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Localized arc filament plasma actuators have demonstrated significant potential in controlling high-speed and

high-Reynolds-number axisymmetric jets in an open loop. As a first step in incorporating feedback for this control

system, an empirical reduced-ordermodel of the essential flowdynamics in the region surrounding the potential core

of the unforced jet has been developed. An existing direct numerical simulation database, with a configuration

similar to previous experiments, formed the testbed for this modeling phase. Real-time flow state estimation is a

challenging problem in the implementation of feedback control for such complex flows of practical interest. Sensing

the pressure in the irrotational near field close to the nozzle exit offers a suitable nonintrusive measurement that is

driven by the jet’s shear layer dynamics. Owing to convection, such a configuration naturally results in themeasured

pressure having a time lead compared with the state of the reduced-order model, which is very useful for feedback

control. The sensing configuration used consists of an azimuthal ring array along with a linear array. Several

estimation strategies are implemented and assessed using the numerical database. The time-invariant version of the

linear Kalman filter is shown to have similar or better accuracy compared with a quadratic stochastic estimator,

which in turn significantly outperforms a linear stochastic estimator. The filter is only as computationally complex as

the linear stochastic estimator, thereby making it the strategy of choice.

Nomenclature

E� � = expectation operator
F = linear state-transition matrix in discrete-time domain
k = index number in discrete time
m = azimuthal Fourier mode number
n = proper orthogonal decomposition mode index
Nc = number of discrete-time samples by which state

estimate leads actual state
Nm = highest azimuthal Fourier mode retained
Nn = highest proper orthogonal decomposition mode

retained
Np = number of axially distributed pressure sensors in a

particular type of array (ring or linear)
p = fluctuating pressure
r = radial coordinate
s = pressure array index
Ts = time interval between samples in discrete-time

system implementation
x = axial coordinate with origin at nozzle exit
� = proper orthogonal decomposition modal coefficient
� = Kronecker delta
� = normalized correlation coefficient
� = figure of merit for estimation fidelity of proper

orthogonal decomposition modal coefficients
� = azimuthal coordinate
� = proper orthogonal decomposition eigenvalue
� = covariance matrix of measurement model uncertainty
� = measurement model uncertainty

Xp = set of axial coordinates of pressure sensors in
particular type of array (ring or linear)

� = covariance matrix of dynamic model uncertainty
 = dynamic model uncertainty
�� � = variant of azimuthal Fourier modal quantity that

encompasses all modes
^� � = azimuthal Fourier transform
~� �knk0 = estimated value at k given measurement at k0

~� �k=k0 = estimated value at k given all measurements up to
and including k0

Subscripts

EKF = quantity related to extended Kalman filter
KF = quantity related to Kalman filter
LSE = quantity related to linear stochastic estimation
LTIF = quantity related to linear time-invariant filter
QSE = quantity related to quadratic stochastic estimation

Superscripts

a = quantity related to pressure measured on azimuthal
ring array of sensors

i = imaginary part of complex quantity
l = quantity related to pressure measured on linear array

of sensors
r = real part of complex quantity
T = real transpose
* = complex-conjugate transpose

I. Introduction

T HE work presented here is an integral module of a larger effort
devoted to controlling highly turbulent high-speed axisym-

metric jets. The objective ismitigation of the noise propagating to the
far field or enhancement of the bulk mixing to hasten dissipation. In
either case, the large-scale structures in the shear layer of the jet must
be manipulated [1,2]. Over the past several years, localized arc
filament plasma actuators (LAFPAs) have been developed in the Gas
Dynamics and Turbulence Laboratory (GDTL) at Ohio State
University. These actuators have demonstrated considerable control
authority on the said large-scale structures in open-loop control
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experiments [3–5]. As in any control system, the performance of the
LAFPAs in an open loop is a function of the jet operating conditions,
which are subject to variations and uncertainties. Thus, a natural
advancement toward practical implementation is to incorporate
feedback control, whichmay guarantee robustness in the presence of
such uncertainties.

A simple feedback control strategy is model-free extremum-
seeking control. Several variants of this idea were developed and
successfully implemented at GDTL [6]. However, since the dy-
namics of the system are ignored in a model-free controller, the
responsiveness of the control system is limited. For improved
responsiveness, a model-based controller is required that explicitly
accounts for the dynamics. Anecessaryfirst step in this approach is to
model the dynamics of the system without any actuation.

In [7], the authors proposed a strategy for educing such an
unforced dynamical model from experimental data for the control
system under consideration. In that work, a well-established direct
numerical simulation (DNS) database [8] was employed for model
development and validation. Two different models were created. The
first model employed empirical data from the database directly, and it
served as a benchmark. The second model employed a reduced
database that was created by mimicking the practical constraints that
would be posed by actual experiments. The simulated trajectories of
both models were compared back to the original database, and the
fidelity was deemed sufficient for the purposes of feedback control.
In the presentwork, thefirstmodelwould be employed; thus, it is will
be briefly described along with some background information.

An incompressible flow is uniquely determined by specifying the
three components of velocity over the entire flow domain. Con-
sidering compressibility effects, two additional thermodynamic
variables (e.g., density and pressure) are needed for a full character-
ization of the flow. In control system terminology, this information
constitutes the set of states of the system. Since the dynamics of these
states are governed by the infinite-dimensional Navier–Stokes
equations, infinitely many states are needed to fully specify the flow.
Such a model is not useful for practical control implementation, and
one pursues model-reduction strategies instead. In developing a
reduced-order model (ROM), a change of coordinates is sought such
that a small set of the new coordinates is required to approximately
represent the original system. Proper orthogonal decomposition
(POD) is the method of choice for reducing the order of flow
kinematics using empirical data [9–11].With this technique, the flow
variables are projected onto the subspace spanned by the ortho-
normal spatial POD basis, and the new set of coordinates are the
projection coefficients, also known as POD modal coefficients.
Subsequently, one typically employs Galerkin projection (GP) to
obtain the dynamics of the flow in these new coordinates [11]. This
route was adopted in [7] to develop the dynamical model under
discussion.

The ultimate goal of the present work is to incorporate feedback
control for the plasma-actuated high-Reynolds-number jet. This jet
has not been fully replicated in numerical simulations, although
significant advances have been reported [12]. As such, the final
empirical database for its reduced-order modeling must be experi-
mental data, although the modeling strategy is being evaluated here
using a numerical simulation database of appreciable fidelity. The
database required for incorporating compressibility effects in the
model has to be built by simultaneously acquiring the velocity and
two other thermodynamic quantities over a domain of feasible size.
To date, experimentalists have not realized this goal. These practical
constraints impose the incompressibility assumption on the present
ROM. The inaccuracies incurred by ignoring compressibility effects
for the ROM under consideration have been shown to be within
acceptable bounds [7].

Feedback control of a system requires real-time observation of the
state of the system, which is rarely feasible. Instead, one typically
must resort to estimating the state from a related output variable that
can be measured. To control an incompressible jet, its instantaneous
velocity field must be available to the controller. Real-time measure-
ment of the velocity in a high-speed jet is not feasible. However, this
velocity field is strongly correlated with the pressure in the

irrotational near field of the jet [2,13–18]. The latter can be acquired
in real time relatively nonintrusively and, being a scalar variable, it is
easier to measure [17]. Thus, a more practical feedback control
system would measure the pressure in the irrotational near field in
real time and use it to estimate the velocity.

State estimation for closed-loop control is essentially a filtering
operation. As such, it may be divided into the following categories:

1) The zero-memory, or single-time, variant involves using the
measured output at each instant to directly estimate the state at that
particular instant. This is the original form of stochastic estimation
(SE), inwhich the state-output relation is determined by curvefitting.

2) The limited-memory estimation employs a finite backward-
extended time history of outputs to approximate the state at any
instant. This is the finite impulse response filter, or the multitime SE.

3) In the infinite-memory variant, the entire history of outputs
measured up to a point in time is used for the recursive estimation of
the state at that time; this is the infinite-impulse response (IIR) filter.
The linear time-invariant filter (LTIF) and Kalman filter (KF) are
popular members of this category.

SE was originally introduced to educe coherent structures in
turbulent flows [19]. Subsequently, this technique has also been
employed for estimatingflowvariables usingminimalmeasurements
and a knowledge of the spatial correlations in the flow. The earliest
implementations were of linear SE (LSE) in the areas of isotropic
turbulence [20], boundary layer [21], and axisymmetric jet shear
layer [22]. In these works, the instantaneous velocity at various
locations in the flow were approximated as separate linear functions
of the velocities measured at the same instant at only a few locations.
In a parallel development, higher-order SE (HOSE), including
quadratic SE (QSE), were implemented for isotropic turbulence
[23,24] and the boundary layer [21]. These studies generally con-
cluded that, compared with LSE, the marginal improvements in
accuracy of estimation with HOSE did not warrant the added
complications of computing the higher-order statistical moments.

