
Development of Empirical Estimators for Feedback

Control of Axisymmetric Jets

Aniruddha Sinha�, Andrea Serraniy and Mo Samimyz

Gas Dynamics and Turbulence Laboratory, The Ohio State University, Columbus, OH, 43235

Localized arc �lament plasma actuators have demonstrated signi�cant potential in con-
trolling high-speed and high Reynolds number axisymmetric jets in open-loop. As a �rst
step in incorporating feedback for this control system, the authors have recently devel-
oped an empirical reduced-order model of the essential 
ow dynamics in the unforced jet
using Proper Orthogonal Decomposition and Galerkin Projection. Real-time 
ow state
estimation is a challenging problem in the implementation of feedback control for the com-
plex 
ows of practical interest. Sensing the pressure in the irrotational near-�eld o�ers a
suitable non-intrusive real-time measurement that is driven by the jet’s shear layer dynam-
ics. Several strategies are developed herein for estimating the state of the reduced-order
model from pressure information. As in the dynamic modeling phase, the estimators are
implemented and assessed on an existing direct numerical simulation database of an un-
forced jet similar to the experimental con�guration. A linear time-varying Kalman �lter is
demonstrated to be more accurate than a single-time quadratic stochastic estimator when a
single azimuthal array of pressure sensors is used. A single-time linear stochastic estimator
is shown to be unsuitable for this problem. The �delity of a linear time-invariant �lter,
that is only as complex as the linear stochastic estimator, is found to be comparable to
the time-varying �lter. Surprisingly, an extended Kalman �lter that allows for a quadratic
coupling between the state and output is found to under-perform the linear �lter, possibly
due to incorrect tuning.

Nomenclature

cEKF Constant output parameter for extended Kalman �lter
cQSE Constant parameter for QSE
ê� Figure of merit for estimation �delity of POD modal coe�cients
lEKF Linear output parameter vector for extended Kalman �lter
lLSE LSE parameter vector
lQSE Linear parameter vector for QSE
k Time index
m Azimuthal Fourier mode index
n POD mode index
p Fluctuating pressure
s Pressure ring array index
E() Expectation operator
F Linear state-transition matrix in discrete-time domain
K Gain in Kalman �ltering
LKF Linear output parameter matrix for linear Kalman �lter
Nm Highest azimuthal Fourier mode retained
Nn Highest POD mode retained
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Np Number of axially distributed azimuthal ring arrays of pressure sensors
QEKF Quadratic output parameter matrix for extended Kalman �lter
QQSE Quadratic parameter matrix for QSE
Xp Set of axial coordinates of azimuthal ring arrays of pressure sensors
� POD modal coe�cient
� Normalized correlation coe�cient
� Uncertainty in state equation
� Uncertainty in linear output equation
& Uncertainty in quadratic output equation
� POD eigenvalue
� Covariance matrix of uncertainty in linear output equation
� Covariance matrix of uncertainty in state equation
	 Covariance matrix of uncertainty in quadratic output equation
()i Imaginary part
()r Real part
()T Transpose
()� Complex conjugate transpose
(̂) Azimuthal Fourier transform
�() Extended Kalman �lter variables that address all azimuthal modes
~() Estimated value

I. Introduction

The work presented here is an integral module of a larger e�ort devoted to controlling a highly turbulent
axisymmetric jet. The objectives are two-fold: mitigation of the noise propagating to the far-�eld, or,
enhancement of the bulk mixing to hasten dissipation. In either case, the large-scale structures in the
region of the shear-layer near the end of the potential core must be manipulated.1,2 Over the past several
years, localized arc �lament plasma actuators (LAFPAs) have been developed in the Gas Dynamics and
Turbulence Lab (GDTL) at The Ohio State University. These actuators have demonstrated considerable
control authority on the said large-scale structures in open-loop control experiments.3{5 As in any control
system, the performance of the LAFPAs in open-loop is a function of the jet operating conditions, which
are subject to variations and uncertainties. Thus, a natural advancement towards practical implementation
is to incorporate feedback control, which may guarantee robustness in the presence of such uncertainties.

A simple feedback control strategy is model-free extremum-seeking control. Several variants of this idea
were developed and successfully implemented for the lab-scale jet in GDTL.6 However, since the dynamics
of the system are ignored in a model-free controller, the responsiveness of the control system is limited. For
improved responsiveness, a model-based controller is required that explicitly accounts for the dynamics. A
necessary �rst step in this approach is to model the dynamics of the system without any actuation.

The authors proposed a strategy for educing such a baseline dynamical model from experimental data for
the control system under consideration here.7 In that work, a well-established direct numerical simulation
(DNS) database8 was employed for model development and validation. Two di�erent models were created.
The �rst model employed empirical data from the database directly, and served as a benchmark. The second
model employed a reduced database that was created by mimicking the practical constraints that would be
posed by actual experiments. The simulated trajectories of both models were compared back to the original
database, and the �delity was deemed su�cient for the purposes of feedback control. It is worth mentioning
here that an assumption of incompressibility was shown to be valid for the control-oriented modeling of this
high-speed jet. In the present work, the �rst model would be employed, and thus it is brie
y described below
along with some background information.

An incompressible 
ow is uniquely determined by specifying the three components of velocity over the
entire 
ow domain. Considering compressibility e�ects, two additional thermodynamic variables are needed
for a full characterization of the 
ow. In control system terminology, this information constitutes the set of
states of the system. Since the dynamics of these states are governed by the in�nite-dimensional Navier-
Stokes equations, in�nitely many states are needed to fully specify the 
ow. Such a model is not useful
for practical control implementation, and one pursues model-reduction strategies instead. In developing a
reduced-order model (ROM), a change of coordinates is sought such that a small set of the new coordinates
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is required to approximately represent the original system. Proper Orthogonal Decomposition (POD) is the
method of choice for reducing the order of 
ow kinematics using empirical data.9{11 With this technique, the

ow variables are projected onto the subspace spanned by the orthonormal spatial POD basis, and the new
set of coordinates are the projection coe�cients, also known as POD modal coe�cients. Subsequently, one
typically employs Galerkin Projection (GP) to obtain the dynamics of the 
ow in these new coordinates.11

This route was adopted by the authors in developing the dynamical model under discussion.7

Feedback control of a system requires real-time observation of the state of the system, which is rarely
feasible. Instead, one typically must resort to estimating the state from a related output variable that can
be measured. To control an incompressible jet, its instantaneous velocity �eld must be available to the
controller. Real-time measurement of the velocity in a high-speed jet is not feasible. However, this velocity
�eld is strongly correlated with the pressure in the irrotational near-�eld of the jet.2,12{17 The latter can
be acquired in real-time relatively non-intrusively, and being a scalar variable it is also easier to measure.16

Thus, a more practical feedback control system would measure the pressure in the irrotational near-�eld in
real-time, and use it to estimate the velocity.

State estimation for closed-loop control is essentially a �ltering operation. As such, it may be divided
into the following categories.

(a) The zero-memory, or single-time, variant involves using the measured output at each instant to directly
estimate the state at that particular instant. This is the original form of stochastic estimation (SE), in
which the state-output relation is determined by curve-�tting.

(b) The limited-memory estimation employs a �nite backward-extended time history of outputs to approxi-
mate the state at any instant. This is the �nite impulse response (FIR) �lter, or the multi-time SE.

(c) In the in�nite-memory variant, the entire history of outputs measured up to a point in time is used for
the estimation of the state at that time; this is the in�nite impulse response (IIR) �lter. The linear
time-invariant �lter (LTIF) and Kalman �lter (KF) are popular members of this category.

