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We present the preliminary steps toward development of reduced-order models for feed-
back control of a high-speed and high Reynolds number axisymmetric jet. The end goal of
the control is two-fold: real-time attenuation of far-�eld acoustic radiation, or enhancement
of bulk mixing through increased entrainment of the ambient uid. The actuation consists
of a set of localized arc �lament plasma actuators that create controlled perturbations in
the initial shear layer of the jet through intense localized Joule heating. The proposed
feedback sensing mechanism involves the time-varying pressure information from the irro-
tational near-�eld of the jet. We propose to use three-component stereo PIV of several
cross-stream slices of the unforced and actuated jets to generate an empirical database of
the ow-�eld. A combination of Proper Orthogonal Decomposition, Stochastic Estimation,
and Galerkin Projection is to be used to derive a dynamical model of the jet shear layer
from this database. Preparatory to the actual experiments, in this paper we evaluate the
proposed modeling strategy using an existing Direct Numerical Simulation database of a
similar unforced jet ow.

I. Introduction

Jet noise has been a cause for concern since the commercialization of jet engine technology for civil and
military aviation. In recent years, the problem has worsened with increasing number of ights, growth of
human settlements around airports, enactment of more stringent regulations, and deployment of signi�cantly
noisier high-performance military jets. Although jet noise is a mature research area with a history spanning
more than �ve decades, its practitioners are yet to come to a consensus on the fundamental mechanisms
involved.1 However, a common ground among these divergent viewpoints is the recognition of the importance
of the large-scale coherent structures in the jet mixing layer close to the nozzle exit, especially near the end
of the potential core.

Moving onto a di�erent application, the hot gases exiting from the jet nozzle undergoes bulk mixing with
the ambient uid, in a process that ultimately leads to dissipation. It is of military interest to enhance this
mixing, so that the signature of the jet vanishes quickly. The rate of dissipation is clearly correlated with
the dynamics of the large-scale structures in the jet mixing layer.2

From the above discussion, one can conclude that the disparate research �elds of noise mitigation and
bulk mixing enhancement in jets have the large-scale structures as a common denominator. A�ecting the
turbulence characteristics of ows by manipulating large-scale structures is within the realm of ow control,
which is therefore appropriate for both these applications. Flow control itself has amassed a considerable
history, which has been the subject of several recent reviews.3{7

Localized arc �lament plasma actuators (LAFPAs) have been developed and continuously improved for
ow control applications at the Gas Dynamics and Turbulence Laboratory at The Ohio State University.8{11

LAFPAs are capable of generating high-amplitude and high-bandwidth control signals, which are crucial
actuator characteristics for controlling high-speed and high Reynolds number ows. LAFPAs provide intense
but controlled localized Joule heating to manipulate the large-scale structures in the mixing layer by exciting
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the natural instabilities of the jet. Eight of these actuators have been deployed in a uniform azimuthal array
at the periphery of the nozzle exit of an axisymmetric Mach 0.9 jet. The e�ects of various forcing azimuthal
modes and frequencies on the response of the mixing layer were investigated in Ref. 11. At particular forcing
Strouhal numbers and azimuthal modes of operation, the length of the jet potential core was signi�cantly
reduced with an increase in the jet centerline velocity decay rate beyond the end of potential core. The
e�ectiveness of plasma actuation in attenuating far-�eld noise was explored in Refs. 9 and 12. Noise reduction
of 0.5 to over 1.0 dB was observed over a range of forcing Strouhal numbers. Moreover, it was noticed that
the higher the forcing azimuthal mode, the higher was the noise attenuation. The above explorations were
performed on unheated jets. Signi�cant improvements in e�ectiveness of the LAFPAs have been observed
in heated jets for both mixing enhancement,13 and noise attenuation.14 For example, at a temperature ratio
of 2.5, an average reduction of about 2 dB was found over a range of downstream and sideline measurement
locations. These open-loop forcing results demonstrated that the LAFPAs have signi�cant control authority
on high-speed and high Reynolds number jet ows for applications involving both noise attenuation and
bulk-mixing enhancement.

The above investigations also showed that the optimal forcing parameters for a certain application may
exist in a limited region in parameter-space and that the location of this region may be a function of the
operating conditions - e.g. Mach number and temperature ratio. A common technique of rendering a
system’s performance relatively independent of operating conditions is to incorporate feedback. Closed-loop
control of near-wall turbulence for drag-reduction, separation control over high-lift devices, cylinder wake
control, cavity tone suppression, etc., in low-speed and low Reynolds number ows have seen intense research
activity in recent years. In comparison, the development of feedback control in high-speed and high Reynolds
number free shear layers has not received as much attention. This is due to (a) the lack of suitable actuators
till recently, and (b) the increased di�culty in modeling the highly turbulent ows of practical interest. The
present work is an attempt to �ll this void.

For the current discussion, feedback control may be categorized as model-free or model-based. In model-
free control, a heuristic is designed based on the known static input-to-output characteristics of the control
system.15{17 Several such controller algorithms have been successfully developed and implemented for the
present application.18 An azimuthal array of eight pressure transducers was placed in the irrotational near-
�eld of the jet to obtain an instantaneous, wavenumber-�ltered characterization of the jet mixing layer.
The following heuristics, designed based on the known character of the near-�eld pressure, were found to
give good results: (a) the optimal forcing frequency for bulk mixing enhancement closely corresponds to
the maximum in the RMS of the near-�eld pressure signal, and (b) the optimal forcing frequency for noise
attenuation approximately corresponds to the minimum in the RMS of the axisymmetric mode of the near-
�eld pressure signal. After being initialized with sub-optimal forcing parameters, the controllers were able
to modify the forcing parameters in real-time to closely reproduce the optimal open-loop behavior with brief
transient phases.

In spite of this result, there appears to be considerable room for performance improvement that may be
realized with a model-based feedback controller, which is the most common paradigm in feedback control.
Here, control laws are formulated based on a dynamical model of the relationship between the applied
control input and the measured sensor output of the control system. This model typically takes the form
of a set of interconnected ordinary di�erential equations (ODE) describing the time-rate of change of the
internal states of the model with the applied control input, along with a static map from the states to the
sensor measurements. The motivation for moving to a model-based approach is three-fold: (a) to gain a
deeper understanding of the physics involved5 in the unforced jet, the forced jet, and the plasma actuation
itself, (b) to attain faster convergence to the optimal parameter regime than the case of model-free control,19

by incorporating a knowledge of the dynamics of the jet mixing layer in the model, and (c) to achieve
improvements in power consumption.20

From the point of view of practical implementation, as well as the feasibility of actual design of the control
law, it is essential that a small set of ODEs be able to approximately describe the dynamical behavior of
the control system. However, the ‘exact’ dynamics of ows are governed by the in�nite-dimensional Navier-
Stokes equation. Hence, any model-based ow control strategy must necessarily involve the development of
a reduced order model (henceforth ROM) of the ow. A number of methods have been employed to develop
ROMs of ows of practical interest - they lend themselves to the following broad categorization.

