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Acoustic localization of gunshots is of interest for protecting security camps in contested
forests, increasing soldiers’ situation awareness in ambushes, as well as in guarding cities.
All these scenarios are also fraught with obstacles coming in the path of acoustic waves.
We present a computational study of the effect of obstacles on the accuracy of localization
of point sound sources like gunshots. The two-dimensional linearized Euler equations are
solved with the dispersion relation preserving scheme. The localization is performed using
the wavefront curvature method based on pressure signatures recorded at three virtual
microphones. We report at most 8◦ of error in the estimated bearing angle of the source
across a range of practical values of five parameters – viz. the location and size of the
obstacle, and the size, orientation and location of the sensor array relative to the source.
This level of error may be quite acceptable in the scenarios considered. On the other hand,
the range error is much more severe, exceeding 100% of the true range in a few cases. In
the scenarios considered, the bearing angle estimate is much more critical than the range
estimate. Overall, we conclude that acoustic localization approaches are quite robust in
the presence of obstacles.

I. Introduction

Modern gun-battles are rarely waged on open ground where enemies face each other, and the origin
of unfriendly and friendly fire is easy to locate. Instead, most gunfires are encountered in obstacle-dense
situations like cities, forests and mountain valleys, where the location of a shooter may be difficult to
pinpoint aurally. Moreover, security forces may not even be present within audible range of all gunshots at
all times, due to the highly mobile nature of modern combat. However, in these situations, it would still be
desirable to have real-time knowledge of the origin of unfriendly fire so as to prepare prompt and effective
counter-measures.

Gunshots have two unique acoustic features that are used to localize their origin – these are the muzzle
blast and the shock wave trailing the bullet if it is travelling supersonically. In this work we focus on the
former signature only. A conventional firearm uses an explosive propellant in its muzzle to discharge the
bullet. The sound from this explosion travels in all directions at sonic speed, but is loudest in the direction of
firing. Also, the typical acoustic signature varies across observer locations1. The microphone signal recorded
in the front sector of the gun displays a sharp rise (within 50 to 200 µsec) followed by a relatively slower
decay. The signature recorded in the rear sector shows several oscillations that are much less distinctive.
The blast wave suffers attenuation and broadening due to atmospheric absorption, wind, ground effects, and
hindrance from solid obstacles – this renders them less useful for sensors at large distances from the shooter.
As a practical matter, the bearing angle of the gunfire source is more relevant than its range.

The literature reports several algorithms for the problem of locating the shooter using the muzzle blast
alone; the choice is usually dictated by the particular use-case scenario and the sophistication of the hardware
implementation. The basic input to all the algorithms is the set of differential times-of-arrival (DTOAs) of
the acoustic event wavefront for various pairs of sensors. Some of the available algorithms are the classical
least-squares method with a regularization term2, Bancroft’s method3, wavefront curvature method4,5, and
unit sighting vector method6. The last three methods yield a closed-form solution, whereas the first one is
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iterative. The first three methods assume that the acoustic wavefront is spherical, and they yield the bearing
angle and range of the acoustic source. The last algorithm assumes that the source is so far away from the
sensors that the wavefront is plane, thereby yielding the bearing angle only; however, the range may be
estimated if more than one cluster of sensors are deployed far enough apart. In two-dimensional problems
where the source may be assumed to be coplanar with the sensors, at least three sensors are needed for all
the algorithms; the first two algorithms can readily utilize data from more sensors to improve the accuracy.
In three-dimensional problems, at least one more sensor is needed.

All the available algorithms have been developed for acoustic environments that are free from obstacles.
In other words, each sensor is assumed to have a line-of-sight to the source. In this work, we intend to
understand the effect of obstacles on localization of acoustic events. For this, we use an in-house code to
solve the linearized Euler equations on a uniform Cartesian grid using the dispersion-relation-preserving
(DRP) scheme7. Given the limitations of the code, only rectangular obstacles can be simulated. The
wavefront curvature method is used for localization of the simulated acoustic event.