Stochastic estimation was originally introduced to educe coherent structures in turbulent 
ows.18 Sub-
sequently, this technique has also been employed for estimating 
ow variables using minimal measurements
and a knowledge of the spatial correlations in the 
ow. The earliest implementations were of linear SE (LSE)
in the areas of isotropic turbulence,19 boundary layer,20 and axisymmetric jet shear layer.21 In these works,
the instantaneous velocity at various locations in the 
ow were approximated as separate linear functions
of the velocities measured at the same instant at only a few locations. In a parallel development, higher-
order SE (HOSE), including quadratic SE (QSE), were implemented for isotropic turbulence,22,23 and the
boundary layer.20 These studies generally concluded that, compared to LSE, the marginal improvements
in accuracy of estimation with HOSE did not warrant the added complications of computing the higher
statistical moments.

Numerous researchers have advanced the original technique of SE in several signi�cant directions. Instead
of using measurements of the spatially-sparse velocity �eld itself to estimate a spatially-denser velocity �eld,
measurements of other relevant 
ow quantities, viz. pressure and wall shear stress, have been used.13,24{31

This modi�cation typically reduces the complexity of experiments since time-resolved velocity measurements
are di�cult and intrusive. As the formal solution of Poisson’s equation indicates, the pressure �eld is related
to the global velocity �eld. This implies that pressure-velocity correlations are strong across greater distances
compared to velocity-velocity correlations. In the investigations where surface pressure was used in the
estimation, signi�cant improvements in accuracy were observed with QSE compared to LSE.24,25,29,30 For
the application to the turbulent boundary layer, Naguib et al.24 showed that this outcome indicates the
comparable relevance of the mean-turbulent and turbulent-turbulent pressure source terms. Murray and
Ukeiley25 posited that the higher order terms were necessary since the linear model becomes less accurate
when the measurement location is far away from the estimation location in the cavity 
ow con�guration.

Another development of SE is its coupling with POD to obtain a low-dimensional estimate of the 
ow
kinematics. In the classical version of the complementary technique, the velocity �eld obtained through LSE
was further �ltered using POD.32,33 In the modi�ed complementary SE, �rst the POD modal coe�cients of
the velocity �eld were estimated using a di�erent 
ow variable, say the pressure or wall shear stress, followed
by a POD reconstruction of the velocity �eld from these estimates.13,16,26,27,29,30,34 The concept was later
extended by decomposing both the measured �eld and the �eld to be estimated into their respective low-
dimensional spatial modes, be they Fourier and/or POD, before linking the corresponding modal coe�cients
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through stochastic estimation.16,35 The successive modi�cations were implemented to take advantage of
the implicit spatial �ltering and the increased correlations between the low-dimensional quantities, while
reducing computations.

The above discussion focused on the single-time version of SE. In single-time delay SE, a delayed version
of the measurement is used to estimate the �eld at any given time.20,24 This is useful where the time
scales of the measurement and estimate are alike, but a �xed pre-determined convective delay has to be
considered. On the other hand, multi-time SE uses measurements over a �nite moving window stretching
back in time for estimating the present state.29,36 This accounts for convection e�ects in the 
ow, while
also taking advantage of the temporal persistence of the large-scale structures being estimated. Durgesh and
Naughton36 demonstrated that although the accuracy of estimation �rst improves with the size of the time
window, the �delity actually degrades quite rapidly beyond a certain size. Thinking from the perspective
of polynomial curve-�tting, this may be explained by the over-determination of the �t of a high-degree
polynomial in the absence of enough independent realizations. In real-time estimation, the number of delays
in discrete time that can be considered is typically limited by hardware constraints.

Extending the concept of multi-time SE to the limit of theoretically in�nite time, one arrives at the
spectral variant of SE. This technique may be implemented for statistically stationary 
ows where the
correlation is computed in the temporal Fourier domain.16,28,33,35 Tinney et al.28 argued that the spectral
SE is especially useful whenever the spectral features of the measured and estimated variables are disparate,
and/or signi�cant time delays exist between them.28 In practical implementations, one is typically limited
to a �nite time window, but this has to be long enough for satisfactory resolution of the frequency content.
Moreover, its non-recursive nature and the necessity of computing the temporal Fourier transform, restrict
the spectral SE to o�ine estimation.

The above discussion indicates the need for a recursive �ltering technique that would address the dy-
namics of the 
ow while avoiding the hardware constraints of limited memory. This is the essence of an IIR
�lter like the Kalman �lter.37{39 However, unlike SE, the KF needs a model of the 
ow dynamics. Such a
model is precisely the ROM discussed above. One of the advantages of a model-based �lter over a stochastic
estimator is the inherent noise-�ltering properties of the former.40 In essence, by incorporating some pre-
dictive knowledge of the system, model-based �lters may separate the noise from the signal. On the other
hand, stochastic estimators typically pass through the un�ltered measurement noise to the state estimate.
A di�erent model-based technique is adjoint-based model predictive estimation.40 Typically, this strategy
is quite computation-intensive, and hence may not be as suitable for real-time control implementation as a
Kalman �lter.

Owing to the need for a reduced-order model of the 
ow dynamics, implementing a model-based state
estimation is a challenge. Two recent contributions in this �eld are documented in Ref. 41, 42, where
the used of Kalman �lters has been proposed to estimate the full state of a channel 
ow, given spatially-
resolved measurements of the two-component wall shear stress and wall pressure everywhere on the surfaces.
Previously, it had been shown that a theoretically complete information of the 
ow can be deduced from
this set of measurements.40 Such comprehensive measurements are rarely feasible in unbounded 
ows, and
one has to settle for far greater approximations. The present work proposes e�ective strategies in such a
challenging situation.

Picard and Delville13 were the �rst to use the irrotational near-�eld pressure to estimate the velocity
in the axisymmetric jet shear layer with LSE. They employed a linear array of microphones aligned with
the outer edge of the shear layer, and measured the axial and radial velocities simultaneously with a radial
hot-wire rake. Later, Kastner et al.31 used a similar microphone setup but measured the velocity using
2-component particle image velocimetry (PIV) in a meridional plane. They demonstrated that QSE sub-
stantially improves the estimation of the turbulent kinetic energy. Recently, Tinney et al.16 measured the
pressure on an azimuthal ring array of pressure transducers and used stereo-PIV on cross-stream slices, to
implement the spectral linear SE. The present work builds on these techniques, but with a focus on real-time
state estimation. The two main contributions of this article are the incorporation of a Kalman �lter for
in�nite-memory estimation, and a multi-point single-time QSE in the Fourier azimuthal domain, both in the
context of a jet shear layer.

A very useful (and, in fact, indispensable) tool for evaluating the various estimation strategies is a time-
and spatially-resolved 3D volumetric database of the axisymmetric jet. Freund8 has performed a direct
numerical simulation (DNS) of an unforced Mach 0.9 axisymmetric jet with Reynolds number based on jet
diameter (Re) of 3600. In spite of its low Reynolds number, most of its general characteristics, and especially
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Figure 1. Schematic of the axisymmetric jet indicating the modeling domain and the model-state estimation strategy.

the nature of its large-scale structures, were found to be similar to those of a Mach 0.9 jet with an Re of
640,000 in an experiment.43 This database was used to develop and validate the reduced-order modeling
strategy in Ref. 7. In the present article, the DNS database is used to assess various strategies for estimating
the state of the reduced-order model.

A brief review of the reduced-order model of the jet appears in Section II. The various strategies for
real-time state estimation are laid out in Section III. These strategies are assessed in simulation, and the
results are presented in Section IV. Concluding remarks are o�ered in Section V.

II. Modeling of Jet Dynamics: A Review

The 
ow domain of the axisymmetric jet is unbounded; the �rst step in model order reduction is to
choose a bounded region that is most pertinent for the control objectives at hand. An appropriate choice
is a cylindrical domain covering the shear layer in the vicinity of the end of the potential core, as shown in
Figure 1. A reduced-order dynamic model of the 
ow in this region was developed by the authors.7 Before
introducing the notation for this model, the relevant normalizations are established.

Let the jet exit velocity and nozzle exit diameter be Ujet and D, respectively. All velocities and linear
coordinates are implicitly normalized by these respective quantities. Time is normalized by the 
ow time
scale t+ := D=Ujet. Pressure is normalized by �jetU2

jet, where �jet is the jet exit density. With the kinematic
viscosity of the jet at exit denoted by �jet, the pertinent Reynolds number is Re := UjetD=�jet.