1. Phenomenological models of ows are obtained by invoking intuitive arguments about the essential
physics of the ow. Recent examples include the models of ows dominated by oscillations.19,21{23
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Unfortunately, the unforced high Reynolds number jet mixing layer is relatively disorganized and
this makes the task of phenomenological modeling quite di�cult. On the other hand, the coherent
structures in the mixing layer have been found to become quite well-organized by forcing near the
optimal frequency for bulk mixing enhancement.8,11 This holds out the hope for phenomenological
modeling in the present application.

2. Black-box modeling involves starting with an assumed structure of the ROM (number of dynamic states,
degree of nonlinearity, form of the forcing term, etc) before performing well-designed experiments
or simulations to identify the dynamical relation between the system input and output.24 Several
implementations have been reported in the recent ow control literature.25{28 This modeling approach
does not incorporate much physical information about the ow, but may be the most viable option in
particularly complicated applications.

3. The Galerkin procedure involves two steps to arrive at the ROM.29 In the �rst step, the kinematics
of the ow are assumed to reside on a low-dimensional manifold, so that the in�nite dimensional ow
variables are represented by an expansion on a �nite number of modes. This expansion is usually
linear, but nonlinear expansions have been found to yield greater accuracy for certain ows in bounded
domains.30,31 In the next step, the dynamics of these modes are also assumed to reside on the same
low-dimensional manifold, and this is enforced by the Galerkin projection (GP) of the Navier-Stokes
equations onto this manifold. Depending on the origin of the expansion modes, Galerkin models
have been categorized as mathematical, physical, or empirical.22 Empirical Galerkin models, as the
name suggests, derive their modes from experimental data or numerical simulations. They have been
generally found to be the most accurate while employing the least number of modes.22

The most common technique of deriving modes from empirical data is the Proper Orthogonal Decompo-
sition (POD).29,32 Its popularity stems from the fact that it is a linear procedure, and it objectively educes
an orthogonal set of basis functions that optimally converges in the sense of a suitably-de�ned L2 norm of
the projection error. The eduction of POD bases for axisymmetric jets was pioneered in Ref. 33 with several
important contributions in recent years.34{37

Based on the above discussion of the available options for deriving ROMs, we decided to use POD and
empirical GP for our feedback control application. POD-GP has been used for studying the dynamics of
ows over the past 20 years; among them we make reference to several pertinent studies.38{43 In particular,
in our lab, we have already implemented a model-based feedback controller for reducing cavity tones using
this modeling strategy.20,44,45

There are three recent works on the development of numerical simulations of the actuated jet.46{48 The
extremely short time-scale and high energy-density involved in the plasma actuation along with the high-
speed and high Reynolds number of the jet make it a di�cult problem to simulate. While simulations have
been successful in reproducing some aspects of the experiments, none of the above e�orts have demonstrated
su�cient �delity. Thus the empirical database has to be obtained from experiments. Present experimental
techniques can capture snapshots of the three-components of the velocity �eld on planar slices of the ow
using stereo-PIV. However, it is quite infeasible to obtain simultaneous snapshots of the density and/or
pressure �eld in the same domain. This implies that one is forced to make an incompressibility assumption
in approximating the Navier-Stokes equations for this ow. A control-oriented model only needs to be
good enough for representing the short-time-horizon dynamical relation between control inputs and sensor
outputs; it need not be accurate enough for long-time-horizon numerical simulation of the ow.7 Therefore,
assumptions like the one above may be justi�ed in the present modeling e�ort.

Even after one has decided upon using the POD to educe a low-dimensional basis of the ow, a large
number of options are open depending on the simplifying assumptions that are made. A very useful (and, in
fact, indispensable) tool for evaluating the various strategies is a time- and spatially-resolved 3D volumetric
database of the axisymmetric jet. Freund49 has performed a direct numerical simulation (DNS) of an unforced
Mach 0.9 axisymmetric jet with Reynolds number based on jet diameter (Re) of 3600. In spite of its low
Reynolds number, most of its general characteristics were found to be similar to those of a jet with a much
higher Re.50 Our experimental jet also operates at Mach 0.9 although its Re � 640; 000. Thus, in this
paper, we employed this DNS database to assess various strategies for developing an ROM of the unforced
axisymmetric jet.

There are two major stages in the proposed feedback control strategy that should be discussed at this
point. The �rst stage is the development of the model of the ow. This is necessarily a one-time o�-line
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Figure 1. Schematic of axisymmetric jet.

procedure, and these factors a�ord some freedom in the realm of possible experimental methods. However,
the ROM must ultimately be derived from experiments, and so this must always be kept in mind even though
we focus on the DNS database in the present paper. The other stage of feedback control is the real-time
online operation of the controller. This places considerable constraints on the available options for practical
implementation. The current work is quite preliminary, and it does not address this second stage at all.
An experimental setup that was found to be suitable for the model-free feedback control approach has been
described before,18 and this might serve as a guide in the current endeavor.

In Sec. II, we provide a detailed discussion of the proposed strategy for building the ROM, while leaving
various options open for later assessment. In Sec. III, these strategies are applied to the DNS database,
and the results of simulation of the various ROMs are employed to determine the most suitable modeling
strategy. The paper is concluded with Sec. IV.

II. Steps in Control-Oriented Model Development

A common theme in the application of POD-GP to 3D ows has been the assumption that two of the
directions are homogenous, and only one direction is inhomogeneous;38,39,41 a notable exception is the fully
inhomogeneous 3D-POD applied to a numerical database of the cylinder wake.51 For the axisymmetric
jet, the azimuthal and streamwise directions were assumed to be homogenous, with the radial direction
being inhomogeneous39 . Whereas the homogeneity of the azimuthal direction is obvious, our preliminary
experience with the DNS database indicated that the streamwise homogeneity assumption is not appropriate
for the current modeling purpose. In such a situation, there are two options available. In the original direct
implementation of POD,32 two-point cross-correlations are required for all velocity components for all possible
point-pairs over the 3D region of the mixing layer. This poses signi�cant challenges due to the sheer amount
of e�ort that would be involved. In the alternative snapshot formulation,52 simultaneous 3-component ow
information is required over the 3D region at di�erent time instants.

The latter option might seem a more di�cult proposition, but Refs. 37 and 53 presented an approximation
to such 3D snapshots using the technique of spectral linear stochastic estimation (SLSE), and we would adopt
this in our work. Briey, the dynamic pressure was recorded in a time-resolved manner on an azimuthal
ring array in the irrotational near-�eld of the jet (see Fig. 1). Also, at known time instants of the pressure
record, the 3-component velocity �eld was captured on a cross-stream slice using stereo-PIV. Enough of
these snapshots were taken for statistical convergence of the two-point second-order statistics. This exercise
was repeated for several di�erent cross-stream slices, always measuring the pressure at the same location.
Subsequently, SLSE was used to reconstruct the required velocity �eld using the pressure as the unconditional
variable.

