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Abstract
This article reports on the development of a fast method for generating the aerodynamic database for subsonic
flow over a missile. At present, this is typically achieved using RANS-based CFD, which is expensive for the
complex missile geometries and the multiplicity of operating conditions to be evaluated. The presented reduced-
order model (ROM) provides a reasonably accurate prediction of the aerodynamic coefficients of the missile (and,
in fact, the full flow field around it) within half a minute. In particular, in the interpolative regime, prediction errors
for all coefficients are typically less than 1% of their respective maximum values encountered in the database,
with extrapolation incurring more error. The empirical approach ‘learns’ from the CFD solutions calculated for a
few operating conditions, and then is able to make predictions for any other condition within a feasible set. The
learning employs proper orthogonal decomposition (POD) to characterise the most important features of the flow.
The prediction is posed as an optimisation problem that aims to find the flow solution as a linear combination of
the above POD modes that minimises the residual of the governing equations. Innovations on the prevailing POD-
ROM approach include novel implementation of boundary conditions, simplified computation of the aerodynamic
coefficients, and a procedure for choosing modelling parameters based on extensive cross-validation. Challenges
overcome in application to a problem of industrial relevance are discussed.

Nomenclature
B vector of boundary conditions that a flow field has to satisfy
CA, CS, CN axial, side and normal force coefficients of missile
Cl, Cm, Cn roll, pitch and yaw moment coefficients of missile
D diameter of missile
J cost function in optimisation-based ROM
M Mach number
Nc,R number of grid cells that contribute to the ROM residual evaluation sub-domain
Np number of POD modes used for an expansion
Ns number of ‘snapshots’ – steady flow solutions available in learning database
R, Re vector of residuals of governing equations, and residual of the one denoted by e
R̃, R̃e approximations of the above quantities using POD expansion
R̃

c

e volume-integrated residual of e-equation over the cth grid cell
p pressure; also signifies the Lp-norm of a vector field (disambiguated by context)
q, q vector field of flow variables and any one of its scalar components
u, v, w x, y and z components of flow velocity, respectively
� flow domain
�P sub-domain over which the POD inner product is evaluated
�R sub-domain over which the ROM residual is evaluated
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α angle-of-attack of missile
ρ density
μ vector of operating condition parameters
ηn, η projection coefficient of a flow snapshot on to the nth POD mode, and vector of all such coefficients

included in an expansion
ζ n

s weight of sth snapshot in learning database towards nth POD mode
λn eigenvalue corresponding to the nth POD mode
φ roll angle of missile
γ ratio of specific heats at constant pressure and volume
(·) mean of any flow quantity across all snapshots of the learning database
(·)′ deviation of any flow quantity from its mean value in the learning database
(̃·)n POD eigenfunction (mode) number n corresponding to a flow quantity

1.0 Introduction
The design of a missile involves consideration of several variants of the geometry. A fundamental
requirement of this process is a detailed aerodynamic database for each of these design choices, listing
the forces and moments acting on the missile for a large range of conditions – e.g. various combinations
of Mach numbers, angles of attack, and roll angles. Creation of such aerodynamic databases poses a
significant cost to organisations involved in the development of novel configurations. With the availabil-
ity of increasing computing power and improved numerical algorithms, most of this activity has shifted
from physical flight tests and wind tunnel experiments to the virtual environment of computational fluid
dynamics (CFD). The state-of-the-art CFD invariably involves a large-scale full-order model (FOM),
a terminology that distinguishes this model from the more efficient, albeit approximate, reduced-order
model (ROM) outlined subsequently. Depending on the accuracy required, the designer may seek quick
Euler (inviscid) solutions or costlier Reynolds-averaged Navier-Stokes (RANS) solutions (that account
for molecular and eddy viscosity). In either case, the state-of-the-art FOMs yield steady flow solutions
because unsteady simulations are neither computationally feasible nor necessary for the engineering
answers being sought. Unfortunately, for the complex missile configurations of practical relevance, the
computational expense of generating large aerodynamic databases is still very high.