II. Computation of two-dimensional acoustics in the presence of obstacles

Linear acoustics are a solution of the linearized Euler equations (LEE). An in-house LEE code was devel-
oped following Ref. 8. The salient features of this code are listed below; further details of the implementation
may be found in the reference.

• The two-dimensional equations are solved.

• The grid is Cartesian, and is uniform in both x and y directions.

• The 7-point (fourth-order accurate) optimized finite difference scheme is used for spatial discretization.

• The four-level optimized time-marching scheme is used.

• There is provision for imposing a uniform base flow in the domain. However, in the presence of
obstacles, the base flow is turned off since its uniformity is unphysical.

• The far field can have radiation or inflow boundary conditions; the latter only applies in case of a
non-zero base flow.

• The presence of one or more obstacles may be simulated, as long as their edges coincide with the uniform
background grid. Thus, only rectangular obstacles can be considered. The walls of the obstacle have
perfectly reflecting boundary conditions.

• Spurious short waves that contaminate the solution are especially problematic near the corners of
obstacles; artificial selective damping with mesh Reynolds number of 20 is applied to address this.

LEE supports vorticity and entropy modes along with acoustic modes. The latter can be selectively
triggered by specifying only the pressure initial condition while the remaining variables (x and y components
of velocity, and density) are set to zero8. In the code, all length dimensions are normalized by the x-grid
spacing ∆x; the y-grid also has the same spacing. All velocities are normalized by the speed of sound c, and
density is normalized by ambient density ρ0. Pressure is normalized by ρ0c

2.
The acoustic solution was validated against the ones reported in the textbook for the case of free space

propagation and the case of an infinite wall on one side, both with an imposed base flow.

III. Wavefront curvature method

The wavefront curvature method4,5 is a passive ranging method used to localize acoustic sources assuming
perfectly spherical spreading of the acoustic wave. The idea is to find the curvature of the wavefront generated
by the acoustic event of interest that passes over a set of three acoustic sensors in a planar problem (see the
schematic in fig. 1). The acoustic wave radiated by the source will be received at the different sensors at
slightly different times. The differential time-of-arrival (DTOA) for two pairs of sensors (S0−S1 and S0−S2

in the schematic) are determined from the recorded sound signals, and the range and bearing of the acoustic
source is recovered from them.
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Figure 1: Schematic for application of wavefront curvature method to a non-linear array

In the schematic of fig. 1, the origin of the sensor triplet is S0, and its axis is S0 − S1. With respect to
this, the range is R and the bearing angle is θ. To calculate these two quantities, we first define the DTOA
between a pair of sensors with indices i and j as τij := ti− tj , where ti is the time-of-arrival of the wavefront
at sensor i. We also define the normalized DTOA between the sensor pair i− j as ηij := cτij/dij , where c
is the speed of sound in the ambient and dij is the separation between the sensor pair i − j. Note that ηij
takes values between −1 and +1. In particular, ηij = +1 indicates that the source, sensor j and sensor i is
an ordered collinear triplet. Similarly, ηij = −1 indicates that the source, sensor i and sensor j is an ordered
collinear triplet. Finally, ηij = 0 indicates that the source is on the perpendicular bisector of the line joining
sensors i and j.

From the assumption that the wavefront is spreading spherically at the uniform speed of sound, and from
the geometry of fig. 1, we have

R1 = R− cτ01 = R+ cτ10. (1)

An alternate expression for R1 is obtained from the cosine law for the triangle GS0S1, viz.

R1 =
√
R2 + d210 − 2Rd10 cos θ. (2)

Eliminating R1 from the above two equations along with the use of the definition of ηij yields

R = d10
1 − η210

2(η10 + cos θ)
. (3)

With reference to fig. 1, a similar analysis of the sensor pair S0 − S2 yields

R = d20
1 − η220

2(η20 + cos(γ − θ))
, (4)

where γ is the included angle in the array (positive if the arm S0 − S1 has to be rotated counter-clockwise
to encounter the arm S0 − S2, as in fig. 1).