In the following sub-sections, we propose a procedure to obtain an ROM for the ultimate purpose of
feedback control of an axisymmetric jet. The present paper deals with the unforced ow, without introducing
the e�ects of an actuator. One of our contributions is to rigorously prove and enforce the symmetries of the
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(a) (b)

Figure 2. Enforcing axisymmetry. (a) Actual velocity �eld realization. (b) Corresponding co-velocity �eld.

kinematics of the axisymmetric jet mixing layer. These symmetries (a) augment the database collected from
experiments, (b) make computations easier, and (c) model the ow more accurately.52

II.A. Normalizations

Let the jet exit velocity and nozzle exit diameter be Ujet and D, respectively. Henceforth, all velocities
and linear coordinates will be implicitly normalized by these respective quantities. Similarly, time will be
normalized by the ow time scale t+ := D=Ujet. Pressure is normalized by �1U2

jet, where �1 is the ambient
uid density. With the kinematic viscosity of the ambient uid denoted as �1, the pertinent Reynolds
number is de�ned as Re := UjetD=�1.

II.B. 1D Proper Orthogonal Decomposition on Cross-Stream Slices

II.B.1. The Setup

The �rst step is the eduction of a low-dimensional basis for the velocity �eld at a given cross-stream slice
of the axisymmetric jet mixing layer. Ref. 37 is followed closely, with some additional investigation of the
symmetries of the problem.

Suppose that the three components of velocity are known on a cross-stream slice of the axisymmetric jet at
several time instants, as shown in Fig. 1. The velocity vector is presented in cylindrical coordinates (x; r; �),
with the axial coordinate serving to parameterize the cross-stream slice location. Then the streamwise
velocity component is denoted as Vx : [0; R] � T � R � Xv ! R; Vx : (r; �; t;x) 7! R. Here, R is the radial
extent of the measurement domain, T is the circle group, and Xv is the set of axial locations of the cross-
stream slices. The radial (Vr) and azimuthal (V�) components are de�ned similarly, so that the ow velocity
vector is V := (Vx; Vr; V�)T 2 R3. The time-stationarity and axisymmetry of the jet are used to de�ne the
mean velocity �eld as V(r;x) := E

n
(1=2�)

R �
�� V(r; �; t;x)d�

o
. Henceforth, unless otherwise mentioned,

the expectation operator E(�) will signify the ensemble-average over all realizations indexed by t. Intuitively,
V � � 0, and this is enforced explicitly in the implementation. The uctuating velocity vector is de�ned as
v(r; �; t;x) := V(r; �; t;x)�V(r;x), with the three components being vx, vr, and v�, respectively.

The axisymmetry of the jet can be used to infer a symmetry condition. Consider an actual realization
of the uctuating vector �eld v shown in Fig. 2(a). The contour-map indicates the streamwise component,
whereas the vector �eld is in the cross-stream plane. In a perfectly axisymmetric jet, if one has collected
enough realizations, one should also expect to capture the simulated co-velocity �eld v shown in Fig. 2(b),
obtained by reversing the measurement convention of the azimuthal coordinate, and inverting the sign of the
azimuthal component. Basically, this is another way of saying that the jet does not have a preferred azimuthal
direction.36 Of course, in an actual experiment, one cannot expect to collect both realizations. However, the
collected database of realizations can be extended by appending the counterpart of each physical realization
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after applying the above transformations. This concept is made precise in the following relations

vx(r; �; t;x) := vx(r;��; t;x); vr(r; �; t;x) := vr(r;��; t;x); v�(r; �; t;x) := �v�(r;��; t;x): (1)

It is well-established32,54 that in the presence of a homogeneous and/or periodic direction in a ow, its
POD devolves into the Fourier decomposition along that direction. The azimuthal Fourier transform of a
function f(�) will be denoted by f(�) Fm��! f̂(m); f̂(m) := (1=2�)

R �
�� f(�)e�im�d�. Here m is the azimuthal

mode. The inverse Fourier transform will be denoted by f̂(m) F���! f(�); f(�) =
P1
m=�1 f̂(m)eim�. Using

this, we de�ne the azimuthal Fourier transform of the uctuating velocity �eld as v(r; �; t;x) Fm��! v̂(r; t;x;m).
Since v is real, v̂ is Hermitian in m.

II.B.2. Symmetries of the Cross-Correlation Tensor

The two-point cross-correlation tensor appears as the kernel of the POD problem; it is de�ned as

�ij(r; r0; #;x) := E

�
1

2�

Z �

��
vi(r; �; t;x)vj(r0; � + #; t;x)d�

�
; 8i; j 2 fx; r; �g: (2)

Here we have used the homogeneity assumption to average over the azimuthal domain and to indicate the
functional dependence of the correlation tensor on the azimuthal separation (#) alone. The axisymmetry
condition of the jet established in (1) can be used to show that the azimuthal shear stresses are odd functions
of #, whereas all other correlation coe�cients are even functions of #; that is,

�ij(r; r0; #;x) = �ij(r; r0;�#;x); 8 (i; j) 2 f(x; x); (r; r); (�; �); (x; r); (r; x)g; (3a)
�ij(r; r0; #;x) = ��ij(r; r0;�#;x); 8 (i; j) 2 f(x; �); (r; �); (�; x); (�; r)g: (3b)

Such symmetries have indeed been veri�ed in experiments.35{37

The Fourier transform of �ij is de�ned in the usual manner �ij(r; r0; #;x) Fm��! Bij(r; r0;x;m). The
properties of �ij established in (3b) bestow the following symmetries upon Bij :

Bij(r; r0;x;m) = B�ij(r; r0;x;�m); 8i; j 2 fx; r; �g; (4a)

Bij(r; r0;x;m) = R fBij(r; r0;x;m)g ; 8 (i; j) 2 f(x; x); (r; r); (�; �); (x; r); (r; x)g; (4b)
Bij(r; r0;x;m) = i I fBij(r; r0;x;m)g ; 8 (i; j) 2 f(x; �); (r; �); (�; x); (�; r)g: (4c)

Here R(�) and I(�) respectively denote the real and imaginary parts of a complex quantity, and i =
p
�1.

The asterisk denotes a complex-conjugate transpose.
In practice, we used the following relation to compute Bij55

Bij(r; r0;x;m) = E fv̂�i (r; t;x;m)v̂j(r0; t;x;m)g ; 8i; j 2 fx; r; �g: (5)

Subsequently, we ignored the real parts of the azimuthal shear stresses and the imaginary parts of the
remaining correlation coe�cients after verifying that they are indeed negligible; the latter has been validated
by previous researchers.37 In the past, analogous symmetries have been enforced on the kernel of a POD
performed on a fully-developed channel ow.56

II.B.3. The POD Problem and its Symmetries

One de�nes the vector inner-product as34{37D
v̂(1) ; v̂(2)

E
:=
Z R

0

v̂(2)�v̂(1)rdr; (6)

where v̂(1) and v̂(2) denote two arbitrary �elds. Then the vector slice-POD can be shown to be the following
integral eigenvalue problemZ R

0

B�ij(r; r0;x;m)�̂(n)
j (r0;x;m)r0dr0 = �(n)(x;m)�̂(n)

i (r;x;m); 8i 2 fx; r; �g: (7)
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The quantities �(n)(x;m) and �̂
(n)
i (r;x;m) are respectively the eigenvalues and the ith component of the

eigenfunctions for each POD mode n, parameterized by the streamwise location x and azimuthal mode m;
the latter are also functions of the radial coordinate r.