Employing cylindrical coordinates x := (x; r; �)T, the modeling domain is 
 := [X1; X2] � [0; R] � T.
Here, X1 and X2 denote the upstream and downstream bounds of the axial domain, R is the radial extent
of the measurement domain, and T is the circle group. The velocity vector is U : 
�R ! R3; U : (x; t) 7!
(Ux; Ur; U�)T. The statistical stationarity and axisymmetry of the jet are used to de�ne the mean velocity
�eld as U(x; r) := E

n
(1=2�)

R �
�� U(x; r; �; t)d�

o
. Henceforth, unless otherwise mentioned, the expectation

operator E(�) will signify the ensemble-average. Intuitively, U� � 0, and this is enforced explicitly in the
implementation. The 
uctuating velocity vector is de�ned as u(x; r; �; t) := U(x; r; �; t)�U(x; r), with the
three components being ux, ur, and u�, respectively.

The azimuthal direction is homogenous and periodic, so that any generic 
ow variable w(�) lends itself
to the azimuthal Fourier transform denoted by w(�) Fm��! ŵ(m); ŵ(m) := (1=2�)

R �
�� w(�)e�im�d�. Here

m is the azimuthal mode. The inverse Fourier transform will be denoted by ŵ(m) F���! w(�); w(�) =P1
m=�1 ŵ(m)eim�. With this, u is transformed as u(x; r; �; t) Fm��! û(x; r; t;m). The highest azimuthal

mode that can be resolved is limited by the azimuthal grid resolution. Moreover, typically the higher
azimuthal modes are dynamically insigni�cant. So, in the remaining paper, the azimuthal modes would be
taken in the truncated range m 2 [�Nm; Nm].

The 
uctuating velocity �eld u(�; t) belongs to the Hilbert space of square-integrable functions L2



equipped with inner product denoted by h� ; �i
. The goal of POD is, given an ensemble of data for u 2 L2

,

to �nd a subspace S � L2

 of �xed dimension Nn, such that the error Efjju� PSujjg is minimized.44 Here,

jj�jj is the induced norm on L2

, and PS is the orthogonal projection onto the subspace S. The details of

POD have been well-established elsewhere.9{11,44,45 For the purpose of the present discussion, it is su�cient
to state that in the presence of the homogenous azimuthal direction, the POD devolves into the following
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integral eigenvalue problem for each azimuthal mode m 2 [�Nm; Nm]:7Z X2

X1

Z R

0

E fû(x; r; t;m)û�(x0; r0; t;m)g �̂
(n)

(x0; r0;m)r0dr0dx0 = �(n)(m)�̂
(n)

(x; r;m);

(x; r) 2 [X1; X2]� [0; R]: (1)

The quantities � and �̂ are respectively the eigenvalue and eigenfunction for the nth POD mode. The
asterisk denotes the adjoint operation, which reduces to the complex-conjugate transpose for our purpose.

The POD mode number indexes the real non-negative eigenvalues in descending order. Then, the �rst
Nn eigenfunctions form the desired optimal basis for the subspace S. This allows the following approximate
change of coordinates for each azimuthal mode m:

û(x; r; t;m) �
NnX
n=1

�(n)(t;m)�̂
(n)

(x; r;m); (2)

where, the nth POD modal coe�cient is computed as

�(n)(t;m) =
Z X2

X1

Z R

0

�̂
(n)�

(x; r;m)û(x; r; t;m)rdrdx: (3)

The salient properties of the solutions of the POD problem have been discussed in depth elsewhere;11,44

the following properties are the most germane to the ensuing discussion:

�(n)(t;�m) = �(n)�(t;m); (4a)

E
n
�(n)(t;m)�(n0)�(t;m0)

o
= �(n)(m)�m;m0�n;n0 ; (4b)

where, � is the Kronecker delta.
The above discussion focused on the reduced-order modeling of the 
ow kinematics; the dynamics will

be considered next. The incompressible Navier-Stokes equation governing the 
ow can be formally written
as _U = N (U), where N is a vector �eld on L2


. The goal of reduced-order dynamics modeling is, given the
�nite-dimensional subspace S of L2


, to determine a dynamical system that evolves on S and approximates the
original dynamics in some sense.44 Galerkin Projection speci�es the new vector �eld on S as the orthogonal
projection of N onto S.

In Ref. 7, the authors showed that the application of GP to the axisymmetric jet results in the following
set of coupled quadratic ODEs that govern the evolution of the POD modal coe�cients

_�(n)(t;m) =
NnX
n0=1

fnn0(m)�(n0)(t;m);

+ (1� �m;0)
NmX

m0=m�Nm

NnX
n0;n00=1

gnn0n00(m;m0)�(n0)(t;m0)�(n00)(t;m�m0); n 2 [1; Nn]; m 2 [0; Nm]: (5)

The time-independent coe�cients f and g are determined from the POD eigenfunctions and the mean
velocity pro�le U, both of which are extracted from the empirical database; the details appear in Ref. 7.
It is important to note that although the POD modal coe�cients are in the complex domain, f and g are
real.7 Furthermore, Eqn. (5) was only stated for the non-negative azimuthal Fourier modes by appealing to
the Hermitian property in Eqn. (4a).

For model-based feedback control of the jet, Eqn. (5) represents the requisite reduced-order model of
the dynamics in state-space form. It is clear that the POD modal coe�cients constitute the state to be
estimated in real-time.

The feedback control will be implemented in discrete time, hence the continuous dynamics must be
converted to a sampled dynamical system. The appropriate sampling rate for the present implementation is
the rate at which data was saved in the DNS database; this would be denoted by Ts. The sampled version
of the state of the ROM is denoted by �(n)

k (m) � �(n)(t = kTs;m), where k 2 N, the set of natural numbers.
For each individual azimuthal mode, the state vector is de�ned as

�k(m) :=
h
�

(1)
k (m) � � � �

(Nn)
k (m)

iT
2 CNn ; m 2 [�Nm; Nm]: (6)
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III. Estimator Modeling

Two main approaches are taken for real-time estimation of the state of the jet shear layer in Eqn. (5). In
the �rst approach, single-time modi�ed complementary stochastic estimation is used to directly estimate the
POD modal coe�cients as a function of the pressure measured in the irrotational near-�eld. This procedure
does not utilize the known dynamics of the jet as captured by the model of Eqn. (5). Both linear and
quadratic SE are evaluated. Alternatively, a Kalman �lter is implemented that uses the derived ROM of the
jet, as well as a static output equation that expresses the near-�eld pressure as a function of the POD modal
coe�cients at any instant of time. Both linear and quadratic output equations are investigated.

It is not trivial to obtain the said output equation from �rst principles. One option is to extend the
incompressibility assumption made in the derivation of the ROM to argue for the approximate validity of
Poisson’s equation for pressure. Subsequently, one can explicitly solve this equation in real-time, as was
done in Ref. 46. However, a viable alternative is to use stochastic estimation to derive this equation from
empirical data. Note that this represents the inverse of the SE problem for single-time state estimation.

Consider Np azimuthal arrays of pressure transducers arranged at di�erent axial locations x 2 Xp,
as seen in Figure 1. Without loss of generality, it is assumed that all pressure sensors are located on
the surface of a virtual cone co-axial with the jet, so that their radial locations are a function of their
axial locations. The individual pressure signals from the sensors in the azimuthal arrays are denoted as
P : T�R� [1; Np]! R; P : (�; t; s) 7! R. In discrete time, the notation is Pk(�; s) � P (�; t = kTs; s), where

k 2 N. As before, the mean and 
uctuating pressure are de�ned as P (s) := E
n

(1=2�)
R �
�� Pk(�; s)d�

o
,

and pk(�; s) := Pk(�; t; s)� P (s), respectively. The azimuthal Fourier transform of p is de�ned in the usual
manner: pk(�; s) Fm��! p̂k(s;m). Since pk(�; s) is real, p̂k(s;m) is Hermitian in m. For each individual
azimuthal mode, the output vector is de�ned as

p̂k(m) :=
h
p̂k(1;m) � � � p̂k(Np;m)

iT
2 CNp ; m 2 [�Nm; Nm]: (7)

Before proceeding further, two remarks are in order; these will be cited repeatedly in the sequel.