To solve for the bearing angle, one can eliminate the range R from eqns. (3) and (4). Use of trigonometric
identities then yields the solution for the bearing angle as

θ = tan−1

(
sin γ

cos γ − A

)
± cos−1

(
A η10 − η20√

1 + A 2 − 2A cos γ

)
, A :=

d20(1 − η220)

d10(1 − η210)
. (5)

This expression is evidently invalid if η10 = +1 or −1, but in the respective cases the bearing angle θ is π
and 0, as discussed earlier. Similarly, if η20 = +1 or −1, θ is easily seen to be γ + π and γ respectively.

Substitution of the two solutions for the bearing angle in eqn. (3) (or eqn. (4)) yields two corresponding
solutions for the range R. In most cases, substitution of these two (θ,R) solution sets in the original equations
will reveal only one of them to be valid. However, under degenerate circumstances, the wavefront curvature
method (and in fact any algorithm) with a sensor triplet yields two solutions, and more sensors are required
to resolve the ambiguity.

For the consistency of subsequent reporting, the reference point in the sensor array is taken to be its
centroid instead of the 0th sensor.
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IV. Results

We first demonstrate the effect of obstacles on the acoustic field of a point source; subsequently we present
the result of a parametric study on the localization accuracy in the presence of an obstacle.

It will be shown below that acoustic waves resembling typical muzzle blasts are obtained in the far field
by choosing a Gaussian pulse as the initial condition for pressure (as in Ref. 8)

p(x, y, t = 0) = ε exp
[
− ln 2

{
(x− x0)2 + (y − y0)2

}
/σ2
]
. (6)

Here, σ determines the spatial width of the pulse and is set to 3 units following Tam 8 ; the implications of
this choice will be discussed subsequently. For the amplitude ε, a normalized value of 0.01 was used; note
that this must be small compared to unity for linearity to hold. The origin of the pulse (x0, y0) is set to the
origin of the coordinate system. The time step is chosen as 0.1∆x/c; Tam 8 recommends an upper bound of
0.19∆x/c for stability.

A. The nature of acoustic distortion caused by obstacles

Figure 2a shows the contours of pressure fluctuations in the domain at several time instants in the absence of
any obstacle. The smooth behaviour of the expanding pressure pulse near the boundaries (130∆x from the
source in all directions) attest to the correct implementation of the radiating boundary condition. Figure 2b
presents the corresponding results when a small square obstacle of size 20∆x on a side is centred at (20∆x, 0).
Figure 2c shows the pressure contours when the obstacle is doubled in size and is centred at (30∆x, 0). The
increasing distortion of the wavefront is apparent in these figures, along with the reflected and diffracted
waves. Evidently, the distortion is pronounced directly across from the obstacle, on the other side from the
source. However, the distortion diminishes with distance from the obstacle.

Figure 3a displays the pressure signatures recorded on three virtual microphones in the case of propagation
in free space. The signals exhibit a single sharp positive excursion followed by a single negative excursion
that is more gradual, similar to typical muzzle blast signatures9. This justifies the use of the Gaussian
pulse as the initial condition. The distortion and attenuation of the acoustic wave in the presence of the
obstacle is clearly demonstrated in fig. 3. The reflected wave is evident in the case of the small obstacle; it
has superposed with the primary wave and obliterated the negative peak in the case of the large obstacle.

The localization approach requires the differential time-of-arrival (DTOA) for all sensor pairs, which is
identified as the time delay corresponding to the peak of the cross-correlation of the corresponding signal
pair. Quadratic interpolation is used to refine the estimate of the peak time delay from cross-correlation.

We estimate the time period of the pulse to be about 12∆x/c (the time from the positive peak to the
negative peak is half of this), so that its wavelength is λ = 12∆x. For reference, the time period of muzzle
blasts reported in the literature (e.g. Ref. 1,9) is approximately 3 msec; this corresponds to a wavelength
of about 1 m. In the rest of the paper, the above wavelength will be used to non-dimensionalize all linear
dimensions, e.g., obstacle size, sensor array size, array-to-source distance, and obstacle-to-source distance.