The scalar inner product is de�ned likewise for the ith components of the velocity �eld:D
v̂
(1)
i ; v̂

(2)
i

E
:=
Z R

0

v̂
(2)�
i v̂

(1)
i rdr; 8i 2 fx; r; �g: (8)

Then, the scalar slice-POD problem isZ R

0

B�ii(r; r0;x;m)’̂(n)
i (r0;x;m)r0dr0 = �

(n)
i (x;m)’̂(n)

i (r;x;m); 8i 2 fx; r; �g: (9)

Here the eigenfunctions ’̂ are akin to those for the vector POD, but one obtains individual eigenvalues � for
the di�erent components of velocity. We will compare the results from the vector and scalar POD later; the
reader is referred to other works that provide a more general discussion.37,43

The solutions of the POD problem have many salient properties that have been discussed in depth
elsewhere;29,43 here we will only note some of the additional properties that result from the axisymmetry
of the ow. In (4a), it has been established that the kernel of the vector POD problem is a Hermitian
function of m. Then it readily follows that the eigensolutions themselves are also Hermitian functions of m.
Moreover, the properties of the kernel described in (4b) and (4c) can be used to show that the eigenfunctions
can always be normalized such that their axial and radial components are real and the azimuthal component
is purely imaginary. That is,

�(n)(x;m) = �(n)(x;�m) (10a)

�̂
(n)
i (r;x;m) = �̂

(n)�
i (r;x;�m); 8i 2 fx; r; �g (10b)

�̂
(n)
i (r;x;m) = R

n
�̂

(n)
i (r;x;m)

o
; 8i 2 fx; rg (10c)

�̂
(n)
� (r;x;m) = i I

n
�̂

(n)
� (r;x;m)

o
: (10d)

One can solve the eigenvalue problem for m � 0 only; the results for m < 0 can be recovered using the
above symmetries. The solutions for the scalar POD problem satisfy identical relations; hence they are not
repeated.

The 1D POD problem is solved in the discrete radial domain; typically, the number of radial grid points
are far fewer than the number of snapshots so that the original (or direct) POD method is employed.57 The
special symmetries of the kernel established above actually allow an equivalent POD problem to be solved
entirely in the real number domain, thereby avoiding the computational overhead involved in the use of
complex numbers.

II.B.4. POD Modal Coe�cients and their Symmetries

The eigenfunctions recovered from the POD can be used to reconstruct the velocity �eld in the azimuthal
Fourier transform domain. The properties of the POD allow us to completely recover any of the velocity
�eld realizations that formed the original database using a linear combination of all the eigenfunctions. We
now assume that any velocity �eld v̂(r; t;x;m) can be approximately reconstructed using the �rst Nn;1
eigenfunctions only. For the vector POD, we can write29,32

v̂(r; t;x;m) �
Nn;1X
n=1

�̂(n)(t;x;m)�̂
(n)

(r;x;m): (11)

where, the vector POD modal coe�cients are de�ned as

�̂(n)(t;x;m) :=
D
v̂(r; t;x;m) ; �̂

(n)
(r;x;m)

E
: (12)

Analogous relations for the scalar POD are

v̂i(r; t;x;m) �
Nn;1X
n=1

̂
(n)
i (t;x;m)’̂(n)

i (r;x;m); 8i 2 fx; r; �g; (13)
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with the scalar POD modal coe�cients de�ned as

̂
(n)
i (t;x;m) :=

D
v̂i(r; t;x;m) ; ’̂(n)

i (r;x;m)
E
; 8i 2 fx; r; �g: (14)

We have previously established that the velocities as well as the POD eigenfunctions in the Fourier
azimuthal domain are Hermitian functions of m; this makes all the modal coe�cients similarly Hermitian.

II.C. 3D Velocity Field Reconstruction using Spectral Linear Stochastic Estimation

Stochastic Estimation was originally introduced to educe coherent structures in turbulent ows.58 Since
then, it has also been employed for estimating velocity �elds using minimal measurements and a knowledge
of the spatial correlations in the ow.59 The original technique estimated the velocity directly.60 In the
complementary technique, the POD modal coe�cients of the velocity �eld were estimated instead.61 The
modi�ed complementary technique was introduced for ows having a homogenous direction; it performed
the correlation between the unconditional and conditional ow variables in the Fourier transform domain
of the homogenous direction.62 The successive modi�cations were implemented to take advantage of the
increased correlations between the low-dimensional quantities, thereby reducing computations without sac-
ri�cing (or, in some cases, actually improving) the accuracy of reconstruction. The spectral variant, SLSE,
was implemented for time-stationary ows, where the correlation was computed in the temporal Fourier
domain.53,60,63 This was shown to be especially useful whenever (a) the spectral features of the conditional
and unconditional variables were disparate, and (b) signi�cant time delays existed between the them.63 Both
these e�ects are manifest in the present application.

As mentioned previously, we adopted the SLSE technique described in Ref. 53. The original work relied
on a single azimuthal array of pressure sensors, but we found that the reconstruction can be made more
accurate by adding a streamwise linear array of pressure sensors, at little extra cost. Fig. 1 shows an
even more general arrangement of pressure sensors that is used to formulate the problem. Consider several
azimuthal arrays of pressure transducers arranged at di�erent axial locations x 2 X ap . In addition, suppose
that there are individual pressure sensors at some axial locations x 2 X lp that do not belong to any azimuthal
array. Although the development does not need the individual sensors to form a linear array; they would
be assumed to be in a straight line at � = 0 for notational convenience. Without loss of generality, it is also
assumed that all pressure sensors are located on the surface of a virtual cone co-axial with the jet, so that
their radial locations are a function of their axial locations.

The individual pressure signals from the sensors in the azimuthal arrays are denoted as P a : T�R�X ap !
R; P a : (�; t;x) 7! R; recall that this represents the normalized pressure per Sec. II.A. As before, the mean
and uctuating pressure are de�ned as P

a
(x) := E

n
(1=2�)

R �
�� P

a(�; t;x)d�
o

and pa(�; t;x) = P a(�; t;x)�
P
a
(x), respectively. Similarly, the pressure signals on the linear array are denoted as P l : R�X lp ! R; P l :

(t;x) 7! R. The corresponding time-mean and uctuating quantities are respectively P
l
(x) := E

�
P l(t;x)

	
,

and pl(t;x). The azimuthal Fourier transform of the pressure signals from the azimuthal arrays are de�ned
in the usual manner: pa(�; t;x) Fm��! p̂a(t;x;m). Of course, no such transformation is possible for pl(t;x).

The formulation of the SLSE is quite similar for the three cases that are studied here (all are performed in
the azimuthal Fourier domain): (a) the original technique for estimating the velocity �eld v̂(r; t;x;m), (b) the
complementary technique for estimating the scalar POD modal coe�cients ̂(n)

i (t;x;m); 8i 2 fx; r; �g, and
(c) the complementary technique for estimating the vector POD modal coe�cients �̂(n)(t;x;m). We will
show the equations for case (b), as those for the other two cases can be readily deduced from it.