Remark 1 Since the jet is axisymmetric, the statistics should be independent of the direction of measurement
of the azimuthal coordinate. The authors used this property to show that if a realization had a particular
value of a POD modal coe�cient, then one can extend the database by appending another realization where
the value of the POD modal coe�cient is its complex conjugate.7 The same reasoning was invoked to argue
that the two above realizations would have pressure signals that are also complex conjugates of each other.
Following this reasoning, one can conclude that any order of statistical moment involving these quantities
would be real, although the individual values are complex.

Remark 2 In the axisymmetric jet, the azimuthal direction is homogenous, and the stochastic estimation
would be performed in the azimuthal Fourier domain for reasons mentioned earlier. The following well-
established result is relevant in this discussion. Consider K arbitrary scalar �elds in the azimuthal Fourier
domain �̂1 to �̂K . Then, for azimuthal modes m1 to mK , their cumulative spectrum satis�es the relation

E
n
�̂1(m1)� � � � � �̂K(mK)

o
= �̂�1;��� ;�K (m1; � � � ;mK) �m1+���+mK ;0:

In the above, �̂�1;��� ;�K (m1; � � � ;mK) is the azimuthal Fourier transform of the corresponding cumulative
correlation in the physical domain. In particular, this means that �̂K(mK) is only correlated to certain
products of azimuthal modes of the remaining variables.

III.A. Stochastic Estimation

III.A.1. Linear Stochastic Estimation

The estimated version of any quantity w will be denoted by ~w. In the application of static LSE to the state
estimation problem, the following relationship is posited

~�(n)
k (m) = l(n)�

LSE(m)p̂k(m); n 2 [1; Nn]; m 2 [0; Nm]; (8)
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where, lLSE 2 CNp represents the family of LSE parameter vectors. It is to be noted that, following
Remark 2, the estimation problem for each azimuthal Fourier mode is decoupled.

For eachm�n pair, LSE proceeds by de�ning the mean square estimation error E
����~�(n)

k (m)� �(n)
k (m)

���2�,

which is quadratic in the respective parameter vector. The optimal parameter vector is located at the unique
global minimum of the error surface; the expression is

l(n)
LSE(m) = E fp̂k(m)p̂�k(m)g�1

E
n

p̂k(m)�(n)�
k (m)

o
; n 2 [1; Nn]; m 2 [0; Nm]: (9)

Following Remark 1, the estimation parameters can be concluded to be real.

III.A.2. Quadratic Stochastic Estimation

The most general quadratic function of the measured pressure for estimating any POD modal coe�cient is

~�(n)
k (m) = �m;0c

(n)�
QSE + l(n)�

QSE(m)p̂k(m) +
NmX

m0=m�Nm

p̂T
k (m0)Q(n)�

QSE(m0;m�m0)p̂k(m�m0);

n 2 [1; Nn]; m 2 [0; Nm]: (10)

Here, the family of constant, linear, and quadratic estimation parameters are respectively cQSE 2 C,
lQSE 2 CNp and QQSE 2 CNp�Np . Again, Remark 2 has been invoked to argue that the particular products
of azimuthal Fourier modes of pressure considered above are the only ones that have non-vanishing corre-
lations with the respective POD modal coe�cients under consideration. Note that the estimator requires
negative azimuthal Fourier modes of pressure, which can be retrieved from the Hermitian symmetry relation
p̂k(�m0) = p̂�k(m0).

A review of the literature did not reveal any exposition of the implementation of QSE for multi-point
measurements in a Fourier modal domain. Thus a generalized development is detailed in Appendix A. It is
only noted here that, as in the LSE above, Remark 1 may be invoked to argue that all estimation parameters
in Eqn. (10) are real.

III.B. Kalman Filtering

This work represents the �rst attempt at implementing a Kalman �lter for estimating the state of a jet
shear layer. To explore the applicability of such an approach, it was decided to begin with a linear system
model. The trivial solution of the ROM in Eqn. (5) is an equilibrium point of the system. Linearizing about
this point involves simply truncating the quadratic portion of the vector �eld. Note that this decouples the
dynamics of the individual azimuthal modes.

Previously it has been pointed out that the �lter needs to be implemented in a sampled-data system.
Then, the following linearized model is obtained with the standard zero-order hold assumption:47

�k+1(m) = F(m)�k(m) + �k(m); m 2 [0; Nm]: (11)

Here, F(m) = exp (Fc(m)Ts), with the element in the nth row and n0th column of the real square matrix
Fc(m) being fnn0(m) from Eqn. (5).47 As is common in Kalman �ltering, the uncertainties introduced by the
modeling approximations, including the linearization, are addressed by the family of additive noise sequences
� 2 CNn , which are assumed to be stationary independent random processes (white noise) with identically
zero mean and constant covariance matrices

E f�k(m)��k0(m
0)g = �(m)�k;k0�m;m0 : (12)

The matrices � are real following Remark 1. Only the non-negative azimuthal modes are addressed in
Eqn. (11) by appealing to Eqn. (4a).

III.B.1. Linear Kalman Filtering

The original KF was developed for a linear system.37 The model of the state dynamics has already been
linearized in Eqn. (11). The linear output equation speci�es the measured pressure as a function of the state
at every instant of time:

p̂k(m) = L�KF (m)�k(m) + �k(m); m 2 [0; Nm]; (13)
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where, the family of parameters are LKF 2 CNn�Np . The decoupling of the azimuthal Fourier modes
follows from Remark 2. The KF formalism models the measurement uncertainties by the family of additive
sequences � 2 CNp that are independent random processes (white noise) with identically zero means and
constant covariance matrices

E f�k(m)��k0(m
0)g = �(m)�k;k0�m;m0 : (14)

The matrices � are real from Remark 1. Additionally, it is commonplace to assume that the dynamic
uncertainties appearing in Eqn. (11) are not correlated with the measurement uncertainties; i.e.,

E f�k(m)��k0(m
0)g = 0: (15)

In this preliminary attempt at implementing a KF for jet shear layer state estimation in real-time,
the matrices LKF would be determined using static modi�ed complementary LSE discussed earlier in Sec-
tion III.A.1. Appealing to the orthogonality of the POD modal coe�cients from Eqn. (4b), the LSE yields

LKF (m) = E f�k(m)��k(m)g�1
E f�k(m)p̂�k(m)g =

266666664

E
n
�

(1)
k (m)p̂�k(m)

o
�(1)(m)

...
E
n
�

(Nn)
k (m)p̂�k(m)

o
�(Nn)(m)

377777775
; m 2 [0; Nm]: (16)

As before, Remark 1 is invoked to argue that the correlations appearing in the above expression are real, so
that the parameter matrices LKF are also real.

The notation and equations for the KF are adopted from Ref. 39. Denote the estimate of �k+1(m)
given all measurements p̂k0(m) for k0 2 [0; k] by ~�k+1=k(m). Similarly, �k=k�1(m) is the auto-covariance of
estimation error at k given the measurements up to k � 1, i.e.