Numerous researchers have advanced the original technique of SE
in several significant directions. Instead of using measurements of
the spatially sparse velocity field itself to estimate a spatially denser
velocity field, measurements of other relevant flow quantities, viz.,
pressure and wall shear stress, have been used [14,25–32]. This
modification typically reduces the complexity of experiments, since
time-resolved velocity measurements are difficult and intrusive. As
the solution of Poisson’s equation indicates, the pressure field is
related to the global velocity field. This implies that pressure–
velocity correlations are strong across greater distances compared
with velocity–velocity correlations. In the investigations where
surface pressure was used in the estimation, significant improve-
ments in accuracy were observed with QSE compared with LSE
[25,26,30,31]. For the application to the turbulent boundary layer,
this outcome was shown to indicate the comparable relevance of the
mean-turbulent and turbulent–turbulent pressure source terms [25].
In the cavity flow configuration, it was posited that the higher-order
terms were necessary, since the linear model becomes less accurate
when the measurement location is far away from the estimation
location [26].

Another development of SE is its coupling with POD to obtain a
low-dimensional estimate of the flow kinematics. In the classical
version of the complementary technique, the velocity field obtained
through LSEwas further filtered using POD [33,34]. In the modified
complementary SE, the POD modal coefficients of the velocity field
were first estimated using a different flow variable (say, the pressure
orwall shear stress) followed by a POD reconstruction of the velocity
field from these estimates [14,17,27,28,30,31,35]. The concept was
later extended by decomposing both the measured field and the field
to be estimated into their respective low-dimensional spatial modes
(be they Fourier and/or POD) before linking the corresponding
modal coefficients through SE [17,36]. The successivemodifications
were implemented to take advantage of the implicit spatial filtering
and the increased correlations between the low-dimensional
quantities while reducing computations.

The preceding discussion focused on the single-time version of
SE. In single-time-delay SE, a delayed version of themeasurement is
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used to estimate the field at any given time [21,25]. This is useful
where the timescales of themeasurement and estimate are alike, but a
fixed predetermined convective delay has to be considered. On the
other hand, multitime SE uses measurements over a finite moving
window stretching back in time for estimating the present state
[30,37]. This accounts for convection effects in the flow while also
taking advantage of the temporal persistence of the large-scale
structures being estimated. Although the accuracy of estimation first
improves with the size of the time window, the fidelity actually
degrades quite rapidly beyond a certain size [37]. Thinking from the
perspective of polynomial curve fitting, this may be explained by
the overdetermination of the fit of a high-degree polynomial in the
absence of enough independent realizations. In real-time estimation,
the number of delays in discrete time that can be considered is
typically limited by hardware constraints.

Extending the concept of multitime SE to the limit of theoretically
infinite time, one arrives at the spectral variant of SE. This technique
may be implemented for statistically stationary flows where the cor-
relation is computed in the temporal Fourier domain [17,29,34,36].
The spectral SE is especially useful whenever the spectral features of
the measured and estimated variables are disparate and/or significant
time delays exist between them [29]. In practical implementations,
one is typically limited to a finite timewindow, but this has to be long
enough for satisfactory resolution of the frequency content.
Moreover, its nonrecursive nature and the necessity of computing the
temporal Fourier transform restrict the spectral SE to offline
estimation applications.

The preceding discussion highlights the need for a recursive
filtering technique that would address the dynamics of the flowwhile
avoiding the hardware constraints of limited memory. This is the
essence of an IIR filter like the KF [38–40]. However, unlike SE, IIR
filters need a model of the flow dynamics. Such a model is precisely
the ROM discussed. One of the advantages of a model-based filter
over a stochastic estimator is the inherent noise-filtering properties of
the former [41]. In essence, by incorporating some predictive
knowledge of the system, model-based filters may separate the noise
from the signal. On the other hand, stochastic estimators typically
pass through the unfiltered measurement noise to the state estimate.
A different model-based technique is adjoint-basedmodel predictive
estimation [41]. Typically, this strategy is quite computation
intensive, and hence may not be as suitable for real-time control
implementation as an IIR filter.

Owing to the need for a ROMof the flow dynamics, implementing
a model-based state estimation is a challenge. Estimation of
narrowband frequency fluid dynamics has been reported by several
investigators [42–44]. These typically focus on a few states, and the
benefits of dynamic estimation over SE are easily demonstrated. In
two recent contributions to the field of broadband fluid dynamic
estimation, the use of KFs has been proposed to estimate the full state
of a channel flow, given spatially resolved measurements of the two-
component wall shear stress and wall pressure everywhere on the
surfaces [45,46]. Previously, it had been shown that a theoretically
complete information of the flow can be deduced from this set of
measurements [41]. Such comprehensive measurements are rarely
feasible in unbounded flows, and one has to settle for far greater
approximations. The present work proposes effective strategies in
such a challenging situation.

The first implementation of LSE for the axisymmetric jet
employed a linear array of near-field microphones to estimate the
axial and radial velocities in the shear layer that were a priori
measured using hot wires [14]. In a subsequent effort, a similar
microphone setup was used, but the velocity was measured using
two-component particle image velocimetry (PIV) in a meridional
plane [32]. This work demonstrated that QSE substantially improves
the estimation of the turbulent kinetic energy. The next development
in this area was to employ an azimuthal ring array of sensors in the
near field simultaneously with laser Doppler anemometry in the
shear layer [29]. This research also introduced the technique of
spectral LSE (SLSE). In a recent contribution, the pressure was
measured on a similar azimuthal ring array and the velocity was
measured on multiple cross-stream slices with stereo-PIV [17]. In
this effort, both the pressure and velocity fields were reduced to their
low-dimensional azimuthal Fourier modes and the velocity was
additionally represented using POD, before SLSE was applied. The
present work builds on these techniques but with a focus on real-time
state estimation. The two main contributions of this paper are the
development of a KF for infinite-memory estimation and the formu-
lation of QSE in the Fourier azimuthal domain, both in the context of
an axisymmetric jet shear layer.

A very useful (and, in fact, indispensable) tool for evaluating the
various estimation strategies is a time-resolved and spatially resolved
three-dimensional volumetric database of the axisymmetric jet.
Freund [8] has performed a DNS of an unforced Mach 0.9
axisymmetric jet with Reynolds number based on a jet diameter (Re)
of 3600. In spite of its low Reynolds number, most of its general
characteristics, and especially the nature of its large-scale structures,
were found to be similar to those of a Mach 1.3 jet with an Re of
1:1 � 106 in an experiment [47]. This database was used to develop
and validate the reduced-order modeling strategy in [7]. In the
present paper, the DNS database is used to assess various strategies
for estimating the state of the ROM.

A brief review of the ROMof the jet appears in Sec. II. The various
strategies for real-time state estimation are laid out in Sec. III. These
strategies are assessed in simulation, and the results are presented in
Sec. IV. Concluding remarks are offered in Sec. V.

II. Modeling of Jet Dynamics

The flow domain of the axisymmetric jet is unbounded; the first
step in model order reduction is to choose a bounded region that is
most pertinent for the control objectives at hand. An appropriate
choice is a cylindrical domain covering the shear layer in the vicinity
of the end of the potential core, as shown in Fig. 1. A reduced-order
dynamic model of the flow in this region was developed in [7]; the
procedure will be briefly reviewed here. Before introducing the
notation for this model, the relevant normalizations are established.

Let the jet exit velocity and nozzle exit diameter be Ujet and D,
respectively. All velocities and linear coordinates are implicitly
normalized by these respective quantities. Time is normalized by the
flow timescale D=Ujet. Pressure is normalized by �jetU

2
jet, where �jet

is the jet exit density. With the kinematic viscosity of the jet at exit
denoted by �jet, the pertinent Reynolds number is Re :� UjetD=�jet.

Employing cylindrical coordinates x :� �x; r; ��T , the modeling
domain is � :� �X1; X2� � �0; R� � T. Here, X1 and X2 denote the

Fig. 1 Schematic of axisymmetric jet indicating modeling domain and model-state estimation strategy.
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upstream and downstream bounds of the axial domain,R is the radial
extent of the domain, andT is the circle group. The velocity vector is
U: � � R! R3 and U: �x; t�7!�Ux;Ur; U��T . The statistical
stationarity and axisymmetry of the jet are used to define the mean
velocity field as

�U�x; r� :� E
�
1

2	

Z
	

�	
U�x; r; �; t� d�

�

Henceforth, unless otherwise mentioned, the expectation operator

E��� will signify the ensemble average. From the symmetry �U� 	 0,
and this is enforced explicitly in the implementation. The fluctuating

velocity vector is defined as u�x; r; �; t� :� U�x; r; �; t� � �U�x; r�,
with the three components being ux, ur, and u�, respectively.

The azimuthal direction is homogenous and periodic, so that any
generic flow variable w��� lends itself to the azimuthal Fourier
transform pair denoted by w��� Fm

7! ŵ�m�:

ŵ�m� :� 1

2	

Z
	

�	
w���e�im� d�

Here,m is the azimuthal mode. The inverse Fourier transformwill be
denoted by ŵ�m� F �

7!w���:

w��� �
X1
m��1

ŵ�m�eim�

With this, u is transformed as u�x; r; �; t� Fm
7! û�x; r; t;m�. The

highest azimuthal mode that can be resolved is limited by the
azimuthal grid resolution. Moreover, typically, the higher azimuthal
modes are dynamically insignificant. So, in the remainder of the
paper, the azimuthal modes would be taken in the truncated range
m 2 ��Nm;Nm�.

