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We present and discuss results on the development and application of extremizing feedback control to high-speed

and high Reynolds number axisymmetric jets. In particular, we demonstrate control authority on the near-field

pressure of a Mach 0.9 jet with a Reynolds number based on jet diameter of 6:4 � 105. Open-loop forcing

experimental results are presented, wherein localized arc filament plasma actuators are shown to have two distinct

effects on the irrotational near-field pressure, similar to their effects on the far-field acoustics reported earlier. At low

forcing Strouhal numbers near the jet preferredmode, a large amplification in the pressure fluctuations is observed.

Atmuchhigher forcing Strouhal numbers, an attenuation is observed in the pressurefluctuations over a broad range

of excitation frequencies, especially in the axisymmetric mode of the pressure fluctuations. Previous experiments

have shown that forcing the jet with these low and high Strouhal numbers results in jet mixing enhancement and far-

field noise reduction, respectively. Two different gradient-free extremizing feedback control algorithms have been

developed and implemented, each of which can perform onlineminimum seeking, as well asmaximum seeking. Both

methods demonstrate fast convergence to the optimum followed by steady operation.We also show that the far-field

acoustic spectrum in steady-state operation of the closed-loop control is quite similar to that observed with optimal

open-loop forcing.

Nomenclature

a1, amin = initial and minimum value of step size in a
stochastic optimization process

c1, cmin = initial and minimum value of perturbation in a
stochastic optimization process

D = nozzle exit diameter
fF = forcing frequency
I/O = input/output, typically referred to a plant in a

control system
MaxS,MinS = user-specified simplex size constraints for

simplex-based searches
mF = azimuthal mode number of forcing
NF = number of actuators arranged in a symmetric

azimuthal array at the jet lip
p = near-field pressure signal
p�mp � = near-field pressure signal filtered at the Fourier

azimuthal mode mp

ReD = Reynolds number based on jet nozzle exit
diameter and exit velocity

StD = Strouhal number based on spectral frequency f
and nozzle exit diameter, fD=Uj

StDF = Strouhal number based on forcing frequency
and nozzle exit diameter, fFD=Uj

Trms = time duration over which pressure samples are
collected for computing the rms

Uj = nozzle exit velocity
x = streamwise distance downstream from nozzle

exit
� = exponential decrement for perturbation levels

in a stochastic optimization process

I. Introduction

W E PRESENT and discuss experimental results of feedback
control of a high-speed high Reynolds number jet. In parti-

cular, we demonstrate control over the irrotational near-field pressure
with two different goals: increasing the pressure fluctuations for
mixing enhancement or decreasing the fluctuations for potential far-
field noise attenuation. The feedback control strategy implemented
is shown schematically in Fig. 1. In this section, wewill motivate the
discussion and establish the background.

The turbulent axisymmetric jet is known to be susceptible to three
different instability mechanisms: 1) initial shear layer instability;
2) jet column instability; and 3) azimuthal mode instability. The
initial shear layer instability amplifies disturbances in a narrow range
of frequencies that scale with the boundary layer momentum
thickness at the nozzle exit; the associated Strouhal number is�0:01
to 0.02. The initial waves, thus created near the nozzle lip, roll up into
large-scale coherent structures. These structures entrain fluid into the
shear layer from both the high-speed potential core and the ambient
irrotational near-field, and they play a major role in the bulk mixing
of the fluids. The jet column instability determines the preferred
passage frequency of large-scale structures at the end of the potential
core; this frequency scales with the nozzle exit diameter, and the
associated Strouhal number is StD � 0:2 to 0.6. Recent experimental
results in our laboratory for a high Reynolds number and Mach 0.9
and 1.3 jets show that StD � 0:3 [1,2]. The azimuthal mode
instability causes certain helical structures to dominate in the mixing
layer. The reader is referred to [2] for a detailed review of jet mixing-
layer instabilities.

Since the discovery of large-scale coherent structures over three
decades ago, researchers have recognized the importance of their
dynamics as potential contributors to the radiated far-field noise.
However, in spite of sustained effort ever since, the exact mechanism
of influence has not been pinned down as yet. The interested reader is
referred to recent review papers [3,4].
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Thus, the large-scale coherent structures in the jet shear layer
play an important role in bulk mixing as well as noise radiation.
Feedback control attempts to manipulate these structures to achieve
either one of two desired goals: mixing enhancement or potential
noise attenuation.

In general, jet actuation techniques strive to alter the development
and dynamics of large-scale structures/instability waves; for feed-
back control, a real-time measurement of this effect of forcing is
needed. Present technology does not allow real-time three-dimen-
sional measurement of the velocity field in the jet mixing layer. It is
also not practical to require direct sensing of far-field noise levels for
control applications. Here, we invoke past research efforts to show
that the pressure in the incompressible irrotational near-field of the jet
offers an estimate of both the mixing-layer velocity field as well as
the far-field noise. The measurement of the near-field pressure
presents some unique opportunities: 1) it is a relatively nonintrusive
technique; 2) pressure, being a scalar variable, is considerably easier
to measure than the velocity field inside the flow; and 3) unlike some
of the velocity measurement tools, like particle image velocimetry
(PIV) and laser Doppler velocimetry, pressure sensors are compact
and robust and can be feasibly transferred from the laboratory setting
to real-world applications [5].

The mean-square pressure in the irrotational near-field of the jet is
related to the Reynolds stresses in the mixing layer by a weighting
function that is inversely proportional to the fourth power of thewave
number [6]. The nature of this rapid roll off indicates that the pressure
spectrum will be dominated by the larger turbulent scales; this is
termed wave number filtering. It is well known that the near-field
pressure consists of two distinct components: hydrodynamic and
acoustic [4]. The hydrodynamic pressure fluctuations carry the
convective footprint of the underlying turbulence in themixing layer,
whereas the acoustic pressure fluctuations are characterized by
acoustic waves propagating with sonic speed [7]. The far field is
dominated by the acoustic component due to the rapid decay of the
hydrodynamic component with distance. However, in the immediate
periphery of the jet, the hydrodynamic component supersedes the
acoustic component. Because of the wave number filtering effect,
the hydrodynamic pressure itself is dominated by the large-scale
coherent structures in the jet mixing layer. Thus, in order to detect the
behavior of the actuation-modified large-scale structures, the pres-
sure sensors must be placed close to the shear layer without actually
being in the rotational field.

An efficient way of looking at the near-field pressure is via its
Fourier azimuthal modal decomposition. Hall et al. [8] measured the
near-field pressure of a Mach 0.85 and ReD � 9:8 � 105 jet using an
azimuthal array of 15 transducers; they confirmed the low-dimen-
sional character of the azimuthal pressure spectrum that was origi-
nally reported in [9]. In particular, they showed that the instantaneous
pressure signal p can be almost completely reconstructed from the
sumof the axisymmetricmodep�0� and thefirst helicalmodep�1�. The
energy of the lower azimuthal pressure modes was found to increase
with the downstream distance, up to x=D� 3, and decrease
subsequently, up to x=D� 6, before increasing slightly again. We
have already discussed previously that the stronger the large-scale
structures in the mixing layer, the higher the pressure fluctuations in
the near field. Because stronger coherent structures are associated
with enhanced entrainment, and thereby bulk mixing, this justifies
the choice of rms (p�0� � p�1�) in the nearfield for real-time estimation
of the level of mixing in the jet shear layer.