�k=k�1(m) := E
h�
�k(m)� ~�k=k�1(m)

	�
�k(m)� ~�k=k�1(m)

	�i
:

Then, the following relations specify the Kalman Filter

Kk(m) = F(m)�k=k�1(m)LKF (m)
�
L�KF (m)�k=k�1(m)LKF (m) + �(m)

��1
; (17a)

~�k+1=k(m) = F(m)~�k=k�1(m) + Kk(m)
�
p̂k(m)� L�KF (m)~�k=k�1(m)

�
; (17b)

�k+1=k(m) = (F(m)�Kk(m)L�KF (m)) �k=k�1(m) (F(m)�Kk(m)L�KF (m))� + �(m)
+ Kk(m)�(m)K�k(m); (17c)

~�0=�1(m) = 0; (17d)

�0=�1(m) = diag
�

�(1)(m) � � � �(Nn)(m)
�
: (17e)

The �rst equation de�nes the time-varying Kalman gain, whereas the second and third equations recursively
propagate the state estimate and the state error covariance estimate, respectively. The fourth equation sets
the initial condition for the state estimate to the zero vector, in the absence of any other information. Then,
the initial condition for the error covariance in the �fth equation becomes equal to the covariance of the
state vector itself. The latter is known to be the diagonal matrix of POD eigenvalues.

The state dynamics and output equations (see Eqns. (11) and (13)) are time-invariant, but the state
model may not have a stable equilibrium. Then, Ref. 39 shows that the Kalman �lter will be asymptotically
stable if (a) the pairs [F(m); L�KF (m)] are completely detectable, and (b) the pairs [F(m); G1(m)] are
completely stabilizable for any G1(m) such that G1(m)G�1(m) = �(m). The stationary (or steady-state)
error-covariance matrices � are obtained as solutions of the following set of decoupled discrete-time algebraic
Riccati equations

�(m) = F(m)
h
�(m)� �(m)LKF (m)

�
L�KF (m)�(m)LKF (m) + �(m)

��1
L�KF (m)�(m)

i
F�(m) + �(m):

(18)
The stationary Kalman gain matrix is obtained by inserting � in Eqn. (17a). Use of stationary gains reduces
the original time-varying KF to the linear time-invariant �lter (LTIF). For this IIR �lter, the only expression
to be evaluated in real-time is Eqn. (17b), which is comparable in complexity to the LSE expression in
Eqn. (8).
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III.B.2. Extended Kalman Filtering

Instead of the linear output equation used in the KF above (see Eqn. (13)), one can posit the following set
of quadratic output equations that mirrors Eqn. (10)

p̂k(s;m) = �m;0c
�
EKF (s) + l�EKF (s;m)�k(m) +

NmX
m0=m�Nm

�T
k (m0)Q�EKF (s;m0;m�m0)�k(m�m0)

+ &k(s;m); s 2 [1; Np]; m 2 [0; Nm]: (19)

The speci�c coupling of the Fourier modes follows from Remark 2. The family of parameters are determined
using QSE (see Appendix A). The parameters are real following Remark 1, i.e. cEKF 2 R, lEKF 2 RNn ,
and QEKF 2 RNn�Nn . Also, the measurement uncertainties are modeled by the family of additive sequences
& 2 C that form the following vector

&k(m) :=
h
&k(1;m) � � � &k(Np;m)

iT
2 CNp ; m 2 [0; Nm]: (20)

These, in turn, are assumed to be independent random processes (white noise) with identically zero means
and constant covariance matrices:

E f&k(m)&�k0(m
0)g = 	(m)�k;k0�m;m0 : (21)

The matrices 	 are real from Remark 1. Additionally, it is commonplace to assume that the dynamic
uncertainties appearing in Eqn. (11) are not correlated with the measurement uncertainties, i.e.,

E f�k(m)&�k0(m
0)g = 0: (22)

The extended Kalman �lter (EKF) is an ad hoc modi�cation of the KF to address nonlinear systems.
For its implementation, one needs to know the Jacobian of the relevant vector �elds. Since the quadratic
nonlinearity in the complex domain appearing in Eqn. (19) does not satisfy the Cauchy-Riemann equations
for complex di�erentiability, the requisite Jacobian cannot be computed directly. The solution is to separate
the real and imaginary parts of the state and output equations. A brief outline of the procedure follows.

Let the real and imaginary components of any quantity be denoted by superscripts r and i, respec-
tively. Using the de�nitions appearing in Eqns. (6), (7), (11), and (20), specify the following real vectors
encompassing all azimuthal Fourier modes

��k :=
h
f�k(0)gT f�rk(1)gT � � � f�rk(Nm)gT

�
�ik(1)

	T � � �
�
�ik(Nm)

	T
iT
2 RNn(2Nm+1);

�pk :=
h
fp̂k(0)gT fp̂rk(1)gT � � � fp̂rk(Nm)gT

�
p̂ik(1)

	T � � �
�
p̂ik(Nm)

	T
iT
2 RNp(2Nm+1);

��k :=
h
f�k(0)gT f�rk(1)gT � � � f�rk(Nm)gT

�
�ik(1)

	T � � �
�
�ik(Nm)

	T
iT
2 RNn(2Nm+1);

�&k :=
h
f&k(0)gT f&rk(1)gT � � � f&rk(Nm)gT

�
&ik(1)

	T � � �
�
&ik(Nm)

	T
iT
2 RNp(2Nm+1):

Then the new set of state and output equations are

��k+1 = �F��k + ��k; (23a)

�pk = �h (��k) + �&k: (23b)

The new state transition matrix is a block-diagonal concatenation of the matrices appearing in Eqn. (11):

�F := diag
�h

F(0) F(1) � � � F(Nm) F(1) � � � F(Nm)
i�
:

The real quadratic nonlinearity in the output equation is denoted by the operator �h : RNn(2Nm+1) !
RNp(2Nm+1). It can be expressed in terms of the parameters appearing in Eqn. (19); the details are omitted
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Figure 2. Meridional half-slice of jet shear layer showing contour plot of mean axial velocity from the DNS database.
The cross-section of the cylindrical modeling domain is indicated. Additionally, the locations of the ring arrays of
pressure sensors are depicted.

due to space constraints. In its new form, the Jacobian can be obtained in a straightforward manner; using
the formalism from Section III.B.1, the speci�c notation is

�H
T

k :=
@�h
@ ��

�����
��=~��k=k�1

:

Recall that the covariances of the complex uncertainty sequences are real, and they are uncorrelated across
azimuthal modes. Then it can be shown that the real and imaginary parts of the uncertainty sequences each
contribute a half of the total covariance. Thus new zero-mean real uncertainty sequences satisfy the relations

E f��k���k0g = ���k;k0 = diag
�h

�(0) 0:5�(1) � � � 0:5�(Nm) 0:5�(1) � � � 0:5�(Nm)
i�
�k;k0 ;

E f�&k�&�k0g = �	�k;k0 = diag
�h

	(0) 0:5	(1) � � � 0:5	(Nm) 0:5	(1) � � � 0:5	(Nm)
i�
�k;k0 ;

E f��k�&�k0g = 0:

With this model setup, the equations for the extended Kalman �lter follow directly from Ref. 39. Ex-
tending the notation from Section III.B.1, one obtains

�Kk = �F��k=k�1
�Hk

�
�H

T

k
��k=k�1

�Hk + �	
��1

; (24a)

~��k+1=k = �F~��k=k�1 + �Kk

�
�pk � �h

�
~��k=k�1

��
; (24b)

��k+1=k =
�

�F� �Kk
�H

T

k

�
��k=k�1

�
�F� �Kk

�H
T

k

�T

+ �� + �Kk
�	 �K

T

k ; (24c)

~��0=�1 = 0; (24d)

��0=�1 = diag
�

�(1)(0) � � � �(Nn)(0) 0:5�(1)(1) � � � 0:5�(Nn)(1) � � � 0:5�(1)(Nm) � � � 0:5�(Nn)(Nm)

0:5�(1)(1) � � � 0:5�(Nn)(1) � � � 0:5�(1)(Nm) � � � 0:5�(Nn)(Nm)
�
: (24e)

The form of the RHS for the last equation follows from the argument made for obtaining the uncertainty
covariances above. One notes that the EKF relations are no longer decoupled for the various azimuthal
modes. Moreover, the linearized dynamics have become time-varying owing to the time-dependence of �H.