The �nite temporal Fourier transforms of the pressure signals are de�ned as:55

�pa(x;m; f) :=
Z t0+T=2

t=t0�T=2
p̂a(t;x;m)e�2�iftdt; �pl(x; f) :=

Z t0+T=2

t=t0�T=2
pl(t;x)e�2�iftdt; (15)

where, f is the temporal frequency, and t0 locates the mid-point of a time-series of length T .
Let us denote the temporal Fourier transform of ̂(n)

i (t;x0;m) by �(n)
i (x0;m; f), where x0 2 Xv is the

location of the cross-stream slice. Generalizing the formulation of Ref. 53, the latter is estimated as

�(n)
i (x0;m; f) � La;(n)

i (xk; x0;m; f)�pa(xk;m; f) + Ll;(n)
i (xq; x0;m; f)�pl(xq; f); 8i 2 fx; r; �g: (16)
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Einstein’s summing convention is to be followed for the indices k and q, but not for m and f .53 The standard
least-squares technique gives the following set of linear equations for computing the estimation coe�cients
La and Ll:

Saapp (xj ; xk;m; f)La;(n)
i (xk; x0;m; f) + Salpp(xj ; xk;m; f)Ll;(n)

i (xk; x0;m; f) = Sa;(n)
pi (xj ; x0;m; f) (17a)

Sal�pp (xk; xj ;m; f)La;(n)
i (xk; x0;m; f) + Sllpp(xj ; xk; f)Ll;(n)

i (xk; x0;m; f) = Sl;(n)
pi (xj ; x0;m; f): (17b)

Here, the cross-spectral tensors of pressure are de�ned as

Saapp (xj ; xk;m; f) := lim
T!1

1
T
E f�pa�(xj ;m; f)�pa(xk;m; f)g (18a)

Salpp(xj ; xk;m; f) := lim
T!1

1
T
E
�

�pa�(xj ;m; f)�pl(xk; f)
	

(18b)

Sllpp(xj ; xk; f) := lim
T!1

1
T
E
�

�pl�(xj ; f)�pl(xk; f)
	
: (18c)

The expectation operator is the un-weighted average over di�erent independent blocks of size T . Keeping in
mind the experimental realities, the cross-spectral tensors between pressure and the modal coe�cients are
computed in a di�erent, but equivalent, manner:55

Sa;(n)
pi (x; x0;m; f) :=

Z 1
�=�1

E
n
p̂a�(t� � ;x;m)̂(n)

i (t;x0;m)
o

e�2�if�d� (19a)

Sl;(n)
pi (x; x0;m; f) :=

Z 1
�=�1

E
n
p̂l�(t� � ;x)̂(n)

i (t;x0;m)
o

e�2�if�d�: (19b)

The axisymmetry of the ow can be used to prove that cross-spectral tensors and the estimation coe�cients
are Hermitian functions of the temporal frequency f ; these were enforced in our implementation.

Once �(n)
i (x0;m; f) is estimated in the temporal frequency domain, inverse Fourier transform yields the

estimate of ̂(n)
i (t;x0;m) in the time domain. This estimate is most accurate for t = t0, the center of the

original pressure time-series. So, it is best to perform steps (15), (16), and the inverse transform, separately
for each time instant t0 for which the velocity �eld is desired. Recall that the SLSE is intended for o�-line
implementation so that accuracy considerations can be allowed to trump computational e�ciency. The
actual velocity �eld is reconstructed using (13).

In summary, using the time-resolved pressure record, one can estimate the velocity �elds on each of the
cross-stream slices in Xv simultaneously, for any desired time instant. This then constitutes a database of
estimated realizations of the 3-component velocity �eld on a 3D volumetric region of the jet mixing layer.53

In Ref. 53, experimental expediency dictated that the cross-stream PIV slices could not be taken on
an axial grid that was �ne enough for the reliable computation of the required spatial derivatives. Cubic
spline interpolation was used to solve this problem.64,65 The same method is adopted here to render the
database amenable for the subsequent GP. Along with the uctuating velocity �eld, the GP also requires the
spatially-resolved mean velocity �eld. This can be reconstructed by again using cubic spline interpolation
to estimate the mean velocity on a grid of desired axial resolution from the measured mean velocities on the
original coarse grid of cross-stream slices.

II.D. 2D Proper Orthogonal Decomposition on 3D Velocity Database

In the foregoing discussions, various methods of obtaining a spatially-resolved 3D velocity database have
been detailed. In the current work, one other possibility is of course to use the DNS database directly. All
these �elds are spatially resolved in the axial direction, unlike the velocity �eld described in Sec. II.B; hence
the following notation is introduced.

Recall the implicit normalizations described in Sec. II.A. Now, suppose that the three components of
velocity are known in a 3D cylindrical domain containing the mixing layer of the axisymmetric jet at several
time instants (see Fig. 1). Then the streamwise velocity component is denoted as Ux : [X1; X2] � [0; R] �
T�R ! R; Ux : (x; r; �; t) 7! R. Here, X1 and X2 denote the beginning and end of the streamwise domain;
note that [X1; X2] should be covered by Xv for the experimental procedure. The remaining notations have
been introduced before. Similarly, the radial and azimuthal components of the velocity �eld are denoted
as Ur and U�, respectively. The ow velocity vector is then de�ned as U := (Ux; Ur; U�)T 2 R3. As
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before, the mean and uctuating velocity �elds are de�ned as U(x; r) := E
n

(1=2�)
R �
�� U(x; r; �; t)d�

o
and u(x; r; �; t) := U(x; r; �; t) �U(x; r), respectively. The axial, radial, and azimuthal components of the
uctuating �eld are respectively ux, ur, and u�. The azimuthal Fourier transform of the uctuating velocity
�eld is de�ned as u(x; r; �; t) Fm��! û(x; r; t;m). Note that this is the quantity that is actually reconstructed
in Sec. II.C.

The formulation of the 2D POD is very similar to the previous description of the 1D POD method.
In the present case also, one transforms the velocity to the Fourier azimuthal domain (to account for the
homogeneity of this direction), before applying the POD to the inhomogeneous axial and radial directions.
The basic symmetry condition established in (1) still holds with the obvious modi�cation, so that all the
symmetries derived thereof also carry over. These similarities in the procedures allow us to avoid repeating
the entire formulation. The fundamental inner product involved is presented below; however, the remaining
equations are given for later reference and could actually be readily deduced from the 1D problem description
in Sec. II.B. Only the vector POD is pursued here since it produces superior results to the scalar version in
the subsequent GP.43

The inner product is de�ned in the azimuthal Fourier transform domain to relate it to the TKE. The
de�nition is D

û(1) ; û(2)
E

:=
Z X2

X1

Z R

0

û(2)�û(1)rdrdx; (20)

where û(1) and û(2) denote two arbitrary �elds. With this, the vector POD problem can be shown to beZ X2

X1

Z R

0

E
�
ûi(x; r; t;m)û�j (x

0; r0; t;m)
	

�̂(n)
j (x0; r0;m)r0dr0dx0 = �(n)(m)�̂(n)

i (x; r;m); 8i 2 fx; r; �g: (21)

The nth POD eigenvalue and eigenfunction � and �̂ are parameterized by the azimuthal mode m, and the
latter is also a function of the axial and radial location.