Hall et al. [8] also found that the near-field p�0� signal correlates
better with the far-field noise than just the pressure signal by itself.
Also, it was reported that the correlation is greater with the far-field
microphone at downstream angles compared with the sideline angle,
which is expected, as dynamics of large-scale structures are believed
to be responsible for the peak of acoustic radiation to shallow angles
with respect to the jet axis. In particular, they reported a maximum
normalized correlation coefficient of 0.34 between the signal from
a far-field microphone placed at a polar angle of 30 deg and the
p�0� signal at x=D� 7:5. For later reference, the corresponding
correlation coefficient at x=D� 3was 0.11. In the present work, we
do not probe this relationship further; instead, we use the foregoing
discussion to justify the choice of rms (p�0�) in the near field as a
surrogate for the far-field noise. However, we do show far-field
acoustic data collected during the steady-state operation of the
feedback control that validates this choice.

Flow control is usually divided into two general categories: pas-
sive and active. Passive control does not add energy to the flow and
is normally accomplished by geometric modifications. In active
control, energy is added to the flow to excite inherent instabilities or
generate new structures (e.g., streamwise vortices). Active control is
further divided into open loop and closed loop. In open-loop control,
the actuation takes place based on an operator’s command or a
predetermined input. In closed-loop (or feedback) control, infor-
mation from a sensor or sensors in the flow, possibly along with a
flowmodel, guides the actuation process [10–13]. Open-loop control
is unable to cope with uncertainty in operating conditions because
it operates at a preset forcing parameter. On the other hand, feedback
control may add robustness to the performance in the presence of
gradual variations in the operating conditions.

The reader is referred to [1,2] for a survey of the previous research
in open-loop control of axisymmetric jets. We note here that the
majority of the investigations using open-loop control have been
carried out in relatively low-speed and lowReynolds number jets. As
the speed and the Reynolds number of the jet increase, the back-
ground noise, the instability frequencies, and the flow momentum
also increase; therefore, actuators must provide excitation signals of
much higher amplitude and frequencies.We have recently developed
a class of localized arc filament plasma actuators (LAFPAs) that can
provide excitation signals of high amplitude and high bandwidth for
high-speed and high Reynolds number flow control [1,2,14,15].
These actuators are deployed in an azimuthal array just upstream of
the jet nozzle exit. The firing of each actuator is governed by a
separate rectangular pulse train, for which the frequency, phase, and
duty cycle can be controlled independently. The intense localized
heating perturbations generated by the LAFPAs can be used to
selectively excite the three different instability mechanisms.

Open-loop forcing experimentswere conducted on aMach 1.3 and
ReD � 1:1 � 106 axisymmetric jet to assess the effect of LAFPAs on
the mixing layer [2]. The jet responded to the forcing over the entire
range of frequencies, but the response was optimal (in terms of
generating large-scale coherent structures, and hence mixing
enhancement) around the jet columnmode Strouhal number of 0.33.
The jet also responded to the various forcing azimuthal modes that
could be exploredwith eight actuators (viz.,mF � 0, 1, 2, 3,�1,�2,
and �4). Forcing the jet with mF ��1 at the jet column mode
Strouhal number provided the maximum mixing enhancement, with
a marked reduction in the jet potential core length and a significant
increase in the jet centerline velocity decay rate beyond the end of the
potential core.

Experiments were also conducted on a Mach 0.9 and ReD �
6:4 � 105 jet to study the effect of LAFPAs on far-field noise [1]; this
is also the jet on which we implement closed-loop control in the
current work. The far-field jet noise was measured using
two microphones located at polar angles of 30 and 90 deg relative
to the jet axis. The first noticeable effect of forcing was the appear-
ance of the forcing tones and its harmonics in the acoustic spectra,
more prominently for mF � 0 than for mF � 3. A typical metric for
comparing broadband noise levels is the overall sound pressure level
(OASPL). Samimy et al. [1] compared the OASPL for the forced jet

Fig. 1 Feedback control system for a jet using plasma actuators.
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to the baseline case (the difference is denoted as �OASPL) at the
two aforementioned stations, for a range of forcing Strouhal numbers
(StDF) and mF. Several noteworthy features were observed:

1) Awell-defined attenuation of noisewas evident at high StDF for
all mF at both stations.

2) The forcing Strouhal number corresponding to the minimum
OASPL was independent of the forcing azimuthal mode but varied
with the measurement station. At the 30 deg microphone location, a
broad minimum in the �OASPL of �� 1:2 dB was found to be
centered around StDF � 2:0; at the 90 deg location, the center of the
minimum shifted to StDF � 3:5, and its value was around �0:6 dB.

3) The highest azimuthal forcing mode employed (mF � 3) was
found to be more effective for attenuating noise, compared with the
other mF.

4) An amplification of noise was also noted at low forcing
frequencies for all azimuthal modes; however, in this regard, the
different azimuthal forcing modes had markedly distinct effects.

Later, wewill compare the effect of closed-loop forcing on the far-
field acoustics to the optimal case of open-loop forcing; the sense of
this optimality is to be clarified here because the optimal forcing
frequency for far-field noise attenuation has been shown to be a
function of themeasurement polar angle. It has been discussed before
that the larger scales in the jet shear layer dominate the pressure
signature in the near field, as well as the acoustic signature at the
shallow angleswith respect to the jet axis of the far field. On the other
hand, the smaller scales of turbulence contribute most to the sideline
angles of the far-field noise. Thus, it can be expected that minimizing
the near-field pressure fluctuations [actually rms (p�0�), as discussed
before] may also minimize the far-field noise at downstream angles;
the same cannot be claimed for sideline angles. This is also supported
by the directivity of the near-field–far-field correlation reported in [8]
and mentioned previously. Hence, it is appropriate to compare the
far-field spectrum for the feedback-controlled case to the spectrum
measured in the open-loop forcing case that resulted in the minimum
noise radiated to the 30 deg location. The forcing parameters for the
latter have been established to bemF � 3 and any StDF in the broad
range from 1.1 to 2.3 [1].

We have discussed previously that the noise attenuation problem
can be cast as an optimization problem, wherein we seek the plasma
actuator StDF that minimizes rms (p�0�) in the nearfield. Likewise, the
mixing enhancement problem can be posed as a problem of seeking
the maximum of rms (p�0� � p�1�) in the near field. A compli-
cating factor in our high Reynolds number application is the
stochastic nature of the rms of the near-field pressurewhen computed
over sample sizes that are feasible in a feedback control setting. We
have implemented two different model-free feedback controllers
for online optimization. This means that on initialization with an
arbitrary StDF, the controllers would automatically adjust the StDF to
optimize the plant output (see Fig. 1). The same controller can be
used for either maximization or minimization by simply switching
the sign of the plant output that is fed back. In the past, we have
implemented a gradient-based extremum-seeking control strategy
[16]; although its steady-state operation compared well to the
optimal open-loop results, the convergence (transient behavior) was
found to be very slow. This prompted the exploration of the gradient-
free algorithms that are the subject of this paper.