Over the years, a variety of methods have been explored for reducing the computational costs of
these databases, with minimal attendant degradation in accuracy. The overall approach is termed model
order reduction (MOR); Ref. [1] is an up-to-date review. All MOR methods involve empiricism; i.e. the
designer must first create an FOM database (the so-called learning database) by sparsely sampling the
freestream parameter domain (e.g. Mach number, angle-of-attack and roll angle) and/or other geometric
parameters (like fin deflection angle) for a particular design configuration. These flow solutions are
termed learning snapshots in this article. This step requires heavy computational effort – it represents
the upfront cost of these empirical approaches. Subsequently, MOR promises to efficiently predict the
flow solutions (or their salient properties, like aerodynamic coefficients) using the empirical database
of snapshots. Note that fewer FOM snapshots need to be simulated in this approach with the rest being
predicted at very low cost, so that the total cost incurred is much less than that in the generation of
current state-of-the-art FOM databases.

Amongst MOR approaches, we focus on projection-based methods. In these, the flow solutions
from the learning database are analysed to derive one or more empirical reduced-order bases (ROBs).
Subsequently, the methods seek flow solutions that are projected on to these bases. Projection-based
MOR methods fall in one of two broad categories – those based purely on interpolation and those that
are based on minimising the residual of the governing equations. In the literature [2], these are also called
non-intrusive vs. intrusive approaches. For the purpose of this article, an outcome of the projection-based
residual minimisation MOR strategy will be exclusively called a reduced order model (ROM).

Interpolation methods, as the name suggests, involve interpolation of empirical snapshots based on
their operating conditions to determine the flow solution for a new operating condition that was not
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evaluated in the original database. These methods are very fast, and can deliver results of acceptable
accuracy if the flow features are approximately similar between the new condition and those evaluated
for the original database. A large variety of interpolation methods are reported in the literature. They
may be classified based on the interpolated quantity. The simplest are those that directly interpolate
the integrated aerodynamic quantities – viz. coefficients of lift, drag etc. Of intermediate complexity
and accuracy are approaches that interpolate the pressure and shear stress on body surfaces [3]. The
other end of the spectrum is occupied by methods that attempt to predict the solution over the entire
flow domain for new parameter sets of interest, using interpolation of the projection coordinates of the
solution with respect to an appropriate ROB [2, 4–6].

In discussing the projection-based residual-minimising MOR approaches for flows reported in the
literature, we make a distinction between unsteady and steady ROMs. For problems dominated by time-
varying flow fields, unsteady ROMs are required to approximately determine the essential flow features
in a time-resolved manner. On the other hand, steady ROMs find utility in problems where knowledge
of the steady (usually time-averaged) component of the flow field is sufficient for engineering purposes,
as in the present case.

The steady ROM development starts from snapshots of the steady flow field for different values of
a set of parameters of the problem, just like in the case of interpolation. The next step is the eduction
of the ROB that represents the dominant flow features observed across all snapshots. In the literature,
this is consistently pursued with proper orthogonal decomposition (POD) [5, 7–12]. POD is a statistical
procedure that delivers an orthogonal transformation to convert a set of observations (snapshots) of
possibly correlated variables (flow fields) into a reduced set of linearly uncorrelated variables (basis
functions/modes) [13, 14]. The POD modes afford a reduced-order representation of the steady flow
fields. Being an empirical method, the POD modes derived are entirely dependent on the richness of the
snapshots – i.e. the snapshots should cover the range of flow fields that are expected to be encountered
by the ROM.

The preceding steps constitute the offline component in the MOR procedure; they are performed
once at the beginning. The final online step is the prediction of the steady flow solution for a particular
parameter set that was not computed in the snapshot-creation step. In case of ROMs, this new flow solu-
tion is derived as a linear combination of the POD modes that optimally satisfies the steady governing
equations of the flow along with appropriate boundary conditions [7–12]. The optimality is in terms of
the Lp-norm of the residual of the governing equations, where p is usually 1 or 2. The ROM method is
more robust and versatile (albeit computationally expensive) than the interpolation method since it is
guided by the governing equations. The ROM approach has been shown to be useful for predicting the
steady aerodynamics of an aircraft wing/fin in both two-dimensional [7–9] and three-dimensional [10]
problems; it has also been successfully applied to full aircraft configurations [5, 11, 12].