IV. Results

The details of the direct numerical simulation database are available in Ref. 8; here only the the most
pertinent aspects are highlighted. The computational data is saved at 2316 consecutive time instants with
uniform separation of 0.071 (in t+ coordinates). A contour plot of the mean axial velocity is shown in
Figure 2. A POD-GP reduced-order model of the indicated domain, covering the end of the potential core,
has been previously developed by the authors.7 The ROM has 30-states, viz. POD modes from 1 through 5
and azimuthal Fourier modes from 0 to 5; thus Nn = Nm = 5.
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Figure 3. Diagonal terms of state uncertainty covariance normalized by the respective POD eigenvalues.

For practical implementation, the pressure sensors should be placed upstream of the modeling domain,
closer to the nozzle exit plane. This would introduce signi�cant lags between the model state dynamics
and the measured pressure. In future, the strategies developed here will be extended to the con�guration
of upstream pressure sensing. However, to avoid the attendant complications, this preliminary attempt at
real-time state estimation proceeded by assuming that the pressure measurements are available at some or
all of the azimuthal ring arrays of sensors shown in Figure 2 (refer also to Figure 1). The four rings are on
the surface of a virtual cone with half-angle 11o that parallels the outer edge of the shear layer; they are
uniformly spaced between x = 7 and 10, with the radius of the most upstream ring being r = 1:58. The
cylindrical computational grid has 80 uniformly spaced azimuthal grid-points; virtual sensors were placed at
each of these points.

The set of snapshots was halved into two mutually exclusive random sets. The various estimation models
discussed in Section III were built using the statistics educed from the �rst set (the training set). The
�delity of estimation was then tested for each of the strategies using the second set (the validation set).
This division of training and validation datasets is ideal for stochastic estimation. However, the IIR �lters
require the entire time-history of the output, so that the distinction is not as well-de�ned. The IIR �lter
models were developed solely from the training set, and are simulated using the time-resolved pressure from
the entire database. Finally, the samples corresponding to the validation dataset were selected to evaluate
the performance.

The family of state transition matrices F have been determined in Ref. 7. One of the advantages of
having the DNS database is that the modeling uncertainty sequences � are directly available, so that their
covariances � can also be ascertained (see Eqn. (12) for the de�nition). The diagonal terms of these
covariance matrices are shown in Figure 3; the o�-diagonal terms were found to be substantially smaller by
comparison.

The next focus is on the linear output relation for the Kalman �lter appearing in Eqn. (13). Recall from
Eqn. (16) that the coe�cients LKF are to be determined by an application of LSE to the empirical data.
This warrants a study of the following set of normalized cross-correlation coe�cients

�(n)
�p (s;m) :=

E
n
�

(n)
k (m)p̂�k(s;m)

o
r

�(n)(m)E
n
jp̂k(s;m)j2

o ; (s;m; n) 2 [1; Np]� [0; Nm]� [1; Nn]: (25)

Here, Eqn. (4b) is invoked to make the substitution �(n)(m) = E

�����(n)
k (m)

���2�. Note that the cross-

correlation coe�cients are real following Remark 1. The above statistics are also relevant to the direct LSE
model (see Eqns. (8) and (9)), which is a dual of the linear KF output relation.

The convergence of the above statistics was assessed for the DNS database. In particular, the correlation
coe�cients were evaluated from the training dataset, as well as from the full database, and the di�erences
were found to be insigni�cant. In Figure 4, the absolute values of ��p are plotted. This should be analyzed
from two perspectives. In determining the accuracy of the KF output relation for pressure at a particular
axial location and azimuthal mode (i.e., �xed s and m), one is seeking high correlation levels for any POD
mode n. From this perspective, it is easy to determine that the ring array at xs = 8 is optimal. However, the
ultimate goal is to observe the POD modal coe�cients from the pressure. For observability, one is seeking

12 of 22

American Institute of Aeronautics and Astronautics



(a) (b)

(c) (d)

Figure 4. Second-order pressure-POD mode correlations for sensor ring array at axial locations of (a) 7, (b) 8, (c) 9,
and (d) 10.

high correlation levels for all POD modes. From this perspective, one �nds that no single axial location of
pressure sensing can be used exclusively for direct LSE, and one may need measurements at multiple axial
locations. Since the linear KF uses an approximate knowledge of the dynamic coupling of the di�erent POD
modes in addition to the static output relation, it may be expected to perform better.

A similar study can be made of the third order moments involved in the QSE that determines the
quadratic output equation for the extended Kalman �lter in Eqn. (19). The relevant set of normalized
correlation coe�cients is

�(nn0)
��p (s;m;m0) :=

E
n
�

(n)
k (m0)�(n0)

k (m�m0)p̂�k(s;m)
o

r
�(n)(m0)�(n0)(m�m0)E

n
jp̂k(s;m)j2

o ;
(s;m; n; n0) 2 [1; Np]� [0; Nm]� [1; Nn]� [1; Nn]; m0 2 [m�Nm; Nm]: (26)

These statistics are real following Remark 1. In Figure 5, the absolute values of ���p are depicted for some
representative combinations. These third order moments are not insigni�cant compared to the second order
moments in Figure 4. Thus, a quadratic model can be expected to be signi�cantly more accurate than a
linear one.

The accuracies of the linear and quadratic output models can be assessed from their respective output
uncertainty covariance matrices � and 	; see Eqns. (14) and (21). The diagonal elements of these matrices
(indicated by the repeated subscripts) are shown in Figure 6, normalized by the variances of the respective
pressure signals. The o�-diagonal elements were generally smaller. For converged statistics, use of the LSE in
determining the relevant parameter vectors LKF , along with the orthogonality of the POD modal coe�cients
seen in Eqn. (4b), leads to the following simpli�cation

�ss(m)

E
n
jp̂k(s;m)j2

o = 1�
NnX
n=1

����(n)
�p (s;m)

���2 :
Referring to Figure 6, several remarks can be made:
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(a) (b)

(c) (d)

Figure 5. Selected third-order pressure-POD mode correlations for the ring array located at xs = 8, and n = n0. The
POD modes depicted are (a) 1, (b) 2, (c) 3, and (d) 4.

� Since the �lter models should be built exclusively from the training set, both the �t parameters as well
as the covariances were evaluated on the same training set. However, similar values of covariances were
also obtained when the entire database was used for validation, again attesting to the convergence of
relevant statistics.

� For the speci�ed 30-state model, the linear output equation had 5 parameters (corresponding to the 5
POD modes) to �t the empirical data for each azimuthal mode m and each ring array location indexed
by s. On the other hand, the quadratic output equation had anywhere from 85 (for m = 5) to 145 (for
m = 0) parameters to �t the same empirical data for each m� s combination (see Appendix A).

� The substantial increase of accuracy in going from a linear to a quadratic model indicates that third
order statistical moments are indeed signi�cant.

� As expected, use of the ring arrays in the middle of the axial zone considered demonstrate greater
accuracy compared to the rings at the upstream and downstream extremes.

Two di�erent con�gurations of pressure sensor ring arrays are evaluated. For practical implementation,
a single ring array is obviously preferable. Thus, for reasons discussed above, the \solo" performance of the
ring array at xs = 8 is assessed. This con�guration is denoted by Xp = f8g. At the other extreme, all four
ring arrays were also considered in tandem to assess the limits of the estimation strategies presented herein.
This con�guration is Xp = f7; 8; 9; 10g.

The state transition matrices F(m) for the educed ROM in Eqn. (11) were found to be unstable. However,
the detectability and stabilizability criteria for the linear KF mentioned in Section III.B.1 were satis�ed in
both sensor con�gurations discussed above; this guarantees �lter stability. The trajectories of selected �lter
gains for Xp = f8g are shown in Figure 7. For the KF, the gains reach the stationary values predicted by
Eqns. (18) and (17a) within 25 
ow time steps. Since the EKF model is time-varying, its gains never reach
steady-state. However, the gains are seen to be within tight bounds in this simulation after about 20 
ow
time steps.