The fluctuating velocity fieldu��; t� belongs to theHilbert space of
square-integrable functions L2

� equipped with an inner product
denoted by h�; �i�. The goal of POD is, given an ensemble of data for
u 2 L2

�, to find a subspace S 
 L2
� of fixed dimensionNn, such that

the error Efku � PSuk2g is minimized [48]. Here, k � k is the
induced norm on L2

�, and PS is the orthogonal projection onto the
subspace S. The details of POD have been well-established
elsewhere [9–11,48,49]. For the purpose of the present discussion, it
is sufficient to state that, in the presence of the homogenous
azimuthal direction, the POD devolves into the following integral
eigenvalue problem for each azimuthal mode m [7]:Z

X2

X1

Z
R

0

Efû�x; r; t;m�û��x0; r0; t;m�g�̂�n��x0; r0;m�r0 dr0 dx0

���n��m��̂�n��x; r;m� (1)

The quantities � and �̂ are, respectively, the eigenvalue and
eigenfunction for thenth PODmode. The asterisk denotes the adjoint
operation, which reduces to the complex-conjugate transpose for our
purpose.

The POD mode number indexes the real nonnegative eigenvalues
in descending order. Then, the first Nn eigenfunctions form the
desired optimal basis for the subspace S. This allows the following
approximate change of coordinates for each azimuthal mode m:

û�x; r; t;m� 	
XNn
n�1

��n��t;m��̂�n��x; r;m� (2)

where the nth POD modal coefficient is computed as

��n��t;m� �
Z
X2

X1

Z
R

0

�̂�n���x; r;m�û�x; r; t;m�r dr dx (3)

The POD modal coefficients have the well-known property [11,48]

Ef��n��t;m���n0���t;m0�g ���n��m��m;m0�n;n0 (4)

where � is the Kronecker delta.
Remark 1: Using the preceding property along with the properties

of the Fourier transform, one may derive the following:

Ef��n�;r�t;m���n�;r�t;m�g � Ef��n�;i�t;m���n�;i�t;m�g ���n��m�
2

8 m ≠ 0 (5a)

Ef��n�;r�t;m���n�;i�t;m�g � 0 (5b)

��n��t;�m� � ��n���t;m� (5c)

In the preceding equations, the superscripts r and i, respectively,
denote the real and imaginary components of the complex modal
coefficient.

The preceding discussion focused on the reduced-order modeling
of the flow kinematics; the dynamics will be considered next. The
incompressible Navier–Stokes equations governing the flow can be

formally written as _U�N �U�, whereN is a vector field onL2
�. The

goal of reduced-order dynamics modeling is, given the finite-
dimensional subspace S ofL2

�, to determine a dynamical system that
evolves on S and approximates the original dynamics in some sense
[48]. GP specifies the new vector field on S as the orthogonal
projection of N onto S.

It was shown in [7] that the application of GP to the axisymmetric
jet results in the following set of coupled quadratic ordinary
differential equations (ODEs) that govern the evolution of the POD
modal coefficients

_��n��t;m� �
XNn
n0�1

fnn0 �m���n
0��t;m� �

XNm
m0�m�Nm

XNn
n0;n00�1

��n
0��t;m0�

� gnn0n00 �m0; m�m0���n
00 ��t;m �m0� (6)

The time-independent coefficients f and gwere determined from the

POD eigenfunctions and the mean velocity profile �U, both of which
were extracted from the empirical database. It is important to note
that, although the POD modal coefficients are in the complex
domain, f and g are real [7]. Formodel-based feedback control of the
jet, Eq. (6) represents the requisite ROM of the dynamics in state-
space form. It is clear that the POD modal coefficients constitute the
state to be estimated in real time.

The preceding ROMwas developed as a first step toward feedback
control of a complicated flow; hence, it does not incorporate
actuation effects. Actuation effects typically enter into such a ROM
in two ways: as an explicit additive term and through a possible
choice of a different POD basis that better represents the actuated
flow state [30,50–52]. Neither of thesemodifications detract from the
usefulness of the unactuated model for the estimation strategy
development pursued herein. Since the additive actuation term is
known at all times, it can be incorporated in the estimation model
directly. Moreover, although the choice of a different basis would
change the coefficients of the unactuated ROM, the estimation
strategy itself would not be affected.

Since the feedback control will be implemented in discrete time,
the continuous dynamics must be converted to a sampled dynamical
system. The appropriate sampling rate for the present implementa-
tion is the rate at which data were saved in the DNS database; this
would be denoted byTs. The sampled version of the state of the ROM

is denoted by ��n�k �m�  ��n��t� kTs;m�, where k 2 N is the set of
natural numbers. For each individual azimuthal mode, the state
vector is defined as

� k�m� :� ���1�k �m� � � � ��Nn�k �m� �T (7)
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III. Estimator Modeling

For a practical implementation of real-time estimation for a jet, the
pressure sensors must be located near the nozzle exit. However, the
velocity field is to be estimated in a domain that is further down-
stream in the vicinity of the end of the potential core (see Fig. 1).
Owing to convection, the estimate from such a configuration would
lead the actual velocity field in time. This is very useful for feedback
control. The ensuing formulation considers a uniquevalue of the time
lead represented by NcTs. A method is proposed for determining the
actual value of Nc in Sec. IV.

Two main approaches are taken for real-time estimation of the
state of the jet shear layer in Eq. (6). In thefirst approach, single-time-
delay modified complementary SE is used to directly estimate the
PODmodal coefficients as a function of the pressure measured in the
irrotational near field, with the time separation being NcTs. Both
linear estimation andQSE are evaluated. This procedure does not use
the known dynamics of the jet as captured by the model of Eq. (6).
Alternatively, a KF is implemented that uses the derived ROM of the
jet, as well as a static output equation that expresses the near-field
pressure at any instant of time t as a linear function of the PODmodal
coefficients at time t� NcTs. It is not trivial to obtain the said output
equation from first principles. One option is to extend the
incompressibility assumption made in the derivation of the ROM to
argue for the approximate validity of Poisson’s equation for pressure,
which may then be explicitly solved in real time [53]. A novel
contribution of the present work is to employ SE to derive this
equation from empirical data. Note that this represents the inverse of
the SE problem for state estimation.

With reference to Fig. 1, considerNap azimuthal arrays of pressure
transducers arranged at different axial locations x 2 Xa

p. In addition,
suppose that there are Nlp individual pressure sensors at different
axial locations x 2 X l

p that do not belong to any azimuthal array.
Although the development does not need the individual sensors to
form a linear array, they would be assumed to be in a straight line at
�� 0 for notational convenience.Without loss of generality, it is also
assumed that all pressure sensors are located on the surface of a
virtual cone coaxial with the jet, so that their radial locations are a
function of their axial locations.

The individual pressure signals from the sensors in the azimuthal
arrays are denoted asPa: T � R � Xa

p ! R andPa: ��; t; x�7!R. In
discrete time, the notation is Pak��; x�  Pa��; t� kTs; x�, where
k 2 N. As before, the mean and fluctuating pressure are defined as

�P a�x� :� E
�
1

2	

Z
	

�	
Pak��; x� d�

�

and pak��; x� :� Pak��; x� � �Pa�x�, respectively. The azimuthal
Fourier transform of pa is defined in the usual manner:
pak��; x� Fm

7! p̂
a
k�x;m�. The pressure signals on the linear array are

denoted asPl: R � X l
p ! R andPl: �t; x�7!R. In discrete time, the

notation is Plk�x�  Pl�t� kTs; x�. The corresponding time mean

and fluctuating quantities are, respectively, �Pl�x� :� EfPlk�x�g and
plk�x� :� Plk�x� � �Pl�x�. Using the preceding notation, the follow-
ing output vectors are defined:

p̂ a
k�m� :� � p̂ak�x1; m� � � � p̂ak�xNap ; m� �T (8a)

p l
k
:� �plk�x1� � � � pak�xNlp� �T (8b)

Remark 2: Since the jet is axisymmetric, the statistics should be
independent of the direction of measurement of the azimuthal
coordinate. In [7], this property was invoked to show that, given any

realization identified by the set ff��m�gNmm�0; fp̂a�m�g
Nm
m�0;p

lg, one
can extend the database by appending another realization that is

characterized by ff���m�gNmm�0; fp̂a��m�g
Nm
m�0;p

lg. Following this
reasoning, one can conclude that any order of statistical moment
involving these quantities would be real, although the individual
quantities are complex.

Remark 3: Using the preceding property along with the properties
of the Fourier transform, one may derive the following:

Efp̂a;rk �x;m�p̂a;rk �x0;m�g�Efp̂a;ik �x;m�p̂a;ik �x0;m�g; m≠0 (9a)

Efp̂a;rk �x;m�p̂a;ik �x0; m�g � 0 (9b)

p̂ a
k�x;�m� � p̂a�k �x;m� (9c)

Remark 4: Consider K arbitrary scalar fields in the azimuthal
Fourier domain ŵ1�m1� to ŵK�mK�. Then, their cumulative spectrum
satisfies the relation

Efŵ1�m1� � � � � � ŵK�mK�g � �̂w1;���;wK �m1; � � � ; mK��m1�����mK;0

In the preceding, �̂ is the azimuthal Fourier transform of the
corresponding cumulative correlation in the physical domain. In
particular, this means that ŵK�mK� is only correlated to certain
products of azimuthal modes of the remaining variables.