As an aside, the POD problem can be solved by the original method32 or the snapshot method52 depending
on how the total number of points on the 2D grid compares to the number of realizations needed for statistical
convergence. In the snapshot method, one does not explicitly use the kernel shown in (21), so that its
symmetries cannot be applied directly. Instead, an option is to extend the database of realizations with the
co-velocity �eld as described before (use (1), mutatis mutandis).52 Of course, this doubles the number of
realizations, thereby making the snapshot method less attractive.

Once the eigenfunctions are obtained, a low-dimensional reconstruction of the velocity �eld (in the Fourier
azimuthal domain) can be obtained using only the �rst Nn;2 eigenfunctions:

û(x; r; t;m) �
Nn;2X
n=1

�̂(n)(t;m)�̂
(n)

(x; r;m); (22)

with the modal coe�cients computed from

�̂(n)(t;m) =
D
û(x; r; t;m) ; �̂

(n)
(x; r;m)

E
: (23)

As for the 1D POD, since û and �̂ are Hermitian in m, so is �̂. The subsequent GP models the dynamics
of the modal coe�cients, and their Hermitian-symmetric nature deduced above means that the model only
need consider the non-negative azimuthal modes. This reduces the size of the ROM by almost a half.

II.E. Galerkin Projection

In Sec. II.B.3, we have remarked that the incompressible Navier-Stokes equations are most feasibly ap-
proximated using experimental data. The non-dimensionalized incompressible Navier-Stokes equations in
cylindrical coordinates are66

@Ui
@t

= �(U � r)Ui +
U2
�

r
�ir �

UrU�
r

�i� �riP

+
1
Re

�
r2Ui +

�
�Ur
r2
� 2
r2
@U�
@�

�
�ir +

�
�U�
r2

+
2
r2
@Ur
@�

�
�i�

�
; i 2 fx; r; �g: (24)
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Here U is the velocity vector de�ned in Sec. II.D, P is the static pressure �eld (normalized per Sec. II.A),
� is the Kronecker delta, and r and r2 are respectively the gradient and Laplacian operators in cylindrical
coordinates.

The POD procedure in Sec. II.D has produced an orthonormal basis for the velocity uctuations; thus,
before the GP is undertaken, the Reynolds decomposition must be applied to the Navier-Stokes equations.
A dichotomy exists in the ROM literature regarding the appropriate mean �eld representation. One group
has used a steady mean �eld derived from empirical data by ensemble-averaging as well as averaging over
any homogenous direction, if applicable.42,45,67{69 Another group of researchers have used simplifying as-
sumptions to adopt a slowly time-varying mean �eld averaged over all homogenous directions, followed by its
representation in terms of the Reynolds stresses.22,23,38,39,41 For the axisymmetric jet, these assumptions
were not borne out by our investigations using the DNS database, thereby prompting the adoption of a
steady empirical mean �eld.

Applying the ensemble- and azimuthal-averaging to the Navier-Stokes equation (24) and subtracting the
result from the original, one can readily obtain the dynamics of the velocity uctuations as

@ui
@t

= �Ux
@ui
@x
� Ur

@ui
@r
� ux

@Ux
@x

�ix � ur
@Ux
@r

�ix � ux
@Ur
@x

�ir � ur
@Ur
@r

�ir �
Uru�
r

�i�

� (u � r)ui + (u � r)ui +
u2
� � u2

�

r
�ir �

uru� � uru�
r

�i� �rip

+
1
Re

�
r2ui +

�
�ur
r2
� 2
r2
@u�
@�

�
�ir +

�
�u�
r2

+
2
r2
@ur
@�

�
�i�

�
; i 2 fx; r; �g: (25)

Here, p is the pressure uctuation; its azimuthal Fourier transform is de�ned as p(x; r; �; t) Fm��! p̂(x; r; t;m).
The subsequent steps in the GP are standard: application of an azimuthal Fourier transform to the

equations, followed by a projection on to the POD basis functions �̂
(n)

(x; r;m).29 Assume that the velocity
�eld is expanded using the �rst Nn;2 POD modes, and azimuthal modes m = 0 to m = Nm. Then the
resulting set of ODEs can be written as

_̂�(n)(m) =
Nn;2X
j=1

( 
1
Re

+
�nj

Re
(n)
T (m)

!
Lnj(m) +Knj(m)

)
�̂(j)(m)�

�����
Z R

0

p̂(x; r; t;m)�̂(n)�
x (x; r;m)rdr

�����
X2

x=X1

+ (1� �m0)
NmX

m0=m�Nm

Nn;2X
j;l=1

Qnjl(m;m0)� �̂(j)(m0)�̂(l)(m�m0); 8n 2 [1; Nn;2]; 8m 2 [0; Nm]: (26)

The expressions for the coe�cients appear in Appendix A.
For the assumed incompressible ow under consideration, the pressure term reduces to a surface integral

over the boundary of the POD domain.42 Moreover, owing to the ceasing of velocity uctuations at the
outer radius of the POD domain, the eigenfunctions themselves vanish at this boundary too. Therefore, one
obtains the form shown above wherein the pressure needs to be evaluated at the inow and outow cross-
stream slices only. Even in this simpli�ed form, the term cannot be retained in the ROM since the requisite
pressure information cannot be obtained from experiments. In previous applications to similar unbounded
ows,42,68 the term has been assumed to vanish altogether. Using the DNS database, we veri�ed that indeed
no appreciable inaccuracy is introduced by neglecting the pressure term for the unforced ow. The pressure
term is implicitly neglected for the simulation results presented subsequently. We note here that in Ref. 70,
it was shown that for the cylinder wake ow simulations, it is most appropriate to retain the pressure term,
and to solve for it in parallel using the pressure Poisson equation.

The eigenfunction-basis of the velocity is truncated in both the Fourier space as well as the POD space,
keeping only the most energetic modes. The neglected modes have low energy and typically correspond to
the smaller-scales of turbulence; this makes them important for dissipation. Thus neglecting these modes
generally has the e�ect of making the ROM overly energetic. It is usual to model the e�ect of these neglected
modes using an eddy-viscosity representation. In the past, some researchers have incorporated a global eddy
viscosity and treated it as a bifurcation parameter.38,39,41 Others have computed empirical values of modal
eddy viscosities by balancing energy or momentum.45,71,72 Both these strategies amount in adding linear
terms to the ROM, but the latter strategy gives more exibility. Here, we follow the empirical energy balance
route to modeling the eddy viscosity,71 because it was e�ective in the cavity tone control model developed
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Figure 3. Contour plot of mean axial velocity from the DNS database.

in our laboratory.45 In particular, the non-negative modal eddy Reynolds number Re(n)
T (m) is computed by

requiring that the modal kinetic energy be steady in the ensemble-average over the database of realizations.
Neglecting the pressure term, this leads to71

1

Re
(n)
T (m)

= max

"
0;� 1

Re
� 1
Lnn(m)�(n)(m)

(
Knn(m)�(n)(m) + (1� �m0)

NmX
m0=m�Nm

Nn;2X
j;l=1

Qnjl(m;m0)

� E
n

R
�
�̂(n)�(m)�̂(j)(m0)�̂(l)(m�m0)

�o)#
; 8n 2 [1; Nn;2]; 8m 2 [0; Nm]: (27)

III. Results and Discussion

III.A. Preliminaries

The details of the direct numerical simulation database are available in Ref. 49; here we only highlight the
most pertinent aspects. The cylindrical computational grid has 80 uniformly spaced azimuthal grid-points.
For ease of implementation, the originally non-uniform rectangular x� r grid is linearly interpolated hereby
to a uniform square grid with a spacing of 0:0625 (in jet diameter coordinates). The data is saved at 2316
consecutive time instants with uniform separation of 0.071 (in t+ coordinates).