The preceding discussion has established the characteristics of the models for KF and EKF. Owing to
their duality, the characteristics of the LSE and QSE models expressed in Eqns. (8) and (10) have also been
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(a) (b)

Figure 6. Diagonal terms of output uncertainty covariance matrices normalized by the respective pressure variances
for (a) linear output equation, and (b) quadratic output equation.

(a) (b)

Figure 7. Trajectories of selected gains in the Xp = f8g con�guration. (a) KF gains from p̂(xs = 8;m) to �(1)(m). (b)

EKF gains from p̂r(xs = 8;m) to �(1)r(m). The discrete time step has been scaled to the 
ow time step t+.

described in the process. To gain an understanding of the behavior of these estimators, the trajectories of
two states estimated in the Xp = f8g con�guration are shown in Figure 8. Based on the results presented in
Figure 8, the following remarks are in order.

� The KF and EKF demonstrate similar performance, in spite of the order-of-magnitude increase in
computational complexity in the latter.

� There are substantial initial inaccuracies in the KF and EKF for m = 0, although both demonstrate
much improvement in �delity at later times. On the other hand, for m = 1, they perform quite
satisfactorily from the beginning.

� The LSE essentially gives a null result for m = 0, but its performance is much improved for m = 1.
This could have been predicted from the low value of �(1)

�p (xs = 8; 0) seen in Figure 4. This makes the
superior performance of the KF all the more remarkable in this case. The improved �delity of LSE for
the m = 1 case could also have been predicted from the higher value of �(1)

�p (xs = 8; 1).

� Compared to LSE, use of QSE signi�cantly improves the estimation performance in the instance of
m = 0, with an attendant increase in computational cost. However, in the m = 1 case, QSE does not
demonstrate any obvious improvement over LSE.

While the above analysis gave some insight, they are somewhat anecdotal since only two states were
considered. To quantitatively compare the overall performance of the various state estimators, the following
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(a)

(b)

Figure 8. Estimated trajectories of selected states with various strategies in the Xp = f8g con�guration. The discrete

time step has been scaled to the 
ow time step t+.

family of metrics are established

ê(n)
� (m) :=

E

����~�(n)
k=k�1(m)� �(n)

k (m)
���2�s

E

�����(n)
k (m)

���2�E����~�(n)
k=k�1(m)

���2� : (27)

The notation is aligned with the Kalman �lter, but simply substituting ~�k=k�1 with ~�k makes it suitable
for assessing the performance of the stochastic estimators too. Note that 0 � ê� < 1. A value close to
0 indicates higher �delity. The metric will have a moderate value if the instantaneous estimation is not
accurate, but the variance of the state � is well-replicated by the estimate ~�. On the other hand, ê� will
become large whenever the variance of the estimate is signi�cantly disparate from that of the state. The
latter aspect is particularly useful for detecting the poor performance of LSE as seen in Figure 8(a).

The estimation error metric is evaluated using the validation dataset for the two sensing con�gurations
and the four estimation techniques discussed so far. The results are presented in Figure 9. Several conclusions
can be drawn from this �gure.

� In the single ring con�guration, the KF strategy demonstrates the least overall estimation error. For the
m = 4 case, its performance is poorer than the EKF. Both the single-time stochastic estimators perform
poorly. LSE alone is of course not a viable option for state-estimation, as succinctly demonstrated by
the need for the logarithmic ordinate scale.

� When all four sensor ring arrays are used, the QSE represents the best strategy. The LSE demonstrates
a marked improvement over its performance in Xp = f8g case. In fact, the KF and EKF have the least
signi�cant improvement compared to their respective performances in the single ring con�guration.
The KF again outperforms the EKF, and both show better accuracy compared to LSE. Given the
experimental limitations, one would obviously prefer KF and EKF over SE.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. The POD modal coe�cient estimation error metrics using (a) & (b) Linear Kalman �lter, (c) & (d) Extended
Kalman �lter, (e) & (f) LSE, and (g) & (h) QSE. In (a), (c), (e), & (g) Xp = f8g, and in (b), (d), (f), & (h) Xp = f7; 8; 9; 10g.
Note that the ordinate scales are di�erent.
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� In both con�gurations, QSE represents a very signi�cant improvement on the LSE strategy. This
attests to the nonlinearity of the pressure-velocity interaction in the jet near-�eld.

� The EKF generally demonstrates a performance degradation over the much simpler KF. This shows
that the increased complexity of the EKF makes it di�cult to tune. A di�erent choice of uncertainty
covariance parametrization may have improved the estimation, but the correct value to adopt is not
obvious.

The steady-state Kalman gains given by Eqns. (18) and (17a) can be computed a priori, and used in the
linear time-invariant �lter (LTIF). Compared to the time-varying KF, the discrepancy in performance is not
expected to persist for long beyond 25 
ow time steps from initiation (see Figure 7(a), and the discussion
thereof). As mentioned before, the LTIF is similar in complexity to the single-time LSE model, and thus
it is an attractive estimation strategy provided that its performance is comparable to the KF within the
transient period. This was indeed veri�ed to be true for both pressure sensor con�gurations considered; the
results are not shown. The very signi�cant accuracy improvement in going from LSE or QSE to KF has
been remarked previously.

V. Conclusions

In real-time state estimation for feedback 
ow control, as in any engineering �eld, an essential dilemma is
between simplicity and performance. Single-time and multi-time linear and quadratic stochastic estimators
have long been the preferred strategy due to their simplicity. At heart, these are essentially curve-�tting
techniques that do not exploit any knowledge of the 
ow dynamics, if available. A major shortcoming of
such estimators is that they pass measurement noise un�ltered to the state estimate. Moreover, some 
ow
states may not have a direct static relation with the measured output, but may only be observable indirectly
through coupled dynamics.

In certain 
ow systems, a time-invariant linearized model of the dynamics may be at hand, along with
an approximate measure of the modeling and measurement uncertainties. In this case, a time-invariant
in�nite-memory �lter may yield an improved estimation with minimal increase in runtime complexity over
the linear stochastic estimator. The two shortcomings of stochastic estimators mentioned above may both be
mitigated by this technique. The in�nite memory of the �lter is the result of a recursive update strategy for
the state estimate. A time-invariant �lter may su�er from large transients in state estimation error, which
may be addressed by a linear time-varying Kalman �lter. The major increase in complexity in the latter is
due to the necessity of inverting a matrix of the size of the measurement vector at every time step.

If a nonlinear state and/or output equation is available, then an ad hoc extension of the linear Kalman
�lter may be implemented. Such an extended Kalman �lter is necessarily sub-optimal; moreover the in-
creasing complexity may even lead to a degradation of �delity if the �lter is not tuned exactly. The large
amount of computations necessary at every time step may overwhelm hardware capabilities. Finally, unlike
the linear �lter, closed-form stability and performance analyses are typically not possible for the nonlinear
�lter.

In this article, all the above estimation strategies were implemented and assessed using a well-established
direct numerical simulation database of a high-speed axisymmetric jet. The authors have recently developed
a reduced-order model of the shear layer of this jet using Proper Orthogonal Decomposition and Galerkin
Projection. To cover the important region of the end of the potential core, the axial extent of the modeling
domain was between 7 and 10 jet diameters downstream of the nozzle exit. The pressure in the irrotational
near-�eld has long been surmised to be an ideal measurement for estimating the state of the shear layer in
real-time. For practical implementation, the pressure sensors should be close to the nozzle exit, upstream of
the modeling domain. However, to avoid modeling complications arising out of the delays involved thereof,
this preliminary assessment investigated the following two sensor con�gurations. The �rst one considered
using a single azimuthal ring array of sensors, and the optimal location for this was found to be at 8 jet
diameters downstream. To explore the limits of the estimation strategies, the other con�guration had four
such arrays distributed uniformly over the axial domain of the model, outside the shear layer.