II. Experimental Setup

A. Flow Facility

All experiments were conducted in the Gas Dynamics and
Turbulence Laboratory at Ohio State University. The ambient air was
compressed using three five-stage reciprocating compressors, dried,
and stored in two cylindrical 36 m3 tanks, at up to 16 MPa. The
compressed air was supplied to the stagnation chamber and condi-
tioned before entering into a nozzle. We used an axisymmetric
converging nozzle with an exit diameter of D� 25:4 mm (1.0 in.)
and operated at a Mach number of 0.9. The air was discharged
horizontally through the nozzle into an anechoic chamber. The
Reynolds number of the jet based on the jet diameter was
ReD � 6:4 � 105. Further details about the flow facility can be found

in [1]. The boundary layer at the nozzle exit is turbulent with the
boundary layer thickness and momentum thickness, estimated to be
1.0 and 0.1 mm, respectively [17].

B. Plasma Actuators and Plasma Generator System

The plasma generator system is detailed elsewhere [1,2,14,15];
here, we briefly describe some of its highlights. Each plasma actuator
(LAFPA) consists of a pair of 1-mm-diam tungsten pin electrodes,
with a tip separation of 3 mm. The electrodes are symmetrically
distributed around the perimeter of a boron nitride nozzle extension,
approximately 1mmupstream from the extension’s exit plane.A 0.5-
mm-deep and 1-mm-wide ring groove is used to house the electrodes
and to shield the plasma. The switching circuitry for firing the
individual LAFPAs is controlled by computer-generated rectangular
pulses using a National Instruments (NI) digital-to-analog converter
(DAC) card andLabVIEWsoftware. Although the forcing frequency
fF, the azimuthal mode mF, and the duty cycle can be specified
independently, we have obtained the following empirical relation
between the duty cycle and fF (in kHz) based on experiencewith the
current setup:

duty cycle 	%
 �
�
0:6fF � 2; if fF � 30 kHz

0:2857fF � 11:4286; if fF > 30 kHz
(1)

The jet can be forced in azimuthal modemF � 0; 1; . . . ; NF=2 � 1
by phase shifting the pulse signals to successive actuators by
2�mF=NF radians. The system can also simulate mixed mode forc-
ing; however, these were not employed in the current experiments.

In closed-loop experiments, a dSpace 1103 controller board
operating at 50 kHz sampling rate was used to implement the control
algorithm. In such cases, the LabVIEW program was modified to
acquire the dictated value of the forcing frequency from the DAC
output of the dSpace board using one channel of an NI analog-to-
digital converter (ADC).

C. Near-Field Pressure Measurements

Figure 2 shows a symmetric circular array of eight Kulite pressure
transducers (model XCQ-062-25A). The highest azimuthal pressure
mode that can be distinguishedwith this configuration isp�3�; thiswas
deemed acceptable inview of the low dimensionality of the near-field
pressure discussed previously. The inner diameter of the ring that
holds the transducers is 254 mm (10 in.), 10 times larger than the
nozzle diameter.

During baseline (unforced) experiments and open-loop forcing
cases, the pressure signals were amplified and low-pass filtered at
100 kHz, and theywere acquired using an eight channelNIADCcard
at a sampling rate of 200 kHz. In closed-loop experiments, the
dSpace board was required to acquire the pressure signals for
feedback. In these cases, each of the eight channels of output from the

Fig. 2 Schematic of near-field pressure sensing system using a circular

array of eight pressure transducers.
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100 kHz low-pass filter was split in two.One signal from each splitter
was connected to the NI board for offline computation of the SPL
spectrum in steady-state operation. The other set of signals were
again low-pass filtered at 25 kHz before being routed to the input
ADC channels of the dSpace board.

For all computations of the pressure spectrum, blocks of data were
collected on the eight channels simultaneously at 200 kHz. There
were 8192 data points per block, producing a spectral resolution of
24.4 Hz. An average spectrum was obtained by averaging over
96 blocks of data.

D. Far-Field Acoustics Measurements

Far-field sound pressure level (SPL) was measured using two 1
4
in.

B&K microphones, located at 30 and 90 deg polar angles relative to
the downstream jet axis; their radial locations were 103 and 48D,
respectively, measured from the nozzle exit. The far-field acoustics
were normalized to a radius of 80D. The sampling characteristics for
the acoustics were identical to those used for the near-field pressure.

The presence of the near-field pressure measurement rig was
found to have no effect on the far-field baseline SPL spectrum at the
30 deg location; however, the spectrum measured at the 90 deg
location was found to have an additional 2–3 dB near its peak due to
reflection off the rig. So, for proper comparison with the spectra
measured with feedback control, the baseline and open-loop spectra
reported herein were measured with the near-field rig in place.

III. Baseline Experimental Results

One of the first issues to be addressed was the positioning of the
azimuthal ring array of pressure sensors. In practical applications,
one would like to place the sensors as close as possible to the nozzle
exit for ease of implementation. However, as mentioned earlier, Hall
et al. [8] reported that the correlation of near-field pressure to the far-
field noise is low at the jet exit and reaches amaximum at x=D� 7:5.
To balance these opposing constraints, we chose to locate our ring
array at x=D� 3:0.We have already pointed out that, at this location,
both the axisymmetric and first helical pressure modes have the
maximum energy compared with all other streamwise locations [8].
As explained earlier, the pressure sensors should be placed outside
(but close to) the jet shear layer to be able to capture the signature of
the large-scale structures that are to be controlled. Kim et al. [18]
performed PIV studies of the same jet in various open-loop forcing
experiments; their results show the extent of the jet mixing layer in
various forcing conditions. In particular, the maximum radius of the

jet at x=D� 3:0was observed when the jet was forced at its column
mode frequency and thefirstflapping azimuthalmodemF ��1; this
radius was about 0:9D. Hence, the tips of the pressure sensors were
located at a radius of 1D, with respect to the jet axis. All near-field
pressure data presented in this paper were measured at this location.

Figure 3 presents the SPL spectra for the baseline (unforced) jet. In
Fig. 3a, we show that the eight channels record almost identical SPL
spectra, verifying that the jet is axisymmetric and the azimuthal
array of pressure sensors is coaxially aligned to it. Henceforth, we
use “SPL of the pressure” to denote the mean spectrum of the
eight channels. Figure 3b shows the SPL spectra of the first
four azimuthal-mode-filtered pressure signals; this is the most that
we can resolvewith eight sensors. At this streamwise location, p�1� is
the strongest, followed by p�0�. As mentioned earlier, Hall et al. [8]
have reported that the instantaneous pressure signal can be almost
completely reconstructed from the p�0� � p�1� signal. In Fig. 3b, we
plot the SPL spectrum of this signal and overlay the mean pressure
spectrum; they are seen to have very similar peak amplitudes. Note
that the peak pressure fluctuation is around StDF � 0:3, which
corresponds to the jet column instability frequency.