The ROM is developed for controlling the large-scale structures in the turbulent jet mixing layer near the
end of the potential core. If the model domain is too short to accommodate the typical large-scale structures
in their entirety, then their dynamics cannot be modeled correctly.42 The constraint at the other extreme is
the necessity for the near-�eld pressure at the upstream location to be well-correlated to the velocity �eld on
the cross-stream slice at the most downstream location for the success of the SLSE procedure. The low-Re
simulated jet remains laminar for a signi�cant length,49 whereas the high-Re experimental jet is turbulent
at its exit.13 For the present exercise to be of use in designing later experiments, the modeling should be
performed using data from a domain of the simulated jet mixing layer that is turbulent.

A contour plot of the mean axial velocity is shown in Fig. 3. The transition from laminar to turbulent
ow is di�cult to pin-point; however, a di�erence in the jet-spreading behavior is noted at x � 5. Practical
considerations would prevent the placement of pressure sensors too far downstream in actual applications;
this constrains their feasible axial locations. The need to obtain a hydrodynamic signature dictates the radial
location of the sensors.53,73,74 Five conceptual sensors are placed in a uniform linear array from x = 5 to 6,
making an angle of 5.6o with the jet axis, with the most upstream sensor located at r = 1:29 (see Fig. 3).
Alternatively, any or all of them may be replaced by azimuthal arrays of 80 sensors (of the form shown in
Fig. 1), corresponding to the DNS grid. Following the discussion above, conceptual cross-stream slices of
the ow were chosen in the range x = 7 to 10 at intervals of 0:25 to perform the 1D slice-POD (see Fig. 3).
The radial extent of the slice-POD domain was R = 2.

III.B. Results of 3D Velocity Field Reconstruction using SLSE

The application of 1D slice-POD to the axisymmetric jet mixing layer is standard, and the results have
been published in Ref. 37. Here, we will directly proceed to a discussion of the accuracy of reconstruction
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Figure 4. The reconstruction error for various routes to stochastic estimation.

of the 3D velocity �eld database using SLSE. The details of the implementation of the SLSE, as well as
the qualitative nature of the results follow Ref. 53; and are not repeated here. We only mention that the
�nite time Fourier transforms were implemented with T corresponding to 400 samples, and overlaps of 300
samples. The DNS database provides an opportunity to assess the performance of several optional routes of
the SLSE, and this will be pursued here. The cubic spline interpolation is kept out of this exercise for the
time-being, to focus on the SLSE alone.

Using any of the methods described previously, one obtains the reconstructed uctuating velocity �eld
denoted by ~̂v(r; t;x;m). The actual uctuating velocity �eld v̂(r; t;x;m) at these axial locations is also
known for the same time instant t. Thus, we de�ne the following reconstruction error metric:

êrecon(m) :=

X
x2Xv

E

�������~̂v(r; t;x;m)� v̂(r; t;x;m)
������2�X

x2Xv

E
n
jjv̂(r; t;x;m)jj2

o : (28)

The above norm is induced from the inner-product de�ned in (6).
The comparison of the reconstruction errors is presented in Fig. 4. Here pa and pl signify the use of the

azimuthal and linear arrays, respectively; their x locations appear in parentheses. The symbol v denotes the
application of SLSE to the velocity �eld. Otherwise, the complementary SLSE is employed to estimate the
�rst Nn;1 POD modal coe�cients as noted. ‘Scalar’ and ‘vector’ respectively indicate the type of POD.

Although the errors are quite large in general, it will be shown that the reconstructed database is still
useful for the subsequent 2D POD. Using more pressure information does not always result in improved
accuracy of reconstruction, since the estimation may become over-optimized for the reference data. Thus,
for some azimuthal modes, using all 5 azimuthal arrays is seen to result in more errors than using 1 or 2
arrays only. Moreover, 5 azimuthal arrays would be prohibitively expensive and complicated to implement.
The best arrangement involving one azimuthal array and any number of sensors from the linear array is
pa(5:75); pl(5; 6). This is seen to produce better results when compared to the best case of using two
azimuthal arrays, pa(5:75; 6). A single azimuthal array was used in Ref. 53; the best case of this situation
here is pa(6), and it is seen to perform quite poorly. Using just the linear array is seen to produce better
results than using it in conjunction with an azimuthal array, but only for some higher azimuthal modes. The
complementary SLSE using the estimated scalar 1D slice POD coe�cients is more accurate compared to the
vector POD. This is to be expected, since the latter aggregates the information provided by the pressure
sensors. Adding more POD modes improves the �delity, although the direct reconstruction of the velocity
�eld (avoiding the complementary technique) performs similar to the case of Nn;1 = 9.

In the remaining article, we will focus on the database reconstructed using the scalar 1D POD modal
coe�cients with Nn;1 = 9 and the pressure sensor con�guration selected as pa(5:75); pl(5; 6). This will be
referred to as the \chosen" reconstructed database. Before proceeding to the next step, we implement the
cubic spline interpolation that was held in abeyance for the above considerations.
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(a) (b)

Figure 5. 2D POD eigenvalue spectra for (a) the original DNS database, and (b) the reconstructed database chosen in
Sec. III.B.

Figure 6. 2D POD eigenfunctions educed from the original DNS database.

Figure 7. 2D POD eigenfunctions educed from the reconstructed database chosen in Sec. III.B.
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Figure 8. Simulation error esim for ROMs built from the original DNS database for various choices of the cuto�.

III.C. Results of 2D POD on 3D Velocity Database

The eigenvalues obtained from the application of the 2D vector POD discussed in Sec. II.D are presented in
Fig. 5 as a percentage of the respective total energy captured, as well in terms of their absolute values. Since
all the energy is not captured in the reconstructed database, the actual percentages are unimportant, and
one should focus on the relative energies within each sub-�gure. With this caveat, it is apparent that the
reconstruction shows some discrepancies with an over-prediction of m = 1, and under-prediction of m = 4.
The near equality of the 1st and 2nd POD modes for m = 1 in both cases is indicative of an approximate
periodic behavior in this mode.29

Figs. 6 and 7 present some representative eigenfunctions corresponding to the two databases discussed
in Fig. 5. Following the 2D POD counterpart of (10), only the non-trivial components of the �rst POD
eigenfunctions are shown for azimuthal modes 0 through 3. In spite of the reconstruction errors seen in
Fig. 4, we note the similarity of the POD eigenfunctions from the original DNS database and the chosen
SLSE reconstruction in Figs. 6 and 7, respectively. One concludes that while the the reconstructed structures
are weaker compared to the original, their shapes are captured well by the SLSE procedure. Discrepancies
in the POD bases would not invalidate the subsequent GP; they would only result in a sub-optimal basis for
the expansion, thereby introducing more inaccuracy for the same dimension of the ROM.