A. Stochastic Estimation

1. Linear Stochastic Estimation

Denote the linear stochastic estimate of �k�m� given the mea-
surement at time instant k0 by ~�LSE;knk0 �m�. Note that the estimate
implicitly depends on the choice ofXa

p andX l
p. The following linear

model is posited for the LSE with time separation due to convection

~� LSE;k�Ncnk�m� �La�
LSE�m;Nc�p̂ak�m� �Ll�

LSE�m;Nc�plk (10)

where La
LSE 2 RNap�Nn and Ll

LSE 2 RNlp�Nn represent the families of
LSE parameter matrices. Although these parameters are complex in
general, it will be shown soon that the axisymmetry of the present
problem renders them real. Remark 4 is invoked to argue for the
decoupling of the estimation problems for each azimuthal Fourier
mode.

LSE proceeds by defining the mean-square estimation error

Efj ~��n�LSE;k�Ncnk�m� � �
�n�
k�Nc�m�j

2g for each m � n pair, which is

quadratic in the respective estimation parameters. The optimal
parametermatrix is located at the unique globalminimumof the error
surface; the expression is

La
LSE�m;Nc�

Ll
LSE�m;Nc�

" #
�

Efp̂ak�m�p̂a�k �m�g Efp̂ak�m�pl�k g
Efplkp̂a�k �m�g Efplkpl�k g

" #�1

�
Efp̂ak�m���k�Nc �m�g
Efplk��k�Nc �m�g

" #
(11)

Following Remark 2, the estimation parameters can be concluded to
be real.

With reference to the preceding formulation, consider how the
correlations involving a particular linear array sensor would be
modified if it were supplanted by an azimuthal array at the same axial
location. Invoking the orthonormality of the Fourier basis, one
obtains

Efplk�x���k0 �m�g � E
� X1
m0��1

p̂ak�x;m0�eim
0���0���k0 �m�

�

� Efp̂ak�x;m���k0 �m�g (12a)

Efplk�x�p̂a�k �m�g � Efp̂ak�x;m�p̂a�k �m�g (12b)

Efplk�x�plk�x0�g �
X1
m��1

Efp̂ak�x;m�p̂a�k �x0; m�g (12c)

The preceding analysis shows that, except for Efplkpl�k g, all the other
terms appearing in Eq. (11) are unchanged if an azimuthal ring array
of sensors is used in place of the single sensor on the linear array at the
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same axial location. This explains the logic behind a configuration
consisting of a combination of linear and azimuthal arrays of sensors,
instead of the more expensive arrangement consisting of multiple
azimuthal arrays.

2. Quadratic Stochastic Estimation

Denote the quadratic stochastic estimate of ��n�k �m�, given the

measurement at time instant k0 by ~��n�QSE;knk0 �m�. Then, the following
quadratic model is posited for the QSE with time separation due to
convection

~��n�QSE;k�Ncnk�m� � �m;0cQSE�n; Nc� �
XNap
s�1

laQSE�s;m; n; Nc�p̂ak�xs; m�

�
XNlp
s�1

llQSE�s;m; n; Nc�plk�xs� �
XNm

m0�m�Nm

XNap
s;s0�1

p̂ak�xs; m0�

� qaaQSE�s; s0; m0; m �m0; n; Nc�p̂ak�xs0 ; m �m0�

�
XNlp
s;s0�1

qllQSE�s; s0; m; n; Nc�plk�xs�plk�xs0 �

�
XNm

m0��Nm

XNap
s�1

XNlp
s0�1

qalQSE�s; s0; m0; m; n; Nc�p̂ak�xs; m0�plk�xs0 � (13)

Remark 4 dictates the particular azimuthal modes of pressure
retained in the preceding expression, and the estimation parameters
can be shown to be real by appealing to Remark 2. The constant term
addresses the fact that some of the quadratic terms do not vanish in
ensemble averaging of the preceding equation.

A review of the literature did not reveal any exposition of the
implementation of QSE for multipoint measurements in a Fourier
modal domain. Thus, a sketch of the procedure is provided in the
Appendix.

B. Infinite-Impulse Response Filtering

An infinite-impulse responsefilter uses the predictive capability of
a dynamical model of the flow to systematically reduce pass-through
of measurement noise to the state estimate. For linear models, the KF
is the optimal filter, so that the linearized version of the ROM
presented in Eq. (6) is a good starting point. The KF is time varying,
so that one has to perform the computations for the filter gains in real
time. Since the gains do not depend on the actual measurements, one
can also precompute them to reduce processor overhead, with a
commensurate increase in memory requirement. If the filter is stable,
then the gains reach steady state. Using the steady-state gains in an
LTIF may be a viable alternative to the KF. For nonlinear models,
such as the ROM in Eq. (6), the extended KF (EKF) is an ad hoc
extension of the KF that is known to be suboptimal. All three
aforementioned filters are well established [40], and they are
implemented in this work. It must be mentioned here that EKF is not
the only IIR filter available for nonlinear models. However, the
alternatives, such as unscented KF, iterated EKF, and particle filter,
are evenmore computation intensive, and thus deemed unsuitable for
the present application.

1. Kalman Filter

In the absence of any further information regarding the specific
feedback control scheme, a typical stabilization problem may be
assumed, wherein the fluctuations from the mean value are expected
to be small. The trivial solution of the ROM in Eq. (6) is an
equilibrium point, and it signifies the mean flow. Linearizing about
this point involves simply truncating the quadratic portion of the
vector field. Note that this decouples the dynamics of the individual
azimuthal modes. Previously, it has been pointed out that the filter
needs to be implemented in a sampled-data system. Then, the
following linearized model is obtained:

� k�1�m� � F�m��k�m� � KF;k�m� (14)

Here,F�m� � exp�Fc�m�Ts� 2 RNn�Nn , with fFc�m�gn;n0 � fnn0 �m�
from Eq. (6) [54]. As is common in filtering, the uncertainties
introduced by the modeling approximations, including the linear-
ization, are addressed by the family of additive noise sequences
 KF 2 CNn , which are assumed to be stationary independent random
processes (white noise) with identically zero-mean and constant
covariance matrices

Ef KF;k�m� �KF;k0 �m0�g ��KF�m��k;k0�m;m0 (15)

The symmetric matrices �KF are real following Remark 2.
Apart from the dynamical model presented, the KF also assumes a

linear static map linking the measured output to the state. The
following set of output equations specifies themeasured pressure as a
linear function of the POD modal coefficients with the time
separation discussed previously:

p̂ a
k�m� �La�

KF�m;Nc��k�Nc�m� � �aKF;k�m;Nc� (16a)

p l
k �

XNm
m�0

Ll�
KF�m;Nc��rk�Nc�m� � �

l
KF;k�Nc� (16b)

The linear operators areLa
KF 2 RNn�Nap andLl

KF 2 RNn�Nlp ; morewill
be said about these. The decoupling of the azimuthal Fourier modes
in the first equation follows from Remark 4. The imaginary parts of
the POD modal coefficients are absent from the second equation,
following the arguments made in Remark 2. The measurement
uncertainties are modeled by the families of additive sequences

�aKF 2 CNap and �lKF 2 RNlp that are independent random processes
(white noise) with identically zero means and constant covariance
matrices

Ef�aKF;k�m;Nc��a�KF;k0 �m0; Nc�g ��aa
KF�m;Nc��k;k0�m;m0 (17a)

Ef�lKF;k�Nc��l�KF;k0 �Nc�g ��ll
KF�Nc��k;k0 (17b)

Ef�aKF;k�m;Nc��l�KF;k0 �Nc�g ��al
KF�m;Nc��k;k0 (17c)

The covariancematrices are real followingRemark 2.Additionally, it
is commonplace to assume that the state uncertainties appearing in
Eq. (14) are not correlated with the measurement uncertainties; that
is,

Ef KF;k�m��a�KF;k0 �m0; Nc�g � 0 (18a)

Ef KF;k�m��l�KF;k0 �Nc�g � 0 (18b)

It has been mentioned that the parameter matrices La
KF and Ll

KF

would be determined using SE. Appealing to the orthogonality of the
POD modal coefficients from Eq. (4), the LSE yields

La
KF�m;Nc� �

E

n
�
�1�
k�Nc
�m�p̂a�

k
�m�
o

��1��m�

..

.

E

n
�
�Nn�
k�Nc
�m�p̂a�

k
�m�
o

��Nn��m�

2
66666664

3
77777775

Ll
KF�m;Nc� �

2E

n
�
�1�;r
k�Nc
�m�pl�

k

o
�1��m;0���1��m�

..

.

2E

n
�
�Nn �;r
k�Nc

�m�pl�
k

o
�1��m;0���Nn ��m�

2
66666664

3
77777775

(19)

The parameter matrices are real following Remark 2.
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Now, as in Sec. III.A.1, consider what happens when an azimuthal
array of sensors is used in place of a single sensor on the linear array
at the same axial location. Using arguments that are similar to those
presented in Eq. (12a), along with those made in Remark 1, one can
show that

Ef��n�;rk�Nc�m�p
l�
k �x�g � Ef�

�n�
k�Nc �m�p̂

a�
k �x;m�g (20)

This provides a simple relation between the relevant model
parameters in Eq. (19).