IV. Open-Loop Forcing Results

The purpose of the open-loop experiments was twofold. We
wished to investigate the effect of forcing on near-field pressure using
plasma actuators. We also wanted to trace the static map between
the forcing Strouhal number (our control input) and the rms of the
azimuthal-mode-filtered pressure (our control output) to guide the
design of the closed-loop controller. Therefore, the data for the open-
loop experiments will be presented in terms of the rms values of the
pressure signals and their azimuthal-mode-filtered components.

All possible forcing azimuthal modes (viz., mF � 0, 1, 2, and 3)
were explored. The StDF was varied from 0.09 to 5.44 in varying step
sizes. The azimuthal-mode-filtered pressure signals and their
associated SPL and rms were computed in postprocessing. Figure 4
shows the SPL spectra for two representative open-loop forcing
experiments compared with the baseline case. It will be shown that
the casewithmF � 0 and StDF � 0:44 corresponds to amaximum in
the near-field pressure fluctuations, whereas the case with mF � 3
and StDF � 2:72 corresponds to a minimum. The first noticeable
aspect in Fig. 4 is the presence of the forcing tone and its harmonics.
The more important aspect is the amplification at the lower StDF and
the attenuation at the higher one. Similar effects and trends have been
observed in the far-field noise also [1]. The high-frequency

Fig. 3 Baseline near-field pressure spectra for a) the eight individual channels, and b) the various azimuthal modes. The spectra in b) are smoothed

for clarity.
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narrowband tones appearing in addition to the forcing tone and its
harmonics are due to electrical noise from the actuators. These are
rendered inconsequential by the filtering detailed next. During
feedback control, the signals needed to be bandpass filtered to
remove both the mean and the high-frequency noise. Based on the
well-defined broadband peaks in the spectra in Fig. 4, a Chebyshev
filter was designed with a passband from StD � 0:04 to 0.73 (0.5 to
8 kHz). For accurate comparison, this filter was also applied to the
pressure signals captured in open-loop forcing before computing
their respective rms values.

Figure 5 presents the rms of the near-field pressure and its various
azimuthal-mode-filtered versions for a wide range of StDF and mF.
ThemF � 0 and 3 cases aremore pertinent for our application, so that
these forcing cases were explored on a finer grid of StDF, hence the
lack of markers for these cases. The rms of the respective signals in
the baseline case are also shown for ease of comparison.Wemake the
following observations regarding the results:

1) For all forcing azimuthal modes explored, the rms of the
pressure as well as the rms of each pressure azimuthal mode have
similar characteristics: there is a relatively sharp maximum at a low
StDF and a broad minimum at a higher StDF. The maximum clearly
corresponds to the jet column instability frequency; previous flow

Fig. 4 Representative near-field pressure spectra with open-loop

forcing.

Fig. 5 Effect of open-loop forcing on near-field pressure. RMS of a) pressure, b) p�0�, c) p�1�, d) p�2�, e) p�3�, and f) p�0� � p�1� vs StDF.
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visualization and PIV results have shown that the jet exhibits the
largest response to forcing around this StDF [2]. The first (slightly
lower) peak in rms (p) formF � 0 also corresponds to the jet column
mode; at this time,we do not have an explanation for the second peak.
The attenuation at higher StDF is thought to be associated with the
initial shear layer instability.

2) Fig. 5a shows that the peak in rms (p) is largest formF � 0 and
smallest for mF � 2 and 3.

3) For a particular mF, the maximum rms is noted in the
corresponding pressure azimuthal mode. For example, Fig. 5c shows
that the maximum value of rms (p�1�) is obtained by forcing the jet at
mF � 1.

4) The rms of (p�0� � p�1�) shows similar characteristics as the rms
of the pressure itself.

5) The switchover from amplification to attenuation (the crossing
of the curveswith the baseline pressure rms line) follows a set pattern
for the pressure as well as all its azimuthal modes. In particular, the
curves formF � 0 attenuate at the lowest StDF, and those formF � 3
attenuate at the highest StDF.

6) The different pressure azimuthal modes also exhibit a
progression of crossover locations. For example, all the curves for
rms (p�0�) crossover at StDF � 0:9 (but with differences therein,
as mentioned previously). However, this crossover happens at
StDF � 1:8 for rms (p�3�).

7) The effects of different forcing azimuthal modes become
indistinguishable at higher forcing Strouhal numbers.

8) The location of theminimum shifts to higherStDF for increasing
pressure azimuthal modes. Whereas the minima for rms (p�0�) and
rms (p�1�) occur at StDF � 2:7, the other modes have their minima at
StDF � 3:6.

9) The minima become flatter for higher pressure azimuthal
modes, especially at the high-StDF end.

V. Extremizing Feedback Control Algorithms

Two different algorithms are investigated for the online optimi-
zation of the near-field pressure: the modified Nelder–Mead
algorithm (MNMA) and the modified Kiefer–Wolfowitz algorithm
(MKWA). An overview of the controllers based on these algorithms
is presented here, but more details are provided in the Appendix.

A. Modified Nelder–Mead Algorithm

Nelder and Mead’s simplex-based direct search method [19] is a
gradient-free optimization algorithm for offline optimization of static
deterministic multivariable cost functions. On the other hand, our
application involves the online optimization of a stochastic single-
variable cost function; moreover, the optimum of the function may
vary with time. Barton and Ivey [20] recommended modifications
to the original algorithm for robust behavior in the presence of
statistical uncertainty. Torczon [21] designed another direct search
technique, the multidirectional search method, for provable conver-
gence in a deterministic setting. She also provided empirical
evidence of reliable optimization of stochastic cost functions. Our
first controller implementation is a model-free direct search algo-
rithm based on all the previously mentioned results, with several
additional enhancements for use in online optimization.

Here, we will explain the operation of the algorithm in general
terms; the details appear in the Appendix. The only plant input to be
optimized in our application is the forcing Strouhal number StDF.
The appropriate simplex for this one-dimensional problem is a two-
element set of vertices, representing the endpoints of a line on the
StDF axis. In our application, the single input/single output (SISO)
cost function to be extremized is the rms of the relevant azimuthal
mode-filtered near-field pressure signal. The initial choice of the
vertices of the simplex (two distinct StDF) must be specified by the
user, or some other algorithm. TheMNMA iteratively adapts the size
and location of the simplex, so that the values of the plant output at
both its vertices are extremized. In each iteration of the algorithm, the
vertices of the simplex are ranked based on their functional values;
it is this use of the mere rank that distinguishes the direct search

techniques from the gradient descent methods, which would typi-
cally use a finite difference approximation of the local gradient of the
cost function.

In practice, the controller issues a converging sequence of StDF
that extremizes the plant. On each such issue, the controller waits
until the necessary pressure samples are collected to calculate the rms
value, the latter then being used in the computation of the nextStDF to
be issued. In offline optimization, one is solely concerned with the
final optimal StDF; hence, the simplex is allowed to collapse to a
point. However, in an online optimization application, one not only
expects the process to converge upon the optimal value but to remain
alive to possible subsequent changes in the optimal value itself. This
argues for preventing the simplex fromcollapsing to a point, as such a
point simplex would be insensitive to the local gradient of the input/
output (I/O) map. This also corresponds to the notion of persistent
excitation used in the adaptive control literature, because it ensures a
minimum amplitude of oscillation of the plant input. As detailed in
the Appendix, this requirement necessitates several of the modi-
fications incorporated in the MNMA. The remaining modifications
address the stochastic nature of the application. Finally, our SISO
application afforded an improvement to the original NMA, which
was also implemented.