Here we report on the further development and application of the POD-ROM approach to the problem
of predicting the aerodynamic characteristics of a missile. Although the missile’s speed ranges from sub-
sonic to supersonic, the scope of the present work is limited to a regime of subsonic missile flight where
shocks are absent. Modelling shocks in a POD setting is complicated [6, 8, 15, 16], and will be pursued
in the future. Moreover, we address variations in freestream conditions of the missile, but not in its geo-
metric configuration, viz. fin deflection. Even with these restrictions, the ROM tool may partially replace
expensive FOM calculations in aerodynamic characterisation, leading to large savings in computational
time and cost. Indeed, we demonstrate how well the ROM can replicate the results of RANS CFD, at a
very small fraction of the computational cost. Along the way, we also present on improvements in bound-
ary condition formulation, aerodynamic coefficients evaluation and incorporation of physics-motivated
efficiencies in the POD-ROM approach.

The article is organised as follows. Section 2 describes the missile aerodynamics problem under
investigation. Proper orthogonal decomposition is briefly recapitulated in Section 3, prior to description
of the ROM approach in Section 4. Results are presented and discussed in Section 5; these include
description of the POD basis educed from the learning database, the choice of modelling options
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Figure 1. Side and rear views of the typical missile configuration studied.

based on cross-validation, validation with separate test cases, and a brief comparison with results from
interpolation-based prediction. Final conclusions and outlook appear in Section 6.

2.0 Missile configuration and its FOM database
To motivate the exposition of the POD-ROM theory to follow, we first describe the air-launched missile
configuration being studied; a sketch is shown in Fig. 1. This is a typical configuration with blunted
tangent-ogive nose, cylindrical body, four wings, and all-movable in-line tail fins. The body has a slen-
derness ratio (length to diameter) 16.35, the nose has a fineness ratio of 1.75 with bluntness ratio of
20%, and the boat-tail has an angle of 8.6◦. Although the fins are actuated for controlling the trajectory,
they remain undeflected in the current work. In the nominal roll orientation, the wings and fins form
an ‘X’ with respect to the plane containing the longitudinal axis and the relative wind vector. This also
serves as the plane of mirror symmetry for a pair of external wire tunnels running along each side of the
missile, and a set of four lugs near the top that anchor the missile underneath an airplane.

Two separate coordinate systems – xyz and x′y′z′ – are used to describe the missile. The origin of both
are at the missile nose, and the coincident x- and x′-axes run along the longitudinal axis. In the body-
fixed nominal coordinate system xyz, the y-axis is normal to the relative wind vector in the nominal
roll orientation. In the industry, however, the total-angle-of-attack coordinate system x′y′z′ is prevalent,
with the y′-axis being orthogonal to the relative wind vector. The two coordinate systems coincide in the
nominal roll orientation. The convention for the roll angle φ is also specific to the industry. In particular,
φ = 45◦ is the nominal roll orientation, with the relative wind vector lying in the first quadrant of the
x − z plane (and also the coincident x′ − z′ plane). If the relative wind vector happens to be in the fourth
quadrant of the x − z plane, then we say that φ = −135◦. On the other hand, φ is 0◦ when the relative
wind is in the plane of the bottom left wing/fin (as viewed from the rear); see Fig. 1. In summary, φ varies
in the range −180◦ to +180◦, and the angle-of-attack α only takes positive values; usually α ≤ 20◦.

Figure 1 also presents the sign convention for the aerodynamic force and moment coefficients,
referred to the x′y′z′ coordinate system. The force coefficients are axial CA, side CS and normal CN .
The corresponding moment coefficients are roll Cl, pitch Cm and yaw Cn; the moment arm is measured
from the missile nose. As usual, the characteristic length, area, speed and density for defining the coeffi-
cients are the missile diameter D, cross-sectional area πD2/4, freestream speed and freestream density,
respectively.