The output equation (16b) requires partitioning the state vector
into real and imaginary parts. It also couples all the azimuthal Fourier
modes from the perspective of the filter. In view of this, the accent
�� � � is used to indicate the new real quantity formed by assembling

all the corresponding complex quantities in the azimuthal Fourier
domain as follows:

�� k :� � f�k�0�gT f�rk�1�gT � � � f�rk�Nm�gT f�ik�1�gT � � � f�ik�Nm�gT �T (21a)

�p k :� � fp̂ak�0�gT fp̂a;rk �1�gT � � � fp̂a;rk �Nm�gT fp̂a;ik �1�gT � � � fp̂a;ik �Nm�gT fplkgT �T (21b)

� KF;k :� � f KF;k�0�gT f rKF;k�1�gT � � � f rKF;k�Nm�gT f iKF;k�1�gT � � � f iKF;k�Nm�gT �T (21c)

�� KF;k�Nc� :� � f�aKF;k�0;Nc�gT f�a;rKF;k�1;Nc�gT � � � f�a;rKF;k�Nm;Nc�gT f�a;iKF;k�1;Nc�gT � � � f�a;iKF;k�Nm;Nc�gT f�lKF;k�Nc�gT �T

(21d)

Since F�m� in Eq. (14) is real for all m, the new state-transition
matrix is the block-diagonal concatenation

�F :� diag��F�0� F�1� � � � F�Nm� F�1� � � � F�Nm���

The form of the new output matrix follows from the modal output
matrices in Eq. (16); omitting the functional dependence on Nc for
notational convenience, one obtains

�L KF�Nc� :�

La
KF�0� 0 � � � 0 0 � � � 0 Ll

KF�0�
0 La

KF�1� � � � 0 0 � � � 0 Ll
KF�1�

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

0 0 � � � La
KF�Nm� 0 � � � 0 Ll

KF�Nm�
0 0 � � � 0 La

KF�1� � � � 0 0

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

0 0 � � � 0 0 � � � La
KF�Nm� 0

2
6666666664

3
7777777775

The new state uncertainty sequence remains a zero-mean
independent random process, and its covariance can be derived from
Remark 1 and Eq. (15):

Ef � KF;k
� 
�
KF;k0 g:� ��KF�k;k0 ��k;k0

�diag
��

�KF�0� 12�KF�1� ��� 12�KF�Nm� 12�KF�1� ��� 12�KF�Nm�
��

The new measurement uncertainty sequence also remains a zero-
mean independent random process, and its covariance can be derived
from Remark 3 and Eq. (17):

Ef ��KF;k�Nc� ��
�
KF;k0 �Nc�g �: ��KF�Nc��k;k0 �

�aa
KF�0� 0 � � � � � � � � � � � � 0 �al

KF�0�
0 1

2
�aa

KF�1� � � � 0 � � � � � � 0 �al
KF�1�

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

0 0 � � � 1
2
�aa

KF�Nm� 0 � � � 0 �al
KF�Nm�

0 � � � � � � 0 1
2
�aa

KF�1� � � � 0 0

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

0 0 � � � 0 0 � � � 1
2
�aa

KF�Nm� 0

�al�
KF �0� �al�

KF �1� � � � �al�
KF �Nm� 0 � � � 0 �ll

KF

2
6666666666664

3
7777777777775
�k;k0

From Eq. (18), one obtains

Ef � KF;k
��
�
KF;k0 �Nc�g � 0

Then, the model becomes

�� k�1 � �F ��k � � KF;k (22a)

�p k � �LT
KF�Nc� ��k�Nc � ��KF;k�Nc� (22b)

Denote the KF estimate of ��k given all measurements up to and

including instant k0 by ~��KF;k=k0. Note the difference from the
corresponding notation for single-time SE. Let �KF;k=k0 be the
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autocovariance of the estimation error at k, given the measurements
up to k0; that is,

� KF;k=k0 :� E�f ~��KF;k=k0 � ��kgf ~��KF;k=k0 � ��kg��

Then, the following relations specify the KF [40]:

KKF;k�Nc�

��KF;k�Nc=k�1
�LKF�Nc�� �LT

KF�Nc��KF;k�Nc=k�1
�LKF�Nc�

� ��KF�Nc���1 (23a)

~��KF;k�Nc=k � ~��KF;k�Nc=k�1

�KKF;k�Nc�� �pk � �LT
KF�Nc� ~��KF;k�Nc=k�1� (23b)

� KF;k�Nc=k ��KF;k�Nc=k�1 �KKF;k�Nc� �LT
KF�Nc��KF;k�Nc=k�1

(23c)

~�� KF;k�Nc�1=k � �F ~��KF;k�Nc=k (23d)

� KF;k�Nc�1=k � �F�KF;k�Nc=k
�FT � ��KF (23e)

~�� KF;k0=�1 � 0; k0 2 �0; Nc� (23f)

�KF;k0=�1�diag���1��0� ��� ��Nn��0� 1
2
��1��1� ��� 1

2
��Nn��1� ��� 1

2
��1��Nm� ��� 12��Nn��Nm� 12��1��1� ��� 12��Nn��1� ��� 12��1��Nm� ��� 12��Nn��Nm��
k0 2�0;Nc� (23g)

Thefirst equation defines the time-varyingKalman gain, the next two
define the measurement updates of the state and its error covariance,
and the fourth and fifth equations establish their respective time
updates. The sixth equation sets the initial condition for the state
estimate to the zero vector, in the absence of any other information.
Then, the initial condition for the error covariance in the last equation
becomes equal to the covariance of the state vector itself; its form is
derived from Remark 1.

2. Linear Time-Invariant Filter

The state dynamics and output equations in Eq. (22) are time
invariant, but the state model may not have a stable equilibrium.
Then, the KF will be asymptotically stable if 1) the pair
� �F; �LT

KF�Nc� � is completely detectable; and 2) the pair � �F; ��1� is
stabilizable for any ��1, such that ��1

��T
1 � ��KF (see [40]). The

stationary (or steady-state) error-covariance matrix �LTIF�Nc� is
obtained as the solution of the following discrete-time algebraic
Riccati equation:

�LTIF�Nc� � �F�LTIF�Nc� �FT

� �F�LTIF�Nc� �LKF�Nc�� �LT
KF�Nc��LTIF�Nc� �LKF�Nc�

� ��KF�Nc���1 �LT
KF�Nc��LTIF�Nc� �FT � ��KF (24)

The stationary Kalman gain matrix is obtained by inserting
�LTIF�Nc� in Eq. (23a). Use of a stationary gain reduces the original
time-varying KF to the LTIF. Then, the only expressions to be

evaluated in real time are Eqs. (23b) and (23d), whichmakes theLTIF
comparable in complexity to the LSE model in Eq. (10).

3. Extended Kalman Filter

The conversion of the continuous ODE with quadratic non-
linearity in Eq. (6) to an equivalent difference equation for a sampled-
data system is not obvious. The approach taken here treats the linear
part as if the quadratic part were absent, so that the linear part of the
difference equation is identical to that in Eq. (14). Subsequently, the
quadratic part is determined as if the state derivative were approx-
imated by a first-order forward difference scheme. The resultant state
model is the following set of difference equations with quadratic
nonlinearity:

��n�k�1�m� � fn�m��k�m� �
XNm

m0�m�Nm

f�k�m0�gTGn�m0; m �m0�

� �k�m �m0� �  �n�EKF;k�m� (25)

Here, fn�m� is the nth row of F�m� introduced in Eq. (14), and

fGn�m0; m �m0�gn0 ;n00 � Tsgnn0n00 �m0; m �m0�

from Eq. (6). The state uncertainty sequences  EKF are modeled in a
manner akin to the KF; the details are omitted for brevity.

For the EKF, the output equations are also assumed to be
quadratic. Then, the arguments in Remark 4, along with the time
separation discussed previously, yield the following model:

p̂ak�xs; m� � �m;0caEKF�s; Nc� �
XNn
n�1

laEKF�n;m; s; Nc��
�n�
k�Nc�m�

�
XNm

m0�m�Nm

XNn
n;n0�1

qaEKF�n; n0; m0; m �m0; s; Nc�

� ��n�k�Nc�m
0���n

0 �
k�Nc �m �m

0� � �aEKF;k�m; xs; Nc� (26a)

plk�xs� � clEKF�s; Nc� �
XNm

m0��Nm

XNn
n�1

llEKF�n;m0; s; Nc��
�n�
k�Nc �m

0�

�
XNm

m0;m00��Nm

XNn
n;n0�1

qlEKF�n; n0; m0; m00; s; Nc��
�n�
k�Nc�m

0���n0�k�Nc�m
00�

� �lEKF;k�xs; Nc� (26b)

The family of measurement uncertainty sequences �aEKF and �
l
EKF

are modeled in a manner akin to the KF; the details are omitted for
brevity. The model in Eq. (26a) can be seen as a special case of the
model structure introduced in Eq. (13); the procedure to determine its
parameters using QSE is presented in the Appendix. The model in
Eq. (26b) can also be analyzed in a similar manner to determine its
parameters using QSE. All the parameters of both models are real
from arguments in Remark 2.

Following the procedure used for KF, the precedingmodels can be
reduced to the standard form in the real domain. Subsequent to this,
the theory of EKF [40] can be applied directly; the details are omitted.
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IV. Results

The details of the DNS database of the Mach 0.9, Re� 3600
axisymmetric jet are established in [8]; here, only the most pertinent
aspects are highlighted. The original data of the DNS had been saved
at 2316 consecutive time instants, with the snapshots having a
uniform separation of Ts � 0:071D=Ujet. A contour plot of the mean
axial velocity is shown in Fig. 2. The low-Re simulated jet remains
laminar for a significant length, and its potential core ends at x	 7
(see [8]). The choice of the vicinity of the end of the potential core as
themodeling domain has been explained in Sec. II. In [7], the authors
presented a 30-state POD-GP ROM of the velocity field in the
cylindrical region indicated in Fig. 2. The 30 states comprised POD
modes from 1 through 5 and azimuthal Fourier modes from 0 to 5;
thus, Nn � Nm � 5.