B. Modified Kiefer–Wolfowitz Algorithm

The second controller that we implemented was a modified
stochastic optimization technique. Robbins and Monro [22]
pioneered the field of stochastic approximation, the study of search
techniques that successfully reach a preassigned goal in spite of
uncertainty. Kiefer and Wolfowitz [23] adapted the idea to the
problem of finding the extremum of a unimodal function in a
stochastic setting. Although the original algorithm was gradient
based, a later variant was developed for gradient-free stochastic
optimization [24]. The general behavior of theMKWA is very similar
to the MNMA, in that it also issues a converging sequence of StDF
that extremizes the plant. The difference lies in the actual nature of
the converging sequence. Basically, the original Kiefer–Wolfowitz
algorithm (KWA) employed a gradual convergence to address the
stochasticity of the cost function. Some of the modifications in the
MKWA hasten this convergence where feasible. Other enhance-
ments keep the controller alive to possible changes in the location of
the extremum, as in the MNMA. The implementation details appear
in the Appendix.

VI. Results of Extremizing Feedback Control

Here, we present the results and discuss the relative merits of
closed-loop experiments performed using the two different algo-
rithms discussed previously (viz.,MNMAandMKWA).Because the
controller implementation was in terms of the forcing frequency
instead of the Strouhal number, all of its parameters were selected in
terms of frequencies; they are hereby converted into an equivalent
StD for ease of discussion. The results are shown in Figs. 6–8; the
presentation scheme is elucidated here. Figure 6 shows the results of
the experiments, wherein the goal was to minimize rms (p�0�); Fig. 7
presents the outcome of the experiments, wherein the aim was to
maximize rms (p�0� � p�1�). Part a) of either figure presents the
transients that occurred in the StDF (the plant input) when MNMA
was implemented as the feedback controller, and part b) shows the
corresponding transients that appear in the relevant pressure signal
(the plant output). Similarly, parts c) and d) demonstrate the plant
transients (input and output, respectively) with an implementation of
MKWA. The StDF in the legends indicate the initial values. Part e)
presents the respective pressure spectra once the controllers reached
steady-state operation. Finally, part f) of either figure provides the
details of the open-loop results (already presented in Fig. 5) that are
relevant to these experiments. Error bars are shown with �= � �,
where � is the standard deviation with the respective Trms. The
spectrum of the optimal case observed in part f) is shown in part e) of
the respective figure. Figure 8 shows the far-field acoustic spectra
measured during steady-state operation of the controller.
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For reasons stated previously, experiments aimed at potential
noise attenuationwere designed tominimize rms (p�0�) in real time by
optimizing the StDF; these will be called minimum-seeking experi-
ments. The effect of differentmF cannot be distinguished in the high-
StDF range in which the minimum is achieved (see Fig. 5b).
However, as pointed out in Sec. I, mF � 3 is most effective for far-
field noise suppression. Thus, this was used exclusively in closed-
loop experiments aimed at minimizing noise. The details of this
particular I/O map, obtained in open-loop forcing experiments, are
shown in Fig. 6f. We will show convergence to the optimal StDF of
�2:7, starting from various initial values from 0.9 to 4.5. In addition
to this near-field result, we will also show that the maximal far-field
noise attenuation observed in open-loop experiments was well-

replicated in steady-state operation of the closed-loop control
system.

We now turn to the goal of mixing enhancement by the maximum
amplification of the large-scale structures in the jet shear layer. It has
been discussed before that this amplification is reflected in a
broadband increase of fluctuations of p�0� � p�1� in the near field.
Figure 5f shows that mF � 0 is most effective in this regard. Hence,
in closed-loop experiments focusing on mixing enhancement,mF �
0 was used exclusively and rms (p�0� � p�1�) was maximized in real
time by optimizing the StDF; these will be referred to as maximum-
seeking experiments. A detailed version of the pertinent cases of
open-loop forcing is presented in Fig. 7f. We sought to converge to
the optimal StDF of 0.45, starting from various initial values in the

Fig. 6 Transients in minimum-seeking control with: a) and b) MNMA; c) and d) MKWA; e) steady-state near-field spectra; and f) details of pertinent

open-loop results with mF � 3.
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range of 0.1 to 0.8; it will be shown that this was not always possible,
owing to the presence of the other prominent peak at �0:34.
However, because the ordinates of the two peaks are quite similar,
achieving either of them would result in significant mixing
enhancement.

An important assumption in the discussion of the control algo-
rithms in Sec. V is the absence of plant dynamics. Step response
experiments were conducted to verify this. A delay of no more than
20 ms was noticed between a change in StDF and its effect on the
near-field pressure signal. The possible sources of this delay are
1) the communication lag between the dSpace controller com-
manding the forcing frequency and the LabVIEWprogram acquiring
it to control the actuators, and 2) the delays internal to the feedback
controller and actuator controller, owing to the finite processor

speeds. To account for this delay in the implementation, the control
routine incorporated a wait of 20 ms between directing the actuators
to use a particular forcing frequency and starting to record the
corresponding pressure data. Once the necessary sample size was
collected, its rms was computed, and this was deemed as the plant
output to be used by the controller in determining the next input. This
cycle was then repeated. Such a strategy makes the plant appear
effectively static to the controller.

An implicit parameter that sets the pace of the closed-loop
experiments is Trms, the duration over which pressure samples are
collected for computing the rms. Note that the waiting period of
20 ms described previously is included within Trms. Turbulent
randomness creates variability in the computed rms value, depending
on Trms; this is seen in the error bars in Figs. 6f and 7f. For fast

Fig. 7 Transients in maximum-seeking control with: a) and b) MNMA, c) and d) MKWA; e) steady-state near-field spectra; and f) details of pertinent
open-loop results with mF � 0.
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response, Trms should be as small as possible. However, the vari-
ability (or noise) in the output signal also increases with decreasing
Trms. Thus, a balance is required between an acceptable convergence
rate and a signal-to-noise ratio (SNR) that can be handled by the
inherent robustness of the implemented algorithms. The SNR is
defined as the ratio of the mean value of the plant output to its
standard deviation when all parameters are held constant; it depends
on the StDF as well as the Trms. In preliminary experiments of
maximum seeking with either algorithm, Trms � 0:1 s proved to be a
satisfactory balance; the average SNR (calculated over the open-loop
experimental data points indicated in Fig. 7f) was�64. However, for
minimum seeking, a minimum Trms � 0:2 s was required to have
similar robust performance; the corresponding SNR (calculated from
Fig. 6f) was also�64. Using Trms � 0:1 s for minimum seeking, the
SNR turned out to be 45. This explains the need for different Trms for
the two applications.