Table 1 presents the combinations of flight conditions comprising the learning database for the empir-
ical ROM. There are two subsonic Mach numbers, six angles of attack and three roll angles; note that
none of these cases displayed shocks in the flow field. All cases simulate flight at the same ambient con-
ditions. Although all possible combinations should result in 36 snapshots, only 32 of these are unique
since the roll angle ceases to matter at α = 0◦. If the minor protuberances of the two wire tunnels and
four lugs were absent, then the missile would have had a four-fold rotational symmetry and a two-fold
mirror symmetry. The minor symmetry-breaking features are indeed ignored in the industry for the pur-
pose of generating the aerodynamic database, which explains the limited range of roll angles simulated.
Direct predictions from our ROM will also be limited to this range; predictions at other roll angles can
be obtained from symmetry arguments by ignoring the symmetry-breaking features, just as with the
FOM database.
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Table 1. Freestream parameter combinations for missile aerodynamics learning
database, and maxima of the six aerodynamic coefficients across the database

Parameter Values
Mach number, M 0.6, 0.8
Angle-of-attack, α (degrees) 0, 2, 5, 10, 15, 20
Roll angle, φ (degrees) 0, 22.5, 45
Maxima of CA, CS, CN , Cl, Cm, Cn 0.45, 1.39, 10.18, 0.47, 102.95, 15.10

Figure 2. Mesh used in CFD calculations on the missile surface and in the plane of mirror symmetry.

The empirical database was generated using numerical simulation. The flow domain was a cube of
side about 160 times the missile diameter D, centred on the nose. The edges of the cube were aligned
with the body-fixed coordinate axes shown in Fig. 1. A three-dimensional hexahedral unstructured grid
was generated in HEXPRESS (version 6.0; NUMECA International Company; Brussels, Belgium), with
approximately 10 million cells (see Fig. 2). The mesh around the missile surface was refined to ensure
a y+ of about unity.

The flow simulations were performed using ANSYS Fluent (version 15.0) [17], solving the k − ω SST
steady RANS equations using an implicit pressure-based coupled finite volume solver having second-
order accuracy in space. Details of the solver can be found in the user manual. For future reference, we
only note that the cell face values required in computing the convective terms were calculated with a
second-order upwind scheme, using least-squares cell-based gradients.

A pressure far-field condition was specified on the inlet boundary consisting of the upstream face as
well as the four side faces of the cubic flow domain. Zero gauge pressure and an absolute temperature of
303.15 K (sea level conditions) were consistently applied at the inlet for all snapshots. Only the Mach
number and the flow direction were varied on the inlet per the specifications in Table 1. The incoming
turbulence was specified by an intensity of 1% and a hydraulic diameter equal to D. The sixth face of
the cube downstream of the missile constituted the outlet boundary on which a pressure outlet condition
was specified. For this, the pressure, temperature and turbulence parameters were the same as for the
inlet. The missile surface constituted a no-slip adiabatic wall.

3.0 A brief recapitulation of POD
What follows is a discussion of some of the aspects of Proper Orthogonal Decomposition [18] that are
most relevant for the present work. Let q(x) represent the vector field of flow variables with the spatial
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position coordinate x ranging over the flow domain, �, say. For the 3D Euler equations, one choice of q
is
[
ρ, ρu, ρv, ρw, p

]T, where p and ρ are the pressure and density respectively, u, v and w are respectively
the x, y and z Cartesian components of velocity, and (·)T is the matrix transpose operator. This partic-
ular choice is recommended in the literature [8, 10], and will be argued to be particularly appropriate
subsequently. In the following, we use non-dimensional quantities. In particular, linear dimensions are
non-dimensionalised by the diameter of the missile D, velocity by the ambient speed of sound c∞, den-
sity by the ambient density ρ∞, and pressure by ρ∞c2

∞. With this, the non-dimensional pressure in the
freestream is γ −1, γ being the ratio of the specific heats of air. Note that, per the discussion in Section 2,
all the snapshots had the same values of D, c∞ and ρ∞, so that the above non-dimensional flow variables
were directly comparable across the entire empirical database.

