-Seeking 

The pertinent plant I/O map for our maximum-seeking application is shown in Fig. 7(f). The parameter c1 must 
be large enough so that noise does not obscure the proper estimation of the sign of the local slope using the positive 
and negative excursions. However, if c1 is too large then it will take longer to decrement to cmin, thereby delaying the 
settling of the output. As a compromise, we selected c1 = 1 kHz. In a few experiments with c1 = 0.8 kHz, we did not 
notice any erroneous convergence behavior. Also with c1 = 2 kHz, the oscillations indeed took longer to settle down. 
The parameter a1 must be large for fast convergence, but an upper bound is imposed by the same desire for quick 
settling; we selected a1 = 1 kHz. As in minimum-seeking, we mention that this choice of c1 and a1 is similar, but not 
equivalent, to selecting MaxS = 1 kHz in maximum-seeking with the mNMA. The parameters cmin and amin were 
both selected as 50 Hz, exploiting their relationship to MinS in the mNMA; the value of the latter has been justified 
already. Lastly, we chose Trms = 0.1 s as explained before. 

Figure 7(c) shows that plant input settles within 22Trms from a variety of initial values. Starting from 2.5 kHz, the 
steady state value of fF was around 3.7 kHz. However, the input settled around 4.9 kHz when initialized from all 
other values in the range from 1 to 9 kHz in increments of 0.5 kHz (three of these cases are shown in the figure). 
The reader will recall that similar results were obtained with the mNMA too, except that in the latter the initial fF of 
3.5 kHz also resulted in convergence to the peak at 3.7 kHz. Too much significance should not be read into this 
disparity, given that neither algorithm is designed to optimize multi-modal functions. Figures 7(d) & (e) demonstrate 
that the time-domain as well as frequency-domain behavior of the steady-state plant output with the mKWA are very 
similar to those observed with the mNMA, except for the doubled convergence time in the former case. The 
explanation given for this observation in the case of minimum-seeking also applies to the current application.  

VII. Conclusion 
In this paper we have presented results of development and application of extremizing feedback control to 

axisymmetric jets.  In particular, we have shown control authority on the near-field pressure of a Mach 0.9 jet with a 
Reynolds number based on nozzle exit diameter of 7.6 × 105. Open-loop forcing using localized arc filament plasma 
actuators is shown to have two distinct effects on the near-field: a large amplification occurs in the pressure 
fluctuations at lower forcing frequencies near the jet column mode, whereas a broad attenuation is found at higher 
forcing frequencies. The peak corresponds to maximum bulk mixing in the jet shear layer; the minimum is important 
for its potential link to far-field noise attenuation. In this paper we focused exclusively on the near-field; thus this 
link was not investigated. 

Previous researchers have shown that the axisymmetric mode of the near-field pressure is best correlated with 
the far-field noise. Thus one application of feedback control is in minimizing this signal for potential noise 
mitigation by tuning the forcing frequency. On the other hand, it is also known that the instantaneous near-field 
pressure signal is well-reconstructed from the sum of its axisymmetric and first helical modal components only. 
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Therefore, the second application of feedback control is in maximizing the latter sum to obtain mixing enhancement. 
Both applications can thus be regarded as online optimization problems involving single-variable cost functions. An 
important characteristic of both applications is the high level of noise introduced in the corresponding cost functions 
by turbulence.  

Two different gradient-free offline optimization algorithms were investigated – the Nelder-Mead direct search 
method and the Kiefer-Wolfowitz stochastic optimization routine. The former is designed for efficient optimization 
of deterministic cost functions whereas the latter can also handle noisy functions. Several modifications were 
incorporated in the original algorithms before they could be implemented in feedback controllers for online 
optimization. In closed-loop control experiments for minimum-seeking and maximum-seeking, both controllers 
were able to replicate the optimal open-loop control results after very brief transient phases. The modified Kiefer-
Wolfowitz method was found to be more robust but the convergence speed was typically halved in comparison to 
the modified Nelder-Mead controller. One shortcoming of the former is the absence of any mechanism to increase 
the perturbation and increment levels; this might be a disadvantage if the desire is to quickly account for changes in 
the location of the optimum during operation. The Expansion mechanism in the modified Nelder-Mead algorithm 
would be very useful in this regard.  

In conclusion, both feedback controllers investigated in this article demonstrate significant promise for the online 
optimization of the near-field pressure of axisymmetric jets. 

Appendix 

 

Figure 8. Flowchart for the modified Nelder-Mead algorithm for function maximization. To minimize 
the cost function h (•), its negative is maximized. 
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Pseudo-code for the Modified Nelder-Mead Algorithm for Function Maximazation 
Given an initial simplex, S, with vertices {S1, S2}. Also, given MaxS, MinS, and AgeLimit. 
Calculate h (S1) and h (S2). Age  1. 
while (not manually overridden) 

 ContractFlag  FALSE, BFlag  FALSE, arg max{ ( )}, arg min{ ( )}.i i
i i

B h S W h S← ←  

 R  B + � (B – W). Calculate h (R).            /* Reflection 
 if (h (R) > h (B)) then 
  if (|B – R| < MaxS) then 
   E  B + sign (R – B) min {� |R – B|, MaxS}. Calculate h (E).   /* Expansion 
   if (h (E) > h (R)) then 
    S  {B, E} 
   else  
    if (|B – R| > MinS) then 
     if (h (E) > h (B)) then 
      C1  R, C2  E, ContractFlag  TRUE 
     else 
      C1  R, C2  B, ContractFlag  TRUE 
     endif 
    else 
     S  {R, E} 
    endif 
   endif 
  else 
   S  {R, B} 
  endif 
 else if (h (R) > h (W)) then 
  if (|B – R| > MinS) then 
   C1  B, C2  R, ContractFlag  TRUE, BFlag  TRUE 
  else 
   S  {B, R}, BFlag  TRUE 
  endif 
 else 
  C1  B, C2  W, ContractFlag  TRUE, BFlag  TRUE 
 endif 
 if (ContractFlag = = TRUE) then 
  C  C1 + sign (C2 – C1) max {� |C2 – C1|, MinS}. Calculate h (C).   /* Contraction 
  S  {C1, C} 

endif 
 if (BFlag = = TRUE) then 
  Age  Age + 1 
 else 
  Age  1 
 end 
 if (Resampling is desired AND BFlag = = TRUE AND Age > AgeLimit) then 
  Recalculate h (B), Age  1. 
 endif 
endwhile 
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