The control algorithms have a number of parameters that deter-
mine their performance. Some of the parameters can be selected
independent of the specific application and are detailed in the
Appendix. The initial choice of the remaining parameters was based
on an analysis of the open-loop results, as well as the preliminary
simulations. Experimental results were used to guide the selection of
the final set of parameters that produced the best performance, and
these are presented next. Eventually, the algorithms were run with
these parameter values in at least five cases each to verify their
repeatability.We only present representative results from this experi-
mental set due to space constraints.

A. Modified Nelder–Mead Algorithm

1. Minimum Seeking

In this application, theMNMA is used to seek the minimum of the
I/O map shown in Fig. 6f; the characteristics of this map dictate the
choice of the parameters of the algorithm. The map shows a very
gradual slope in the range of StDF from 3 to 5; thus, a large value of
MaxS� 0:45 was selected. With MaxS� 0:27, we could not
achieve repeatability in converging to the optimum from an initial
StDF of 4.5. WithMaxS� 0:9, the convergence was repeatable and
rapid, but there was a large overshoot that caused delays in settling.
The I/O map also indicates that the minimum is broad; hence, an
appropriate choice of MinS was 0.09. Currently, we do not know
what would constitute an adequate level of persistent excitation in
real applications; we simply wish to show that ameaningful level can
be feasibly established by our algorithm. Experiments withMinS set
to 0 and 0.18 have also shown satisfactory steady-state behavior.

The transient behavior is demonstrated with the process initialized
at three different StDF. Figure 6b shows that in all three cases, the

plant output reaches and settles around 230 Pa within 5Trms (i.e.,
using just five evaluations of the plant I/O map). This convergence
rate represents an order of magnitude improvement compared with
our results with the gradient-based extremum-seeking controller
[16]. Figure 6a indicates that StDF reaches �2:7 within the same
time, but it varies within 2.4 to 3.0 subsequently, even though
MinS� 0:09; this can be explained by the broadness of the
minimum. The three cases have similar steady-state behavior, hence
we only show the near-field spectrum for an initial StDF � 4:5 in
Fig. 6e. The spectrum with MNMA is quite similar to the optimal
open-loop spectrum as established from Fig. 6f, especially in the
high-amplitude region of interest. The forcing tone in the feedback-
controlled case is smaller but broadened due to the persistent
perturbations in the StDF. Thus, the best open-loop result in
minimization of the near-field pressure fluctuations can be replicated
in closed loop by the MNMAwith a very short transient phase.

In Fig. 8, we compare the far-field acoustics at two different polar
angles, with the optimal open-loop forcing and the steady state of
closed-loop forcing; this optimality has already been explained in
Sec. I. In steady state, the closed-loop controller using the MNMA
algorithm is seen to create a far-field acoustic signature that is quite
similar to the signature obtained in open-loop experiments. Owing to
the persistent excitation, the closed-loop process results in a broad
peak around the optimal StDF and its harmonics, compared with the
sharper but stronger peak obtained in open-loop experiments that are
run at a single StDF. This supports the choice of rms (p�0�) as the
quantity tominimize in the near field for far-field noise attenuation. It
also provides succinct evidence of the effectiveness of closed-loop
control.

2. Maximum Seeking

Wenow focus on the onlinemaximization of the I/Omap shown in
Fig. 7f using the MNMA. It has already been discussed that the
relevant portion of this map has two distinct maxima: a 1600 Pa peak
at StDF � 0:45 and a 1530 Pa peak at 0.33. Direct search normally
cannot guarantee the convergence to a specific peak starting from any
point in an interval containing multiple peaks. However, repeated
experimentation can lead us to a choice of a parameter set that might
do so. This is not the goal of model-free optimization, wherein we
specifically avoid using any significant knowledge of the plant.
Instead, through logical arguments and a few experiments, we did
arrive at a set of parameters that gave repeatable convergence to the
higher peak at StDF � 0:45 from a majority of the initial conditions
within 0.1 and 0.8. Because we could not get this result for all initial
conditions in the range, we cannot make any claim for the basin of
attraction of the individual peaks. Instead, our motive here is to
explore the limitation of the MNMA for this application.

Fig. 8 Selected far-field acoustic spectra at a) 30 deg and b) 90 deg polar angles.
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Compared with minimum seeking, the range of initial conditions
is smaller and the extremum is sharper; and so we selected
MaxS� 0:09. Values of 0.07 and 0.18 (not shown here) were also
tried with similar results, attesting to the relative robustness of the
technique to the specific choice of this parameter. Further reduction
ofMaxS led to delays in convergence due to increased uncertainty.
The sharpness of the peak led us to chooseMinS� 0:009. Avalue of
0.018 did not lead to substantial degradation in performance.
However, with MinS� 0:045, large oscillations were observed in
the forcing frequency, and the average output was reduced because
the larger perturbations were keeping the output away from its
optimum.As inminimum seeking, we do not know a suitable level of
persistent excitation; hence, our goal here has been to demonstrate
the flexibility of the algorithm.

Figure 7a shows that the plant input settles within 10Trms from a
variety of initial values. On initialization from StDF � 0:09, 0.45,
and 0.82, the final mean value of the input was around 0.45; starting
from StDF � 0:23, the steady-state average was around 0.33.
Actually, we tested the algorithm with all initial forcing Strouhal
numbers in the range from 0.09 to 0.82 in increments of 0.045. The
process repeatedly converged to the peak at StDF � 0:33 when
initiated from 0.23 and 0.32; with all other initial conditions, it
repeatedly reached the peak at 0.45. In Fig. 7bwe note that the output
settles around 1500 Pa within 10Trms of initialization for all cases. In
steady state, the output is seen to have significant oscillations com-
pared with the minimum-seeking case. Also, the mean output is
somewhat lower than the optimal value found in open-loop experi-
ments (�1600 Pa). Both these effects can be explained by the
sharpness of the maximum. Figure 7e presents the steady-state
output spectrum for the experiment with initial StDF � 0:09. (The
other initial StDF, apart from 0.23 and 0.32 of course, produced very
similar steady-state behavior, and hence SPL spectra.) Within the
high-amplitude range of interest, this spectrum closely resembles the
optimal open-loop spectrum, except around the forcing tone and its
harmonics. The disparity is obviously due to the persistent excitation
of the StDF in closed-loop control. In summary, the MNMA meets
expectations in maximum seeking; there are two distinct peaks (with
similar ordinate values) within the set of possible initial conditions of
forcing frequency, and the process successfully converges to either
one of them in an adequately short time.

B. Modified Kiefer–Wolfowitz Algorithm

The decrement exponent parameter � was chosen as 1.0 as a
compromise between rapid convergence and reliability. The timing
parameter Trms was chosen as in the MNMA experiments (i.e.,
Trms � 0:2 s for minimum seeking and 0.1 s for maximum seeking).
In the MKWA, each decision to issue a new plant input is based on
two observations of the output: positive and negative perturbations
from the central value. On the other hand, in the MNMA, each such
decision is based on only one observation of the output. This makes
the MKWA inherently more robust. Correspondingly, we found no
issues with convergence, even when the values of Trms were halved.
However, to maintain a decent margin of safety, we settled for the
values mentioned previously, in line with the MNMA experiments.
The choice of the remaining parameters (viz., c1,a1, cmin, andamin) is
discussed next.