A particular steady operating condition of the missile (specified by, for example, the triad of its
freestream Mach number, angle-of-attack and roll angle) is denoted by the vector μ; e.g. μ = [M, α, φ]T.
Let such steady flow solutions be available for Ns operating conditions (for reference, Ns = 32 in our
problem). Thus, the learning database of snapshots is {q (x; μs)}Ns

s=1. Here, μs denotes the operating
condition of the sth snapshot. For notational convenience, we will sometimes denote this database as
{qs(x)}Ns

s=1.
Let the mean flow field across the database be q(x) := N−1

s

∑Ns

s=1 qs(x). Then, the snapshots’ fluc-
tuations are given by q′(x; μ) := q(x; μ) − q(x). In particular, the database of snapshot fluctuations
becomes {q′

s(x)}Ns
s=1. In mean-subtracted vector POD, we assume that any flow vector field (not only

those included in the learning database) can be approximated by a linear combination of Np POD modal
vector fields added to the above mean flow vector field (which is calculated on the learning database
only):

q(x; μ) = q(x) + q′(x; μ), q′(x; μ) ≈
Np∑

n=1

ηn(μ)̃qn(x). (1)

Here, q̃n is the nth POD mode; note that it is a vector field with the same components as q. In particular,
if p, say, is a component of q, then the corresponding component of the POD mode q̃n is denoted by p̃n.
Also, ηn is the nth POD coefficient; it is parameterised by the operating condition μ. For later use, we
denote the vector of POD coefficients for operating condition μ as η(μ) := [

η1(μ), η2(μ), · · ·, ηNp (μ)
]T.

Moreover, we denote the nth POD coefficient corresponding to the sth snapshot in the learning database
by the shorthand ηn

s := ηn(μs).
By contrast, in the mean-retained POD variant, the POD modes directly reconstruct the flow snap-

shots, and not their fluctuations. In scalar POD variant, each flow variable (p, ρv, etc. in the prevailing
example) is decomposed into its own set of scalar POD modes, weighted by its respective independent
set of POD coefficients. It has been shown conclusively that both mean-retained POD and scalar POD
approaches degrade the utility of the subsequent ROM [5, 9].

To be able to assess the efficacy of the above approximation, the POD procedure requires an inner
product to be defined a priori. As an example, in the present work, the inner product of two flow vector
fields q and r is defined as

〈q(·), r(·)〉 :=
∫

�P

[
qρrρ + qρurρu + qρvrρv + qρwrρw + qprp

]
d�P, (2)

where qρv refers to the y−component of momentum in the flow field q, and so on, and �P ⊆ �. As the
individual variables are already non-dimensional, the above definition is dimensionally consistent.

The snapshot POD method [14] starts from the original approach [13] by noting that the modes must
be in the space spanned by the fluctuation snapshots. That is,

q̃n(x) =
Ns∑

s=1

ζ n
s q′

s(x), ∀n ∈ [1, Np]. (3)
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The POD modes are determined [14, 18] indirectly by calculating the weights ζ n
s from the eigenvalue

problem N−1
s

∑Ns

�=1 〈q′
�
, q′

s〉ζ n
�

= λnζ n
s , ∀s ∈ [1, Ns], which arises when attempting to minimise the error

in the representation of Equation (3) in the sense of the norm induced by the inner product defined in
Equation (3). The kernel of the snapshot POD eigenvalue problem is evidently symmetric and positive
semi-definite. Therefore, the eigenvalues λn are guaranteed to be real and non-negative. The eigenvalues
are ordered in decreasing order; i.e. λ1 ≥ λ2 ≥ · · ·λNp ≥ 0. With this sequencing, q̃n is called the nth POD
mode; this also reflects the order of salience of their features in the flow database. One can conclude
from the formulation of the snapshot method that Np ≤ Ns; physically, Np should also be smaller than Ns

so that the POD may filter out the inessential flow features or noise instead of over-fitting the data. The
POD modes are also called POD eigenvectors or POD eigenfunctions. Owing to the special properties
of the POD kernel mentioned above, the POD modes form a mutually orthogonal set. For ease of use,
they are always unitised to obtain an orthonormal basis. Then, it follows from the POD expansion of
Equation (3) that the POD coefficients are orthogonal projection coefficients: ηn(μ) = 〈q′(·; μ), q̃n(·)〉.
Remark 1. The POD modes are spatial basis functions that are applicable to all choices of μ. As such,
the q data for different μ’s must be presented to the POD algorithm on the same geometry and grid.
Thus, without additional modifications, it is impossible to handle cases where the tail fins of the missile
are deflected, and we omit such situations in this work.