Figure 3a shows the energies of the POD modal coefficients,
which are directly related to the corresponding eigenvalues [7]. This
figure clearly shows the low-dimensional nature of the velocity field.
Unlike the eigenvalues, the POD modal energies for m� 0 are not
monotonically decreasing with n, owing to insufficient convergence
at the lower energies. The POD was performed using every alternate
snapshot indexed from 700 to 1398 out of the total of 2316 snapshots
in the database. Figure 3b presents the power spectral density (PSD)
of the first POD mode for various azimuthal modes. These were
computed with the Welch spectrogram technique using a window
size of 400 samples, overlaps of 300 samples, and Hanning

windowing [55]. The spectra for m� 0 and 1 have definite
broadband peaks that are missing for the other azimuthal modes. The
corresponding eigenfunctions were presented in [7]; these showed
large-scale structures in the potential core and near the high-speed
side of the shear layer for m� 0 and 1, respectively, whereas the
other modes displayed structures in the center and low-speed side of
the shear layer. The differences in their spectral character can then
be understood from the local velocity spectra observed at these
different radial locations in axisymmetric jets by previous
researchers [56–60].

The feedback control strategies that are the ultimate goal of this
research will subsequently be tested on a Mach 0.9, Re� 630; 000
laboratory jet withD� 0:0254 m. The boundary layer at the nozzle
exit has been established to be turbulent, the shear layer of the jet
transitions to turbulent in a very short distance from the nozzle exit,
and its potential core ends at x	 5:5 (see [61]). The appropriate axial
extent of the modeling domain for this jet would be from x� 5 to 8,
so as to cover the dynamically interesting region of the shear layer.
For real-time estimation of the state of this jet, pressure sensors
would be placed between x� 2 and 4. Such a configurationwould be
physically implementable in experiments while ensuring that the
feedback controller thus developedwould be practically meaningful.
The need to obtain a hydrodynamic signature dictates that the sensors
be radially located just outside the shear layer [13,15,17]. With this
motivation in mind, the numerical experiments reported herein were
conducted with virtual pressure sensors placed on a linear array
between x� 4 and 6 at intervals of 0.5, as shown in Fig. 2. The array
makes an angle of 5.6� with the jet axis to parallel the outer edge of
the shear layer, with the most upstream sensor located at r� 1:2.
Alternatively, any or all of the sensors could be replaced by uniform
azimuthal arrays of 16 sensors each (of the form shown in Fig. 1). The
precise locations of the sensors coincided with the nearest point on
the nonuniformDNSgrid. The results reportedwere not alteredwhen
all 80 azimuthal points in the computational grid were instrumented
instead of just 16 of them, thereby attesting to the convergence of the
low-order azimuthal modes.

Figure 3c presents the energies in the various azimuthal modes of
pressure measured on the ring arrays discussed. The figure demon-
strates the familiar low-dimensional character of the pressurefield, as
well as the downstream energy growth, that has been observed
by previous researchers [17,60,62,63]. These works have also

Fig. 2 Meridional half-slice of jet shear layer showing contour plot of

mean axial velocity from DNS database. Cross section of cylindrical

modeling domain is indicated, and footprints of pressure sensors
(azimuthal array or linear array) are depicted.

Fig. 3 Lower Fourier azimuthal modes: a) variance of leading-order POD modes, b) PSD of first POD modes, c) variance of near-field pressure

measured at several axial stations, and d) PSD of pressure at x� 5. Strouhal number based on jet exit diameter is StD.
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highlighted the differences in the azimuthal modal makeup of
pressure and velocity that are clear from a comparison with Fig. 3a.
The PSD of the various azimuthal modes of pressure measured at
x� 5 are shown in Fig. 3d; these were computed using the
spectrogram parameters mentioned. Similar pressure spectra were
reported in [6] for a ring array of pressure sensors placed at x� 3 and
r� 1 in the experimental jet mentioned.

The temporal order of the snapshots was randomized before
dividing them equally into two mutually exclusive sets. The various

estimation models discussed in Sec. III were built using the statistics
educed from the first set (the training set). The fidelity of each
estimation strategy was then tested using the second set (the
validation set). While this division into training and validation data
sets is ideal for SE, the IIR filters require the entire time history of the
output, so that the distinction is not as well defined. The IIR filter
models were developed solely from the training set, but they were
simulated using the time-resolved pressure from the entire database.
Finally, the samples corresponding to the validation data set were
selected to evaluate the performance.

To compare the overall performance of the various state
estimators, the following modal estimation error metric is
established:

��n;m;Nc� :�

��������������������������������������������������������������������
Efj ~��n�k�Nc=k�m� � �

�n�
k�Nc�m�j

2g���������������������������������������������������������������
Efj ~��n�k�Nc=k�m�j

2gEfj��n�k �m�j2g
q

vuuut (27)

The metric implicitly depends on the choice of the pressure
measurement configuration characterized by Xa

p and X l
p, as well as

the estimation strategy. In fact, the particular estimation strategy is

omitted from the subscript for generality. Moreover, the notation
appears specific to infinite-memory filters, but it is also applicable to
single-time stochastic estimators. A value of � close to 0 indicates
high fidelity. The metric will have a moderate value if the
instantaneous estimation is not accurate, but the variance of the state
� is well replicated by the estimate. On the other hand, �will become
large whenever the variance of the estimate is significantly disparate
from that of the state. A more concise but less informative metric is
the following global estimation error metric:
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vuuut (28)

Owing to the orthonormality of the POD and azimuthal Fourier
bases, the precedingmetric actually represents the estimation error of
the physical velocity field.

The convection inherent in the jet results in the pressure signal
leading the POD modal coefficient by the time separation that is
denoted herein by NcTs. Although the pressure measurement is
localized, the POD modal coefficient is nonlocal. So Nc cannot be
directly obtained from the convective velocity of the jet. The
approach taken here uses LSE in conjunction with a single azimuthal
ring array of sensors to determine the Nc that minimizes ��. Figure 4
shows that the curve tracing the bottom of the error valley for each
axial location is very well approximated by a line with slope �1:75
and x intercept of 7.3. Because of the implicit normalizations, the
negative reciprocal of the slope signifies the ratio of the convective
velocity to the jet exit velocity, which is close to the value of 0.6
reported for the original DNS database [8]. The x intercept signifies
the apparent centroid of the modeling domain (from x� 7 to 10), as
represented by its PODbasis. The pressure sensing configuration that
is chosen for further investigation is centered on x� 5, for which the
optimalNc turns out to be 55. This value is used in all further analyses
reported, unless otherwise mentioned. It is worth noting that, in
similar assays using QSE and LTIF, the same optimalNc was found.

The coefficients of the ROM presented in Eq. (6) have been
determined previously in [7], so that the linear or quadratic state-
transition operators appearing in Eqs. (22a) and (25) can be
computed. It is noted here that the trivial equilibrium point of the
ROM, representing the mean flow, was found to be unstable. This is
to be expected, since the actual jet never converges to the mean
velocityfield. TheDNS database is time resolved, so that realizations

of the respective modeling uncertainty sequences � KF and � EKF are
directly available. Then, using the white-noise assumption, the

corresponding state uncertainty covariances ��KF and ��EKF can be
ascertained empirically by ensemble averaging. For this step, each
snapshot k had to be paired with the corresponding k� 1 snapshot;
there were 575 such pairs in the training data set, which was enough
for convergence. It must be noted here that the requisite time-
resolved empirical velocity database may be educed from

Fig. 5 Normalized standard deviations of state uncertainty sequences for a) KF and b) EKF.

Fig. 4 Estimation error usingLSE for various axial locations of the sole
azimuthal array of pressure sensors and time separations.Markers trace

bottom of error valley, and straight line is best fit through them.
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experiments with the modeling strategy adopted in [7], following
[17,64]. The diagonal terms of the covariance matrices are shown in
Fig. 5; the offdiagonal terms were found to be substantially smaller
by comparison. It is interesting to note that, although the quadratic
terms are known to be crucial for the correct simulation of the ROM
[11], they do not have much effect on the modeling uncertainty.

The next focus is on the linear output relation for the KF appearing
in Eq. (16). Recall from Eq. (19) that the model coefficients are to be
determined by an application of LSE to the empirical data. This
warrants a study of the following set of normalized cross-correlation
coefficients

�a�p�n;m; x; Nc� :�
Ef��n�k�Nc�m�p̂

a�
k �x;m�g�����������������������������������������������

��n��m�Efjp̂ak�x;m�j2g
p (29a)

�l�p�n;m; x; Nc� :�
Ef��n�k�Nc �m�p

l
k�x�g����������������������������������������

��n��m�Efjplk�x�j2g
p (29b)

Here, Eq. (4) is invoked to make the substitution ��n��m��
Efj��n�k �m�j2g. The cross-correlation coefficients are real following
Remark 2, and their mutual relationship has been established in
Eq. (12). The preceding statistics are also relevant to the direct LSE
model in Eqs. (10) and (11), which is a dual of the KF output relation.