1. Minimum Seeking

Here we discuss experiments in minimization of the I/O map
shown in Fig. 6f usingMKWA.Thismap possesses a gradual slope at
the high-StDF end. If the process uncertainty is higher than the
difference in output with the positive and negative perturbations
introduced by the MKWA, the convergence (if it happens at all)
would be very slow indeed. To address this, c1 was chosen as 0.45.
The value of a1 was selected as 0.45 also to hasten convergence. This
is similar, but not equivalent, to selecting the initial simplex size and
MaxS as 0.45 in the MNMA. The parameters cmin and amin together
play a role similar to MinS in the MNMA implementation.
Following the reasoning for the latter, we selected cmin � amin�
0:045. Here,amin keeps the optimization process alive in the long run,

whereas cmin ensures that the estimation of the sign of the local
gradient is relatively insensitive to stochasticity. In this respect, the
MKWAoffersmore flexibility than theMNMA, because in the latter,
both of these effects are controlled byMinS.

Figure 6c demonstrates that, starting from various initial
conditions, the plant inputStDF reaches around 2.7within 10Trms, but
it subsequently varies within 0.24 and 0.30. Figure 6d shows that the
output reaches and settles around 230 Pa within the same interval in
all three cases. Except for the doubled settling time, all other
characteristics are very similar to the MNMA results, including the
representative steady-state output spectrum shown in Fig. 6e. We
also expect the effect on the far-field acoustics to be similar. The
settling time is doubled, because theMKWAmakes two observations
of the output for every observation made by the MNMA. Although
this makes the MKWA more robust, a price is paid in the delayed
convergence. Of course, we can obtain the same real convergence
time as in the MNMA by halving the Trms to 0.1 s. As mentioned
before, brief experimentation with this parameter in the MKWA has
not revealed any adverse effect, unlike that found in the MNMA, but
we retained Trms � 0:2 s to have some margin of safety.

2. Maximum Seeking

The pertinent plant I/Omap for ourmaximum-seeking application
is shown in Fig. 7f. Following the arguments laid out previously for
minimum seeking, we selected c1 � 0:09. In a few experiments with
c1 � 0:07, we did not notice any erroneous convergence behavior;
however, with c1 � 0:18, the oscillations took longer to settle down.
Similar considerations led to the choice ofa1 � 0:09. The parameters
cmin and amin were both selected as 0.0045, exploiting their
relationship toMinS in the MNMA; the value of the latter has been
justified already.

Figure 7c shows that plant input settles within 22Trms from a
variety of initial values. Starting from 0.23, the steady-state value of
StDF was around 0.33. However, the input settled around 0.45 when
initialized from all other values in the range from 0.09 to 0.82 kHz in
increments of 0.045 (three of these cases are shown in thefigure). The
reader will recall that similar results were obtained with the MNMA
too, except that in the latter, the initial StDF of 0.32 also resulted in
convergence to the peak at 0.33. Toomuch significance should not be
read into this disparity, given that neither algorithm is designed to
optimize multimodal functions. Figure 7d demonstrates that the
time-domain behavior of the steady-state plant outputwithMKWAis
very similar to that observed with MNMA, except for the doubled
convergence time in the former case. The explanation given for this
observation in the case of minimum seeking also applies to the
current application. Figure 7e shows that the steady-state frequency-
domain behavior of MKWA is similar to that of MNMA.

VII. Conclusions

In this paper, we have presented and discussed the results of the
development and application of extremizing feedback control to
axisymmetric jets. In particular, we have shown control authority on
the irrotational near-field pressure of a Mach 0.9 jet with a Reynolds
number based on jet diameter of 6:4 � 105. Open-loop forcing using
localized arc filament plasma actuators is shown to have two distinct
effects on the near-field pressure; a large amplification occurs in the
pressure fluctuations at an StDF near the jet column mode, whereas a
broad attenuation is found at higher values. The peak corresponds
to maximum bulk mixing in the jet shear layer; the minimum is
important for its potential link to far-field noise attenuation.

We developed a feedback control strategy that minimizes the rms
of the axisymmetric mode of the near-field pressure in real time by
automatically tuning the StDF of the LAFPAs; this was motivated by
the correlation of this signal with the far-field noise. Another
feedback controller was designed to maximize the rms of the sum of
the axisymmetric and the first helical modal components of the near-
field pressure by tuning the StDF; the motivation was the correlation
of this signal with the bulk mixing in the shear layer. Thus, both the
far-field noise mitigation and the bulk mixing enhancement
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applications can be regarded as online extremization problems
involving single-variable cost functions. An important characteristic
of both applications is the high level of uncertainty introduced in the
corresponding cost functions by turbulence.

Two different gradient-free offline optimization algorithms were
investigated: the Nelder–Mead direct search method and the Kiefer–
Wolfowitz stochastic optimization routine. The former is designed
for efficient optimization of deterministic cost functions, whereas the
latter can also handle stochastic functions. Several novel enhance-
ments were incorporated into the original algorithms before they
could be implemented in feedback controllers for online optimiza-
tion. In closed-loop control experiments for minimum seeking and
maximum seeking, both controllers were able to replicate the optimal
open-loop control effects on the near-field pressure after brief
transient phases. We have also demonstrated that feedback control
can attenuate the far-field noise to a degree similar to the maximal
observed in previous open-loop forcing experiments. The modified
Kiefer–Wolfowitz method was found to be more robust, but the
convergence rate was typically halved in comparison with the
modified Nelder–Mead controller. One shortcoming of the former
is the absence of any mechanism to increase the perturbation and
increment levels; this might be a disadvantage if the desire is to
quickly account for changes in the location of the optimum during
operation. The expansion mechanism in the MNMAwould be very
useful in this regard.

In summary, both feedback controllers investigated in this paper
demonstrate significant promise for the online optimization of the
near-field pressure of axisymmetric jets.

Appendix

I. Modified Nelder–Mead Algorithm

For brevity, we will discuss only the important changes that were
made to the original NMA [19] in developing the MNMA; the
relevant steps are serialized in the flowchart in Fig. A1. The first
modification is the imposition of user-defined constraints on the

simplex size (viz.,MaxS andMinS). The lower boundMinS addres-
ses the requirement of persistent excitation, as discussed in Sec. V.
The upper boundMaxS is implemented as a safety precaution. In a
stochastic setting, a few contiguous erroneous observations can
result in a very large simplex due to repeated expansions (see
Fig. A1). First of all, this might result in actuator saturation. Also, the
processmay require a large number of iterations to recover from such
a large excursion. This argues for the imposition of the upper bound.
In each iteration of the MNMA, the simplex size constraint must be
explicitly addressed; this accounts for the decision steps marked 1, 3,
and 4 in Fig. A1; these are absent in the original NMA. This
requirement also makes the computations in the expansion and
contraction steps slightly more involved.