Remark 2. A discontinuous function requires infinitely many basis functions for accurate reconstruc-
tion. Thus, without additional sophistication [6, 8, 15, 16], a POD basis cannot represent a set of flow
fields with shocks at different locations. Here we remain strictly in the subsonic flow regime to avoid
such issues.

Remark 3. The inner product underlying the POD method need not be evaluated over the entire flow
domain. Instead, critical regions of the flow, say �P, may be identified where the snapshots display
the greatest variations [8]. The POD modes thus obtained may yet be used to represent the flow over
the entire snapshot domain. This flexibility is leveraged here for computational efficiency at negligible
sacrifice of accuracy.

Remark 4. The POD modes need not be computed in a global manner using all the available snapshots
in the database. Instead, locally valid POD databases may be more useful when attempting to span large
parameter domains [10]. This was not necessary in the problem under investigation.

4.0 POD-ROM approach for steady aerodynamics
The basic methodology for creating a ROM for steady aerodynamics prediction of a missile is adopted
from the approach of Ref. [7], with subsequent refinements reported in Refs [5, 8, 9, 10, 11, 12]. With
the preceding notation of the vector field of flow variables q and the vector operating condition of the
missile μ, the problem is formally stated as(

∂C
∂t

+ R
)

q(x, t; μ) = 0 ∀x ∈ �, t ∈R
+, subject to B(q(x, t; μ)) = 0 ∀x ∈ ∂�, t ∈R

+.

Here, C is the vector operator that maps the flow variable vector q to the conserved flow variable vector,
and R is the residual operator that accounts for the terms other than the time-derivative in the conserva-
tion equations. The elements of R are denoted by {Re}e∈E. As an example, for the 3-D Euler equations
we have E := {ρ, u, v, w, E}, signifying the conservation equations for mass, the three components of
momentum, and energy, respectively. These vector conservation equations must be satisfied over the flow
domain � at all times. The vector of conditions that must be satisfied at all times on the domain bound-
ary ∂� are represented by the B operator. Since we are interested in the steady solution of the governing
equations for a particular choice of μ, we need to find the vector field q(x; μ) such that R(q(x; μ))
vanishes everywhere in �, subject to the boundary conditions.
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With the approximate POD expansion of Equation (1), we have the steady residual as

R(q(x; μ)) ≈ R

(
q(x) +

Np∑
n=1

ηn(μ)̃qn(x)

)
=: R̃(x; η(μ)),

since q(x) and {̃qn(x)}Np

n=1 are constant in the procedure. Similarly, we also approximate B(q(x; μ)) using
the POD expansion, and denote the outcome as B̃(x; η(μ)). Evidently, R̃ and B̃ depend on μ through η

only; they also depend implicitly on Np.
Since the truncated POD expansion is an approximation, in general we will not be able to find

η(μ) such that R̃ vanishes exactly, simultaneously throughout the domain. Thus, we look to min-
imise the pth power of the p-norm of R̃; the minimum will correspond to the closest approximation
to the desired solution that is possible with the retained POD modes. The optimisation problem is thus
formulated as

min
η

J(η(μ)) := min
η

∣∣∣∣R̃(·; η(μ))
∣∣∣∣p

Lp
for a given μ. (4)

Note that the boundary conditions are implicitly applied in the evaluation of the residual. Omitting the
dependence of η on μ for notational brevity, the discretised implementation is given by

J(η) =
∑
e∈E

∫
�R

∣∣̃Re(x; η)
∣∣pd�R ≈

∑
e∈E

Nc,R∑
c=1

V−1−p
c

∣∣∣R̃c

e(η)
∣∣∣p, R̃

c

e(η) :=
∫

V−c

R̃e(x; η)dV−c. (5)

Here, �R ⊆ � is the domain on which the residual is evaluated (see Section 4.2 for more details), Nc,R is
the number of finite-volume cells that constitute this domain, and V−c is the volume of the cth cell. The
volume-integrated residual of the e-equation on the cth cell is denoted by R̃

c

e. The task of finding the
steady state solution q for the particular operating condition μ is thus transformed into an optimisation
problem for η.