If a ow is incompressible, then each of its velocity realizations are solenoidal. The vector POD eigen-
functions for such a ow, being linear combinations of these realizations,43 inherit the solenoidal property
also. Thus one way of assessing the incompressibility assumption for the present ow is to determine how
close �̂

(n)
(x; r;m) is to being solenoidal. The following metric

ê
(n)
sol (m) :=

Z X2

X1

Z R

0

���� @@x �̂(n)
x (x; r;m) +

1
r

@

@r

n
r�̂(n)

r (x; r;m)
o

+
m

r
�̂(n)
� (x; r;m)

����2 rdrdxZ X2

X1

Z R

0

"���� @@x �̂(n)
x (x; r;m)

����2 +
����1r @@r nr�̂(n)

r (x; r;m)
o����2 +

���m
r

�̂(n)
� (x; r;m)

���2# rdrdx; (29)

is evaluated for the eigenfunctions obtained from the original DNS database with n ranging from 1 to 10
and m ranging from 0 to 10. The maximum value of êsol is found to be 0.7%, thereby lending support to
the incompressibility assumption.

III.D. Results of Simulation of the ROM Obtained by Galerkin Projection

The �rst derivatives of the eigenfunctions and mean velocities appearing in the coe�cients of the ROMs
(see Appendix A) were computed using 6th-order accurate �nite di�erences. The ROMs were simulated
using MATLAB’s ode45, which is a Runge-Kutta (4, 5) ODE solver with automatic step-size selection.
Subsequently, the simulation results were linearly interpolated on the time axis of the DNS database for
direct comparison. For control-purposes, the ROM needs to predict the ow over short periods, and we
focused on a time horizon of 5t+ in all the results presented here. The initial condition was an arbitrary
realization in the middle of the DNS save-record.

Let the simulated uctuating velocity be denoted by ~u(x; r; �; t). The actual uctuating velocity u(x; r; �; t)
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Figure 9. Evolution of a simulated 30D ROM educed from the original DNS database.

Figure 10. Original DNS realizations projected on the 30D basis used in Fig. 9, at matching time instants.

is also known at the same time instant t. A simulation error metric is de�ned as

esim :=

E

(Z �
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) : (30)

The second expression follows from the orthonormality of the eigenfunction basis. Here, the POD modal
coe�cients �̂(n)(m) and ~̂�

(n)
(m) correspond to velocities u and ~u, respectively.

Fig. 8 shows the simulation error evaluated for the ROMs developed using the original DNS database,
for various choices of the cuto�s Nn;2 and Nm. The errors are quite large, demonstrating the inherent
inaccuracies of low-dimensional modeling for this complicated ow. Including the largest number of modes
does not always result in the most accurate model,40,43,75 and this is observed here too. For real-time
control, the dimension of the model must be kept at a minimum, and Fig. 8 suggests a choice of Nn;2 = 5
and Nm = 5; for this esim = 0:77. These parameters de�ne the 30-dimensional basis that is retained for the
ROMs studied hereafter. Note that this basis captures 35% of the total energy of the ow.

The simulation error esim is a gross metric; to get a better intuition, we present some snapshots of the ow
evolution from the ROM simulation in Fig. 9. The velocity uctuations on the � = 0 plane are shown. The
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Figure 11. Original DNS realizations at time instants matching Fig. 9.

Figure 12. Evolution of a simulated 30D ROM educed from the reconstructed database chosen in Sec. III.B.

Figure 13. Reconstructed realizations projected on the 30D basis used in Fig. 12, at matching time instants.
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time instants are measured from the initial condition chosen for generating Fig. 8. Fig. 9 is to be compared
with Fig. 10 that shows the projection of the corresponding realizations of the original DNS database onto
the same 30D eigenfunction basis. In Fig. 11 we also present the actual snapshots at the corresponding
instants. As expected, the overall discrepancies are quite large, but most of the di�erences result from
the use of a partial basis for the reconstruction. The di�erent components of velocity are modeled with
di�erent accuracies with decreasing order being axial, radial, and azimuthal. The turbulent kinetic energies
associated separately with the three components were also found to be ordered similarly for this database.
Since the underlying vector POD is weighted towards the more energetic component, the perceived di�erence
in modeling accuracy is to be expected. Overall, the low-dimensional dynamics of the ow are seen to be
captured with good accuracy over the selected simulation time horizon.

An ROM was also derived by Galerkin projection onto the 2D POD basis educed from the reconstructed
database chosen in Sec. III.B. The cuto�s were retained as Nn;2 = 5 and Nm = 5 to de�ne a new 30D
basis. The initial time matched the previous simulation, and the corresponding reconstructed realization
was projected onto the new 30D basis to obtain the set of initial POD modal coe�cients. The evolution of
this ROM is shown in Fig. 12; for this model esim = 0:90. For comparison, Fig. 13 shows the projection of
the corresponding realizations onto the same basis. The shape and strength of the structures are seen to be
quite alike in these two �gure, thereby once again attesting to the �delity of the Galerkin projection.

IV. Conclusion

The �rst step in model-based feedback ow control is the development of a reduced-order model of the
unforced ow; this has been pursued here for an axisymmetric jet. An existing direct numerical simulation
database of a Mach 0.9 low Reynolds number jet is used to guide the modeling, with an eye toward feasibility
of later experimental implementation. The two phases of the modeling are (a) reconstructing a database of
snapshots of the 3-component velocity �eld over the pertinent 3D domain of the jet mixing layer from
experimentally accessible measurements, and (b) determining the dynamics of the most energetic structures
in this domain.

For the �rst phase, we adopted the spectral linear stochastic estimation technique presented in Ref. 37,
53 that employs pressure measurements on an azimuthal array in the irrotational near-�eld of the jet.
The estimation coe�cients are determined from the cross-spectra between pressure measurements and low-
dimensional representations of the velocity �elds on individual cross-stream slices covering the axial domain of
interest in the jet mixing layer. We showed here that the reconstruction �delity is substantially improved by
incorporating an additional linear array of pressure sensors in the near-�eld, at little extra cost. Additionally,
we introduced a method to explicitly enforce the axisymmetry of the ow in the estimation.

For the second phase, proper orthogonal decomposition was used to educe a partial basis for the velocity
�eld consisting of the most energetic structures. Subsequently, Galerkin projection of the incompressible
Navier-Stokes equations onto this basis yielded a set of ordinary di�erential equations that govern their
dynamics. To validate the procedure, a 30-dimensional basis was �rst derived from the original database.
Simulations of the resulting model demonstrated that the evolution of the large-scale structures are well-
captured. Finally, a basis of the same dimension was obtained from the database reconstructed in the �rst
phase. Simulations of the resulting ROM showed that it may be acceptable for the purposes of feedback
control.
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Appendix A. Coe�cients of the ROM

The expressions for the coe�cients of the ROM presented in (26) are
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In the above, the dependence of the eigenfunctions on x and r have been suppressed for notational conve-
nience. For accuracy of numerical di�erentiation, the second-order spatial derivatives of the eigenfunctions
have been transformed into �rst-order derivatives by integration-by-parts. The symmetries of the POD
eigenfunctions established previously immediately lead to the conclusion that all the coe�cients are purely
real.
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