The iteration in MNMA starts with the reflection step shown in
Fig. A1; in proceeding through the iteration, the first noteworthy
modification is the inclusion of the decision box 1, for reasons stated
previously. The algorithm reaches this point if the reflection produces
a new best vertex; the original NMA follows this up with an
expansion step. However, if the simplex has already attained its
maximum allowable size, then it cannot be expanded further. Instead,
on the N branch of decision box 1, the new simplex is set as fB; Rg.
Then, in the ensuing reflection, B would be reflected through R to
give the E vertex that an expansion step would have evaluated next.

A major difference between the MNMA and NMA is at point 2 in
Fig. A1. At this step, the original NMA would have set the new
simplex as fB; Rg before proceeding to the next reflection. There is
an issue with this scenario that is peculiar to a SISO problem. Using
the typical values of �� 1 and � � 2, the next vertex to be evaluated
on reflection of B through R would be E again. Because functional
evaluations are typically expensive, one should avoid this successive
evaluation ofE. A better option is as follows. Note that this branch of
the algorithm is entered only if h	B
 � h	R
 and h	E
 � h	R
; thus,
the optimum can be hypothesized to lie within B and E. Also, it is
logical to contract the simplex to concentrate the search effort in
the most promising subinterval. An additional complication is
introduced by the lower bound MinS on the simplex size. Let us

Fig. A1 Flowchart of the MNMA for maximizing the cost function h���. To minimize h���, its negative is maximized. The major points of departure

from the original NMA are serialized.
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consider the logical step in case the simplex cannot be contracted any
further (i.e., if jB � Rj �MinS, thenR, being the best vertex, should
be retained in the simplex). E has been newly evaluated, and hence
should not be reevaluated. And so, the only option is to reevaluate B.
This can be achieved by setting the simplex to fR; Eg and looping
back to a reflection. If, on the other hand, jB� Rj>MinS, then
we borrow from Nelder and Mead’s idea of the inside/outside
contraction [19]. In particular, if h	E
> h	B
, then it is logical to
contract the fR; Eg simplex towardR; otherwise, the fR; Bg simplex
is to be contracted toward R.

The next modification is the addition of decision step 4 in Fig. A1.
At this point, if the simplex size is the smallest that it can be, then the
ensuing contraction would not change the worst vertex R, and it
would be evaluated twice in succession. A more preferable option in
this case would be to set fB; Rg as the new simplex before looping
back to a reflection.

The original NMA has a shrink step, which, for a SISO problem,
duplicates the contraction step, albeit with a possibly different
coefficient; it is therefore not included in the proposed algorithm.

The final modification is the resampling step adopted from Barton
and Ivey [20] to address the stochasticity in our application. In
essence, although the vertex B might not be the true optimum, a
single observation of its functional value in a stochastic setting might
make it seem optimal. And so, at the end of an iteration (before the
next reflection step), if B is retained as the best vertex, then it is
reevaluated, and its old functional value is replaced with the new one
in subsequent rank determinations.

Following previous work [19,21], the transformation parameters
were set at �� 1, �� 0:5, and � � 2. Search techniques typically
require the user to specify an initial guess of the goal. In our imple-
mentation, this guess was used as S1, the first vertex of the initial
simplex. Of course, the aim of our closed-loop experiments is to
show that this initial guess can be chosen in a wide range and still
result in optimal plant output within a short time. The other vertex of
the initial simplex is computed as S2 � S1 � Ss0. The value of Ss0
must be chosen, such that the algorithm can reliably rank its vertices
initially; this means that S1 and S2 must be spaced far enough apart
that their functional values have the correct rank in spite of uncer-
tainty. For fastest convergence, one should always specify Ss0�
MaxS. The choice ofMaxS andMinS are detailed in the main text.

II. Modified Kiefer–Wolfowitz Algorithm

Wewill discuss only the important changes that were made to the
original Kiefer–Wolfowitz algorithm (KWA) [23] in developing the
MKWA; its pseudocode appears at the end. Consider the stochastic
cost function h	yn
, where yn is the independent variable at the nth
iteration of the procedure. It is assumed that the uncertainty is
unbiased, and that Efh	�
g is a convex unimodal function, where
Ef�g is the expectation operator. The goal is to iteratively find the y
that maximizes Efh	y
g by only evaluating h	�
. In the KWA, the
gradient E0fh	yn
g is estimated as a finite difference using a positive
and negative perturbation to yn. However, in our application, the
gradient of the plant I/O map may become very small in the vicinity
of the extremum, thereby slowing down convergence if the gradient
descent method is used. Hence, in the MKWA, we incorporated
Wilde’s [24] idea of using only the sign of the estimated gradient.
With this, at the end of each iteration, the new center for the next pair
of perturbations is computed as

yn�1 � yn � an signfh	yn � cn
 � h	yn � cn
g (A1)

where an > 0 controls the step size, and cn > 0 is the perturbation
level at the nth iteration. The convergence proof of the technique [23]
makes the following assumptions on the sequences cn and an:

lim
n!1

an � 0; lim
n!1

cn � 0;
X1
n�1

an �1;

X1
n�1

�
an
cn

�
2

<1 (A2)

One common choice for an is a1=n, with a1 > 0. Then, a possible
choice for cn is c1=n

�, with 0< � < 0:5 and c1 > 0.
The next modification is the application of lower bounds amin and

cmin on an and cn, respectively, to provide the persistent excitation
mentioned in Sec. V. Note that this would violate the conditions
placed on the sequences an and cn. Hence, we cannot expect a
convergence to the local optimum; instead, the independent variable
can be expected to oscillate in a neighborhood of this optimum.

The final modification incorporates the acceleration protocol
proposed by Kesten [25]. With this, yk is still updated with the
iteration index k, but the index n (governing the decrease of an) is
incremented only on the detection of a change in the sign of the
estimated slope. Additionally, Kesten stipulated that the perturbation
level cn should be a constant; however, this was found to be counter-
productive for our online optimization application. In simulations
preceding the experiments, we obtained the best results by allowing
cn to decrease from an initial higher value down to the lower bound
cmin; the reasoning is as follows. The cmin cannot be too large,
otherwise the variable y as well as the output h	�
 will make large
excursions from their respective optima, which is undesirable.
However, if following Kesten, this relatively small value of pertur-
bation is used from the beginning of the process, then the process is
found to be overly sensitive to stochastic uncertainties, thereby
delaying convergence. Thus, in our algorithm, we set the initial
perturbation level c1 suitably high and used the c1=n

� formula for
decrementing it in lockstep with the step-size decrements. Of course,
because this adaptation of c only occurs during the initial stages, we
are not constrained anymore by 0< � < 0:5 and are free to vary this
parameter to improve performance. Note that this does not really
violate Kesten’s stipulation, because the perturbation level becomes
constant at cmin after a few iterations.

The pseudocode of the MKWA for function maximization is as
follows:

Given an initial value yi. Also given the parameters c1, a1, cmin,
amin, and �. Initialize k and n with 1.

WHILE (not manually overridden)
sgnk  sign fh	yk � cn
 � h	yk � cn
g
IF (k > 1 AND sgnk ≠ sgnk�1), THEN
n n�1, cn maxfc1=n�; cming, an maxfa1=n; aming.

ENDIF
yk�1  yk � ansgnk
k k� 1

ENDWHILE.
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