B. Parametric study of localization error due to obstacles

Sensor-to-source distance: If the source is very close to the sensor array, then the algorithmic lo-
calization is redundant – aural and visual discrimination is sufficient in this context. On the other hand,
as we have alluded to in the context of fig. 2 and will quantify subsequently, the deleterious effect of an
obstacle on localization accuracy diminishes with distance of sensors from the source. Keeping in mind the
computational cost, we initially study the case where the sensors are about 48λ from the source. Per the
preceding discussion, this corresponds to a physical distance of about 48 m. Subsequently, we also report on
simulation results using an array placed 30λ from the source.

Sensor array size: Table 1 gives the configuration of four sensor triplets that we consider. The arrays
are all isosceles triangles; equilateral triangles were aimed for, but could not be achieved exactly given the
limitations of the square structured grid of the simulation. The triplets are arrayed either symmetrically or
asymmetrically about the x−axis – the arrays are named accordingly. Two array sizes – λ/2 and λ – are
evaluated, these being the measure of the base of the isosceles triangle. These correspond to ∼ 0.5 m and
∼ 1 m physical arrays.
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Figure 2: Contours of pressure at various time instants (a) in free space, and in domains with (b) a small
obstacle and (c) a large obstacle. Sub-plots in each row have a common colour scale; coordinates x and y
are normalized by the grid spacing ∆x; time t is normalized by ∆x/c.

Obstacle size: Square obstacles of four different sizes – λ/2, λ, 2λ, 3λ – are assessed. These correspond
to a range of ∼ 0.5 m to ∼ 3 m. As expected, and demonstrated below, the localization accuracy degrades
with the obstacle size. Obstacles of even larger size are not of practical interest in the context of a forest
environment, say. In a city setting, the problem is highly three-dimensional, and thus the present exercise is
insufficient anyway.

Obstacle location: The discussion Section A has indicated that the distortion of acoustic waves due to
an obstacle is primarily confined to the zone directly behind the obstacle. Thus, in the parametric study
that follows, we place obstacles on or near the line joining the source to the sensors. As a practical matter,
one will not situate a sensor array close to an immovable obstacle. Thus, the minimum range of along-
the-line distances between the obstacle and sensor array is limited to 15λ. Four different along-the-line
(x−coordinate) obstacle positions are evaluated – viz. 3λ, 7λ, 11λ, and 15λ from the source. Also, four
different normal-to-the-line (y−coordinate) positions are evaluated – viz. 0λ (on the line), λ, 2λ and 3λ.
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Figure 3: Timeseries of pressure (normalized by the ambient pressure) recorded at three virtual probes with
coordinates (in units of ∆x) as noted in the legends; time t is normalized by ∆x/c. Displayed are the cases
of (a) free space, (b) small obstacle, and (c) large obstacle, as presented in fig. 2.

Array
Symmetric, Symmetric, Asymmetric, Asymmetric,

size λ/2 size λ size λ/2 size λ

Probe 0 1 2 0 1 2 0 1 2 0 1 2

x 48 48 481⁄3 48 48 482⁄3 471⁄4 481⁄4 48 471⁄2 481⁄2 48

y −1/4 1⁄4 0 −1/2 1⁄2 0 −1/6 −1/6 1/6 −1/3 −1/3 1⁄3

Table 1: Virtual probes’ x and y coordinates in units of pulse wavelength λ for four arrays considered – two
arrays that are symmetric about the x−axis, and two that are not. All arrays are ∼ 48λ from the source,
and centered on the x−axis.

1. Bearing angle estimation error

Figure 4 presents the bearing angle estimation errors corresponding to the (44 =) 256 parameter combinations
described above. The maximum error is limited to only 3◦ over all the cases analyzed. None of the trends
discernible in the results are absolute, attesting to the complicated nonlinearity of the localization problem.