The convergence of the preceding statistics was assessed for the
DNS database. In particular, the correlation coefficients were
evaluated from the training data set, as well as from the full database,
and the differences were found to be insignificant. In Figs. 6a and 6b,
the absolute values of �a�p and �l�p are plotted for selected axial
locations of the pressure sensors. This should be analyzed from two
perspectives. In determining the accuracy of the KF output relation
[Eq. (16a)] for a particular x �m combination, one is seeking a high
correlation level for any n. Similarly, the relation Eq. (16b) will be
accurate for a particular axial location if the correlation level is high
for anym � n combination. From this perspective, the linear output
equations appear to be feasible. However, the ultimate goal is to
observe the model states from the pressure, so that one is seeking
high correlation levels for all states. From this perspective, one can
conclude that direct LSE would perform poorly if used with a single
azimuthal ring array, although additional measurements from the

linear array sensors should improve the accuracy of estimation. Since
the KF uses an approximate knowledge of the dynamic coupling of
the different states in addition to the static output relation, it may be
expected to perform better, evenwith the single ring array of sensors.

A similar study can be made of the third-order moments involved
in the direct QSE in Eq. (13), as well as the QSE that determines the
quadratic output equation for the EKF in Eq. (26). The relevant
normalized correlation coefficients are

�a��p�n;n0;m;m0; x;Nc� :�
Ef��n�k�Nc�m

0���n
0�

k�Nc �m�m
0�p̂a�k �x;m�g����������������������������������������������������������������������������

��n��m0���n0��m�m0�Efjp̂ak�x;m�j2g
p

(30a)

�l��p�n; n0; m;m0; x; Nc� :�
Ef��n�k�Nc �m��

�n0 �
k�Nc �m

0�p̂lk�x�g�����������������������������������������������������������
��n��m���n0��m0�Efjp̂lk�x�j2g

p
(30b)

These statistics are real following Remark 2. In Figs. 6c and 6d, the
absolute values of some �a��p and �

l
��p are depicted. These third-order

moments are not insignificant compared with the second-order
moments. Thus, a quadratic model can be expected to be more
accurate than a linear one. It must be noted that these third-order
statistics were not well converged, the consequences of whichwill be
discussed further.

The training data set that was used to determine the coefficients of
the output equations (16) and (26) through SEwas reused to obtain a
realization of the set of corresponding measurement uncertainty
sequences �aKF, �

l
KF, �

a
EKF, and �

l
EKF. Then, with the white-noise

assumption, the respective measurement uncertainty covariances
��KF and ��EKF were ascertained empirically by ensemble averaging.
As an aside, note that for converged statistics, the KF model affords
the following simplifications:

Efj�aKF;k�x;m;Nc�j2g
Efjp̂ak�x;m�j2g

� 1 �
XNn
n�1
j�a�p�n;m; x; Nc�j2;

Efj�lKF;k�x;Nc�j2g
Efjplk�x�j2g

� 1 �
XNn
n�1

XNm
m��Nm

j�l�p�n;m; x; Nc�j2

Fig. 6 Normalized second- and third-order correlations of POD modal coefficients with pressure measured in selected configurations, as noted on

respective ordinate labels.
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This arises due to the least-squares formulation for determining the
estimation parameters, as well as the orthonormality of the POD and
Fourier bases.

The diagonal terms of the covariance matrices are shown in Fig. 7.
Unlike the state uncertainty covariances presented in Fig. 5, the
measurement uncertainty covariances are substantially reduced in
going from a linear expression to a quadratic one. In assessing these
results, it must be borne inmind that the linear output equation for the
azimuthal modal pressure measured on a ring array has five param-
eters tofit the empirical data set of 1131 snapshots. On the other hand,
the corresponding quadratic output equation has anywhere from 80
(for m� 5) to 146 (for m� 0) independent parameters. For the
linear array measurements, the linear model has 30 degrees of
freedom, whereas the quadratic model has 821. Thus, although the
EKF is in principle more accurate than the KF, this profusion of
model parameters for the EKFwouldmake it prohibitively expensive
for real-time implementation. The large number ofmodel parameters
also complicates their determination, owing to poor convergence of
the third-order statistics involved. Recalling that the convective time
separation NcTs was optimized for the azimuthal array of pressure
sensors at x� 5, it is noteworthy that the output uncertainties are not
necessarily minimum at this location.

Recall that at each of thefive axial locations considered herein, one
could either place a ring array of pressure sensors or a single sensor
that belongs to the linear array. All the 242 possible permutations and
combinations of measurement configurations were analyzed with
each of the estimation strategies presented herein. Table 1 presents
the global estimation errors evaluated using the validation data set for
the most pertinent and interesting configurations. Based on these
results, the following remarks are in order.

1) First, the blanks in the table will be explained. In the case of a
QSE with five ring arrays, the covariance matrix of the 96-
dimensional regressor form� 0 was close to singularity, so that the
estimation parameters could not be determined reliably. This shows
that the five ring arrays are unable to provide enough independent
information. In the case of an LTIF with five linear array sensors, the
detectability criterion mentioned in Sec. III.B.2 was not satisfied, so

that the discrete-time algebraic Riccati equation did not have a finite
solution. Since the filter stability conditions are sufficient but not
necessary, it is not surprising that theKF still gave good results in this
case. The filter stability criteria were satisfied in all configurations
involving at least one ring array.

2) With the preceding caveat, the performance of the LTIF is seen
to be indistinguishable from that of the KF, as long as the ring array is
placed at the axial location for which the convective time separation
was optimized (i.e., x� 5). It will be shown that the equality of the
error metric for KF and LTIF is not an artifact of averaging the error
over a large number of realizations.

3) The linear IIR filters display only a slight improvement when a
linear array of sensors is included in the configuration, and the
number of such sensors is seen to be inconsequential. This indicates
that the use of the ROM is rendering the additional measurements
somewhat redundant.

4) To analyze the degradation of performance of the linear IIR
filters in going from cases 5 to 6, the convective time separationNcTs
was reoptimized for x� 6. The new value of Nc � 33 (see Fig. 4),
when used with configuration 6, yielded ��� 1:31 for both KF and
LTIF, and ��� 1:28 for QSE.

5) Linear IIR filtering matches or outperforms QSE while having
substantially reduced real-time computational overhead.

6) Theworst performance in all configurations is found with LSE,
while QSE represents a large improvement over LSE.

7) The LSE and QSE continue to show significant performance
improvements with increasing numbers of measurements.

8) The EKF does not necessarily represent an improvement in
performance over the KF. This is most likely a result of improper
tuning of the uncertainty covariances resulting from the overfitting of
the training data set, as mentioned before. It is also apparent in the
inconsistent improvement of fidelity of the EKF with increasing
measurement locations. However, the EKF also demonstrates the
best performance in the table, viz., in the configuration with five ring
arrays.

From the point of view of estimation accuracy and feasibility of
implementation, the measurement configuration Xa

p � f5g, X l
p �

f4; 4:5; 5:5; 6g is selected for further study based on the preceding
discussion. To gain a more intuitive understanding of the behavior of
the various estimators in this setup, the trajectories of two estimated
states are shown in Fig. 8. The following comments are based on
these results.

1) In Fig. 3b, thefirst PODmodal coefficients form� 0 and 1were
shown to have different peak frequencies. This disparity is reflected
well in Fig. 8. All the azimuthal modes of pressure demonstrated
similar spectral shapes in Fig. 3d. This shapewas replicated solely by
the m� 1, n� 1 POD modal coefficient in Fig. 3b. In multipoint
LSE performed in the physical domain, the estimated quantity,
irrespective of its true spectrum, will have the same spectral shape as
the measured quantity [29]. The same argument can be extended to
multipoint LSE performed in a spatial Fourier domain when all the
independent measurements have similar spectral shapes, as is the
present case. This explains the frequency mismatch of the LSE
trajectory form� 0, when compared with the true trajectory. It also
explains the matching of frequencies and consequent improved

Fig. 7 Normalized standard deviations ofmeasurement uncertainties inKFandEKFmodels for pressuremeasured on a) azimuthal array and b) linear
array. In Fig. 7a, black bars for EKF are overlaid on the corresponding bars for KF.

Table 1 Global estimation error �� for all strategies
in several measurement configurations

Method

No. Configuration LSE QSE KF LTIF EKF

1 Xa
p � ;, X l

p �
f4; 4:5; 5; 5:5; 6g

2.52 1.81 1.34 — 1.42

2 Xa
p � f5g, X l

p � ; 2.26 1.88 1.38 1.38 1.43
3 Xa

p � f5g, X l
p � f6g 2.16 1.64 1.35 1.35 1.50

4 Xa
p � f5g, X l

p � f4:5; 5:5g 2.11 1.51 1.33 1.33 1.42
5 Xa

p � f5g, X l
p �

f4; 4:5; 5:5; 6g
2.03 1.32 1.32 1.32 1.37

6 Xa
p � f6g, X l

p �
f4; 4:5; 5; 5:5g

2.00 1.31 1.74 1.93 1.34

7 Xa
p � f4; 4:5; 5; 5:5; 6g,

X l
p � ;

1.60 —— 1.33 1.32 1.18
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estimation in the m� 1 case. The state trajectories estimated by the
linear IIR filters have improved frequency matching for both modes
owing to their reliance on the ROM, which approximately captures
the true frequency content of the state.