4.1 Computation of the cost function
Although the flow solutions in the learning database generally come from high-fidelity RANS, the resid-
ual may be computed using a low fidelity Euler solver [5, 8–10]. This is because the lower-order POD
modes, being representative of global behaviour, cannot resolve the near-wall localised viscous/turbulent
effects in any case. However, they indirectly account for these effects since they are derived from
the RANS results that incorporate the no-slip condition at the walls. The conservative form of the
non-dimensional steady Euler equations for a calorically perfect gas in Cartesian coordinates (with
u := [u, v, w]T and V := √

u2 + v2 + w2) are

∇·(ρu) = 0, ∇·(ρuu) + ∂p

∂x
= 0, ∇·(ρuv) + ∂p

∂y
= 0,

∇·(ρuw) + ∂p

∂z
= 0, ∇·

(
ρu
(

γ p

(γ − 1)ρ
+ V2

2

))
= 0.

(6)

We start evaluating the cost function by integrating the above equations over each grid cell. Gauss’
divergence theorem is used to convert the cell-volume integral to an integral over the surface of the cell.
For example, the volume-integrated residuals of the mass, x−momentum and energy equations over the
cth cell become (see definition in Equation (5))

R̃
c

ρ
=

Nc
f∑

f =1

[
ρu·n̂A

]c

f
, R̃

c

u =
Nc

f∑
f =1

[
(ρu·n̂u + pn̂x)A

]c

f
, R̃

c

E =
Nc

f∑
f =1

[
ρu·n̂

(
γ p

(γ − 1)ρ
+ V2

2

)
A

]c

f

, (7)

where [·]c
f denotes the surface integral over the f th face of the cth cell, and Nc

f is the number of faces of the
cth cell. Also, A represents surface area, and n̂ is the outward unit normal, with Cartesian components
n̂x, n̂y and n̂z.
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It is evident from the above expressions that we need the flow variables on the faces of each cell,
say at the face centroids. Moreover, the face-integrated mass flow [m]c

f := [
ρu·n̂A

]c

f
appears in every

residual term, and thus must be reconstructed as accurately as possible. One option that is adopted here
is to rely on the fact that mass conservation is satisfied in the above form for each steady FOM solution
in the database. Since the POD modes (as well as the mean flow field) are a linear combination of the
FOM solutions (see Equation (3)), each POD mode (and the mean flow field), as well as the solutions
reconstructed therefrom, will satisfy mass conservation automatically if ρu, ρv and ρw on the cell faces
are chosen as POD variables (as is the case here). The other two independent variables in the POD
are density and pressure; the choice of the latter is particularly desirable for ease of computing the
aerodynamic coefficients (see Section 4.4). In summary, to facilitate accurate evaluation of the residual,
the POD is performed on face-based data alone.

Given a candidate set of optimisation variables (POD coefficients), we reconstruct the face-based
pressure, density and three components of momentum vector using the POD eigenfunctions and the
mean flow field. The mass flow [m]c

f through the f th face of the cth cell is calculated as the dot product
of the reconstructed momentum vector [ρu]c

f and the pre-computed face area vector
[
n̂A
]c

f
. Then, for

example, the
[
ρu·n̂uA

]c

f
term in the x-momentum equation is computed as [m]c

f [ρu]c
f / [ρ]c

f .
The literature on steady ROM aerodynamics [8, 10, 19] has a discussion on the choice of the p-norm.

The L1-norm has been recommended rather than the more prevalent L2-norm, so as to avoid giving
greater weightage to the residuals in regions of the solution domain where the FOM incurred greater
errors; we verified this too. Thus, specialising Equation (5), the final expression for the cost function is

J(η(μ)) =
Nc,R∑
c=1

[∣∣∣R̃c

u(η(μ))
∣∣∣+ ∣∣∣R̃c

v(η(μ))
∣∣∣+ ∣∣∣R̃c

w(η(μ))
∣∣∣+ ∣∣∣R̃c

E(η(μ))
∣∣∣] . (8)

4.2 Hyper-reduction
One of the prominent recommendations from the literature [8, 10, 11, 20, 21] is that the residual need
not be evaluated over the entire domain. This is because the ROM problem is already severely over-
determined, with the residual having to be minimised on many more cells than there are degrees of
freedom (the number of POD mode coefficients – η’s). Thus, critical regions of the flow may be deter-
mined a priori and the residual may be evaluated in those regions alone. That is, the domain �R of
evaluation of the ROM residual in Equation (5) may be a subset of the flow domain �; recall that the
POD inner product may also have been evaluated over a limited domain �P ⊆ �. If �R is chosen prop-
erly, then the accuracy of the ROM may be preserved while significantly reducing the computational
overhead of the cost function evaluation in the optimisation. This approach to model order reduction is
called hyper-reduction [1, 22].