No error is incurred in the case of a sensor array situated symmetrically about the line joining the source
to the array centroid, with the obstacle positioned symmetrically on the line (y = 0). This is to be expected,
since the array encounters a symmetrically distorted acoustic field. Such is not the case when the sensors
are arrayed asymmetrically about the line from the source.

In the case of the symmetric array, the errors are quite similar for the two array sizes studied. On
the other hand, for the asymmetric array case, the error increases with decreasing array size, which is the
expected trend. As anticipated from fig. 2, the error generally increases with the obstacle size, although it
is not strictly monotonic.

The bearing angle error generally amplifies with increasing proximity of the obstacle to the sensors, but
this trend is not universal. The effect of the normal-to-the-line (y) position of the obstacle is non-monotonic.
In the case of the symmetric array, the largest error occurs when y = λ; this may be related to the differential
diffraction of acoustic waves on the upper and lower edges and corners of the obstacle.

Figure 5 elucidates the effect of reducing the source-to-sensor distance keeping all other parameters un-
changed. Here, the three sensors in the array are located at (30,−1/2), (30, 1/2) and (302/3, 0), all coordinates
being normalized by the pulse wavelength λ. With reference to table 1 and fig. 4, this constitutes a symmetric
array of size λ, located 30λ away from the source.

The major difference is observed in the increased bearing angle estimation error incurred for the largest
obstacle placed closest to the sensor array, and just off of the source-to-sensor line (y = λ). The error of 7.5◦

should be compared to the 3◦ error in the corresponding case with the farther sensor array in fig. 4. This
could have been anticipated from fig. 2 – the distortion in the wavefront diminishes with distance behind the
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Figure 4: Bearing angle estimation error (in degrees) for a point source located at (0, 0) and sensor arrays
centred at (48λ, 0), λ being the pulse wavelength. Each row corresponds to one of the four arrays described
in table 1. Square obstacles of four sizes are tested as indicated at the top of each column. In each subplot,
the error is plotted vs. the obstacle centroid position (x) along the line joining the source to the sensor array.
The four curves in each subplot are for different normal-to-the-line distances of the obstacle center (y).

Figure 5: Bearing angle estimation error using a ‘symmetric’ sensor array of size λ centred at (30λ, 0); refer
to fig. 4 for further details.

obstacle. However, given the application of the localization technology, the overall errors in angle estimate
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(a) (b)

Figure 6: Range estimation errors normalized by the true range using a ‘symmetric’ sensor array of size λ
centred at (a) (30λ, 0), and (b) (48λ, 0); refer to fig. 4 for further details.

may still be acceptable.

2. Range estimation error

The direction of propagation of the acoustic wavefront encountered by the sensor array determines the
bearing angle estimate. On the other hand, the curvature of the wavefront is used to estimate the range of
the source. The presence of an obstacle is known to distort the wavefront directly behind it. This explains the
large errors in the range estimation presented in fig. 6. Even for the small obstacle of size λ/2, the maximum
error reaches up to 30% of the true range. For the larger obstacle, the estimate worsens significantly in
some cases. The errors are lower when the sensor is placed farther from the obstacle, due to the decrease of
distortion of the wavefront with distance from the obstacle.

We omit presentation of range estimation results for larger obstacles (sizes 2λ and 3λ), since the trend
towards worsening results are already demonstrated.

V. Conclusion

Real-time gunshot localization algorithms that use simultaneous recordings of the impulsive signature on
multiple microphones typically assume that the muzzle blast wavefront is a sphere centred on the shooter.
In this paper, we ascertain the validity of this assumption in the presence of intervening obstacles using
numerical experiments. Our results indicate that the estimate of the bearing angle of the shooter is quite
robust to obstacles, whereas the range estimate may be rendered very inaccurate. The bearing angle happens
to be the information of greater importance in the relevant combat scenarios.

Acknowledgements: The authors acknowledge support from the National Center of Excellence in Tech-
nology for Internal Security (NCETIS) at Indian Institute of Technology Bombay.
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