2) The KF gains were found to reach steady state within	25 flow
time steps, and this is borne out by the quick coalescence of the
trajectories estimated with KF and LTIF. Moreover, one filter cannot
be said to be more accurate than the other during the period that they
produced different estimates.

3) The fidelity of KF and EKF cannot be distinguished, in spite of
the order-of-magnitude increase in computational complexity in the
latter.

4) The LSE essentially gives a null result for m� 0, which could
have been predicted from the low value of the corresponding
correlation coefficient presented in Fig. 6a. The LTIF demon-
strates superior fidelity while using the same correlation, since it
additionally exploits the knowledge of the dynamic coupling of the
states.

Fig. 8 Trajectories of selected states (as noted on individual ordinate labels) estimated with various strategies in X a
p � f5g, X l

p � f4; 4:5; 5:5; 6g
configuration.
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5) Compared with LSE, use of QSE significantly improves the
estimation performance in the instance of m� 0, with an attendant
increase in computational cost. However, in the m� 1 case, QSE
does not demonstrate any obvious improvement over LSE.

The foregoing discussion makes it apparent that the LTIF stands
out from the other strategies in terms of estimation accuracy
combined with feasibility of real-time implementation. To make this
determination more conclusive, a final detailed comparison is made
with QSE. The discussion based on Fig. 8 gave some insight, but it
was somewhat anecdotal, since only two of the 30 states were
considered. For quantitative analysis, the modal estimation error
metric � defined in Eq. (27) was evaluated using the validation data
set. The results are presented in Fig. 9. Recalling the modal energy
spectrum presented in Fig. 3a, it is observed that LTIF generally
displays greater accuracy for the more energetic modes. The same
cannot be said of QSE. However, the two strategies yield an overall
similarity of error levels that could be anticipated from Table 1.

In the Introduction, mention was made of multitime SE as an
intermediate between single-time SE and IIR filtering. So it is
pertinent to query if multitime LSE can be as effective as LTIF.
Multitime QSE need not be considered, because single-time QSE
itself poses real-time processing challenges. A multitime LSE was
implemented for the measurement configuration Xa

p � f5g, X l
p�

f4; 4:5; 5:5; 6g, with the same convective time separation as before. It
must be noted that owing to themovingwindow scheme, the training
data setwasmade up of thefirst half of the database and thevalidation
data set comprised the second half. It was found that a moving
window stretching back in time by 25 samples yielded ��� 1:62,
whereas the best result ( ��� 1:30) was obtained with a window of
120 samples. The existence of an optimal window size has been
demonstrated before [37]. Evidently, the memory requirements of
any effective multitime LSE strategy would render it infeasible for
real-time estimation.

V. Conclusions

As in many engineering problems, real-time state estimation for
feedbackflow control poses an essential dilemma between simplicity
and performance. Single-time linear and quadratic stochastic esti-
mators have long been the preferred strategy due to their simplicity.
At heart, these are essentially curve-fitting techniques that do not
exploit any available knowledge of the flow dynamics. Multitime
stochastic estimators do incorporate some notion of the dynamics but
at the cost of increased memory overhead. A major shortcoming of
stochastic estimators is that they pass measurement noise unfiltered
to the state estimate. Moreover, some flow states may not have a
direct static relation with the measured output, but they may only be
observable indirectly through coupled dynamics.

In some cases, a linear time-invariant ROM of the flow dynamics
may be at hand. Then a linear time-invariant infinite-memory filter
may yield an improved estimation with minimal increase in runtime
complexity over the single-time linear stochastic estimator. The two
shortcomings of stochastic estimators mentioned may both be
mitigated by this technique. The infinite memory of the filter is the
result of a recursive update strategy for the state estimate that requires
only the previous estimate to be actually held in memory. A time-

invariant filter may suffer from large transients in state estimation
error, whichmay be addressed by a linear time-varyingKF. The latter
is significantly more complex, since the estimator feedback gains
must be computed by matrix inversion at every time step. If a
nonlinear dynamic model and/or measurement model is available,
then anEKFmay be implemented.However, the increased amount of
computation necessitated at every time step may overwhelm hard-
ware capabilities in the case of most high-speed flows of interest.
Moreover, the increasing complexity may even lead to a degradation
of fidelity if the filter is not tuned properly.

In this paper, all the preceding estimation strategies were imple-
mented and assessed using a well-established DNS database of a
high-speed low-Reynolds-number axisymmetric jet. A time-
invariant ROM of the shear layer of this jet using POD and GP has
recently been developed. To cover the important region of the end of
the potential core, the axial extent of themodeling domainwas from7
to 10 jet diameters downstream of the nozzle exit. The pressure in the
irrotational near field has long been surmised to be an ideal
measurement for estimating the state of the shear layer in real time.
For practical implementation, the pressure sensors should be close to
the nozzle exit, upstream of the modeling domain. In the axisym-
metric jet, it is meaningful to employ an azimuthal ring array of such
sensors in a cross-sectional plane, or a linear array in a meridional
plane. In this paper, various permutations and combinations of such
arrays were located in the axial domain between 4 and 6 jet diameters
downstream of the nozzle exit. An effective configuration was found
with a ring array in the middle and two sensors on either side of it
forming a uniform linear array over the preceding axial range. Com-
pared with a single ring array, the preceding arrangement improved
the estimation accuracy to a greater or lesser extent, depending on the
strategy used. The convective time separation between the upstream
measurement and the downstream velocity field to be estimated was
addressed by making the estimator predictive; this is a significant
benefit for feedback control. Another novel approach introduced in
this paper is to derive the measurement equation for the dynamic
filters using single-time SE.

Single-time LSE was found to be quite unsuitable for the present
application, since some states of the model are not linearly related to
the pressure signal. QSE yielded significant improvements in
accuracy, bearing testimony to the essential nonlinearity in the
pressure-velocity coupling. The estimation accuracy of the LTIFwas
indistinguishable from the linear time-varying KF. The former
showed better or equivalent fidelity compared with the quadratic
stochastic estimator, thereby demonstrating the distinct benefit to be
accrued in moving to a dynamic model-based estimation strategy. It
is to be emphasized that the LTIF is similar in complexity to the linear
stochastic estimator, and it is considerably less resource intensive
than the quadratic stochastic estimator. The EKF is significantly
more complicated, but it actually underperformed the linear filters,
possibly owing to insufficient tuning.

The DNS database of the unforced jet provides an excellent
testbed for determining effective estimation strategies and mea-
surement configurations. The next step would be to implement and
validate these ideas in the high-Reynolds-number forced laboratory
jet of engineering interest. In spite of the wide disparity in Reynolds
numbers, the two jets have been previously found to possess similar

Fig. 9 Modal estimation errors in configuration X a
p � f5g, X l

p � f4; 4:5; 5:5; 6g using a) QSE and b) LTIF.
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dynamics of the coherent structures of interest. Moreover, there are
well-established tools for extending linear estimation models to
address forcing. The insight gained through the extensive inves-
tigation reported in this paper would be essential in such future
endeavors.

Appendix: Implementing Quadratic Stochastic
Estimation in a Fourier Domain

Implementing SE consists of three main steps: identifying the
product terms to retain among all possible combinations, simplifying
the model so that the set of regressors is linearly independent, and
determining the set of multiplicative parameters so that the model
optimally fits the given data set. For QSE in the Fourier domain, the
model proposed in Eq. (13) already addressed the first issue by
reference to Remark 4. The second step will be discussed next.

Themodel proposed in Eq. (13) has different quadratic parameters
multiplying product terms that differ only in the order of
multiplication. Such terms are not independent; thus, the least-mean-
squares problem becomes ill-posed if one tries to determine the
associated parameters as distinct entities. A related issue is that all the
estimation parameters are known a priori to be real, following argu-
ments made in Remark 2. Thus, for m� 0, to avoid redundancies,
one formulates the following estimator:
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For m ≠ 0, the redundancies are removed as follows:
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Here, b�c denotes the floor function.
As in all stochastic estimators, QSE proceeds by defining the

mean-square estimation error. It is immediate from the preceding
formulations that the QSE model is linear in the estimation
parameters, so that the mean-square error surface is a paraboloid in
the parameter space. From this stage on, the problem becomes

indistinguishable from an LSE, and the solution is well known; see,
for example, [65].

The estimation parameters appearing in Eq. (13) can be retrieved
from the ones determined previously using the following equations.
However, it must be understood that those parameters that appear on
the right-hand side of the following equations, but not in the
preceding equations, are identically zero:

qaaQSE�s; s0; m0; m �m0; n; Nc�

� 0:5

1� �m;0
fQaa

QSE�s; s0; m0; m �m0; n; Nc�

�Qaa
QSE�s0; s; m0; m �m0; n; Nc�g

� 0:25fQaa
QSE�s; s0; m �m0; m0; n; Nc�
�Qaa

QSE�s0; s; m �m0; m0; n; Nc�g;
qllQSE�s; s0; m; n; Nc�
� 0:5fQll

QSE�s; s0; m; n; Nc� �Qll
QSE�s0; s; m; n; Nc�g;

qalQSE�s; s0; m0; 0; n; Nc�
� 0:5fQal

QSE�s; s0; m0; 0; n; Nc� �Qal
QSE�s; s0;�m0; 0; n; Nc�g
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