For the single ring con�guration, single-time linear stochastic estimation was found to be quite unsuitable,
since some states of the model are not linearly related to this pressure signal. The quadratic stochastic
estimation yielded signi�cant improvements in accuracy, bearing testimony to the essential nonlinearity in
the pressure-velocity coupling. The linear time-invariant �lter and linear time-varying Kalman �lters were
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demonstrated to have similar �delity, and both out-performed the quadratic stochastic estimator by large
margins. This shows the distinct bene�t to be accrued in moving to a dynamic model-based estimation
strategy. It is to be emphasized that the linear time-invariant �lter is similar in complexity to the linear
stochastic estimator, and considerably less resource-intensive than the quadratic stochastic estimator. The
extended Kalman �lter is signi�cantly more complicated, but it actually under-performed the linear �lters,
possibly owing to inexact tuning.

When all four sensor ring arrays were used, the linear stochastic estimator showed a marked improve-
ment; however, it still performed worse than the other strategies. The model-based �lters showed meagre
gains in �delity. The single-time quadratic stochastic estimator demonstrated the best performance in this
con�guration. This re
ects the improved curve-�tting that is possible when a large number of �t-parameters
are available, and higher order statistical moments are not insigni�cant. One of the contributions of this
article is the exposition of the multi-point quadratic stochastic estimator algorithm in the Fourier domain.

The work presented herein may be extended in several important ways. At an earlier stage, the authors
have demonstrated the improvement in o�ine estimation performance accrued by adding an axially extended
linear array of pressure sensors to an azimuthal ring array. Such a sensor con�guration is much more feasible
than requiring multiple ring arrays of sensors. This con�guration will be investigated for e�cacy in a real-
time estimation application involving a model-based �lter. To bring the strategies developed herein to bear
on a practical implementation, the sensor ring array must also be moved upstream. This would make the
estimation more reliant on the dynamic model, so that one may have to resort to the more accurate quadratic
reduced-order model developed originally in Ref. 7. Finally, the estimation strategies developed here address
a model of the unforced jet. The applicability of these strategies in the case of a forced jet will be investigated
in our future work.
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Appendix A. Implementing QSE in a Fourier Domain

Consider a 
ow with a homogenous direction. Suppose that a family ofN distinct �elds are simultaneously
measured over respective grids that are �ne enough in the homogenous direction to resolve all Fourier modes
in the range m 2 [�M;M ]. The measured �elds will be denoted by ẑk(s;m), where k refers to the sample
index for the sampled-data system, s is the index running from 1 to N that identi�es a particular �eld in
the family, and m refers to the Fourier mode. Consider another �eld ŵk(m) that is to be estimated from
the measured �elds in the same Fourier domain. All �elds are assumed to be zero-mean. The extension to
estimation in the continuous time domain is trivial.

The most general multi-point single-time quadratic estimator of ŵk is

~̂wk(m) = �m;0c
�
QSE +

NX
s=1

l�QSE(s;m)ẑk(s;m)

+
MX

m0=m�M

NX
s;s0=1

q�QSE(s0; s;m0;m�m0)ẑk(s;m0)ẑk(s0;m�m0); m 2 [0;M ]:

Here, Remark 2 is invoked to argue that the particular products of Fourier modes considered above are
the only ones that have non-vanishing correlations with ŵk(m). The expectations of all linear terms are
zero. The expectations of all quadratic terms are also zero, except for Efẑk(s; 0)ẑk(s0; 0)g; the constant term
ensures that Ef ~̂wk(m)g = 0; for all m. The complex conjugations, and the related inversion in the order of
s and s0 in qQSE , are for ease of matrix manipulation.

For consistency of the above model, the quadratic estimation parameters necessarily satisfy the symmetry
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condition qQSE(s; s0;m0;m00) = qQSE(s0; s;m00;m0). This results in a redundancy, which is removed thus

~̂wk(m) = �m;0c
�
QSE +

NX
s=1

l�QSE(s;m)ẑk(s;m) +
bm=2cX

m0=m�M

NX
s=1

�!q �QSE(s; s;m0;m�m0)ẑk(s;m0)ẑk(s;m�m0)

+
MX

m0=m�M

N�1X
s=1

NX
s0=s+1

�!q �QSE(s0; s;m0;m�m0)ẑk(s;m0)ẑk(s0;m�m0); m 2 [0;M ]:

Here b�c indicates the floor function. For later reference, the ceiling function is d�e. The new quadratic
estimation parameters �!q QSE form a family of lower triangular matrices for any �xed Fourier mode pair.
The entries of �!q QSE that do not appear in the above expression are understood to be identically zero. The
original quadratic parameters can be retrieved as

qQSE(s; s0;m0;m�m0) =

( �!q QSE(s; s0;m0;m�m0); if m is even; s = s0; AND m0 = m=2;
f�!q QSE(s; s0;m0;m�m0) +�!q QSE(s0; s;m�m0;m0)g =2; otherwise:

The implementation proceeds by de�ning the following regressor for estimating ŵk(m):

 �
ẑ k(m) :=

�
ẑk(1;m); � � � ; ẑk(N;m);
ẑk(1;m�M)ẑk(1;M); � � � ; ẑk(1; bm=2c)ẑk(1; dm=2e);

� � � ; ẑk(N;m�M)ẑk(N;M); � � � ; ẑk(N; bm=2c)ẑk(N; dm=2e);
ẑk(1;m�M)ẑk(2;M); � � � ; ẑk(1;M)ẑk(2;m�M);

� � � ; ẑk(1;m�M)ẑk(N;M); � � � ; ẑk(1;M)ẑk(N;m�M);
ẑk(2;m�M)ẑk(3;M); � � � ; ẑk(2;M)ẑk(3;m�M);

� � � ; ẑk(2;m�M)ẑk(N;M); � � � ; ẑk(2;M)ẑk(N;m�M);

� � � ; ẑk(N � 1;m�M)ẑk(N;M); � � � ; ẑk(N � 1;M)ẑk(N;m�M)
�T
; m 2 [0;M ];

�!
ẑ k(m) :=

8><>:
�
1
n �

ẑ k(0)
oT
�T

; if m = 0;
 �
ẑ k(m); if m 2 [1;M ]:

The corresponding parameter vector is formed by collecting the matching terms from the estimator model

 �
QQSE(m) :=

�
lQSE(1;m); � � � ; lQSE(N;m);

�!q QSE(1; 1;m�M;M); � � � ; �!q QSE(1; 1; bm=2c; dm=2e);
� � � ; �!q QSE(N;N;m�M;M); � � � ; �!q QSE(N;N; bm=2c; dm=2e);

�!q QSE(2; 1;m�M;M); � � � ; �!q QSE(2; 1;M;m�M);
� � � ; �!q QSE(N; 1;m�M;M); � � � ; �!q QSE(N; 1;M;m�M);

�!q QSE(3; 2;m�M;M); � � � ; �!q QSE(3; 2;M;m�M);
� � � ; �!q QSE(N; 2;m�M;M); � � � ; �!q QSE(N; 2;M;m�M);

� � � ; �!q QSE(N;N � 1;m�M;M); � � � ; �!q QSE(N;N � 1;M;m�M)
�T

; m 2 [0;M ];

�!
QQSE(m) :=

8><>:
�
cQSE

n �
QQSE(0)

oT
�T

; if m = 0;
 �
QQSE(m); if m 2 [1;M ]:

With the above de�nitions, the QSE problem is re-written in a form that emphasizes its linearity w.r.t.
the estimation parameters:

~̂wk(m) =
�!
Q�QSE(m)

�!
ẑ k(m); m 2 [0;M ]:
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Then, the requirement of minimizing the mean square estimation error leads to the solution

�!
QQSE(m) = E

n�!
ẑ k(m)

�!
ẑ �k(m)

o�1

E
n�!

ẑ k(m)ŵ�k(m)
o
; m 2 [0;M ]:

As a �nal note, the number of estimation parameters is N + (M �dm=2e+ 1)N + (2M �m+ 1)N(N � 1)=2.
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