In aerodynamics applications, the appropriate �R is usually identified heuristically. For example, as
we will show later, regions of the flow near the missile surface (but not too near) may be most useful for
the ROM. Such physics-based choices have been found to be fruitful earlier too [8, 11, 20]. The alter-
native to these heuristic approaches are algorithmically rigorous methods that select the subset of cells
in � that best satisfy a mathematical criterion. Examples include the missing point estimate [23], the
discrete empirical interpolation method [24], the Gauss-Newton with approximated tensors approach
[25], and the least-squares collocation method [21]. Unfortunately, for large-scale aerodynamics prob-
lems, these methods often become computationally infeasible in the offline model-development phase
itself, forcing one back to the heuristic approaches.

4.3 Implementing boundary conditions
Let us consider generic Dirichlet and Neumann boundary conditions, and analyse how they translate
in the POD expansion. For this, we will consider two sub-cases. Constant boundary condition refers to
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a case where the same numerical value of the boundary condition applies to all the snapshots (in the
learning database as well as in the test cases). Varying boundary condition implies that different numer-
ical values of the boundary condition prevail in the various snapshots. The first sub-case is exemplified
by no-slip (Dirichlet) condition at a wall, and zero pressure gradient (Neumann) condition at an outlet.
Varying boundary condition is exemplified by various freestream velocities (Dirichlet) being imposed
on the inlet boundary to simulate different operating conditions of a missile.

Constant Dirichlet condition:

Suppose a particular variable, say q, is constrained to be q̂ on (a part or the entirety of) the boundary
(wall, inlet, outlet, etc.) in all snapshots. Then, q = q̂ on that surface in the mean flow field, and q = 0
thereat in all the POD modes. Since all POD-reconstructed candidate solutions are linear combinations
of the POD modes plus the mean flow field, they automatically satisfy this boundary condition with-
out needing any explicit constraints in the optimisation. Of course, the POD modes cannot be used to
compose the solution if the boundary condition value is changed from q̂.

The above analysis applies only when q̂ is one of the variables whose POD modes are being computed.
Consider the example of a specified mass flux boundary condition imposed at a choked nozzle throat.
If momentum is one of the POD variables, then the above statements hold. However, if density and
velocity are the POD variables, then the throat mass flux corresponding to a POD-reconstructed flow
is no longer a linear combination of the throat mass fluxes in the individual POD modes, and therefore
this simplification is rendered invalid.

As an example of particular relevance, the no-slip condition at a wall is automatically satisfied by all
solutions, as long as all components of velocity or momentum are expanded in a linear combination of
their POD modes (and the mean field). As another example, if the freestream pressure and/or tempera-
ture are the same for all supplied snapshots of missile aerodynamics (as in our learning database), then
there is no need to impose an explicit freestream pressure/temperature condition in the POD-ROM. The
latter example of implementation of a constant but non-zero Dirichlet boundary condition demonstrates
a benefit of subtraction of the snapshot mean in the POD. Otherwise, the constant freestream pres-
sure/density (for example) would have to be reconstructed from the POD modes, necessitating explicit
implementation.

Constant Neumann condition:

Following the above arguments, this boundary condition also does not give rise to any additional con-
straint on the POD modes, since all of them will have zero gradient at the particular boundary, and
the mean flow field will have the specified (possibly non-zero) constant gradient at the boundary. For
example, if outlet pressure gradient is constrained to be zero in flow simulations, then this is implicitly
satisfied by all POD-ROM solutions also.

Varying Dirichlet condition:

This case will be discussed with a relevant example – the solution of the POD-ROM for a particular
freestream velocity. The latter condition of a missile is usually specified in terms of its freestream Mach
number, angle-of-attack, and roll angle. However, the primitive variables in the POD are the three com-
ponents of momentum vector, along with density and pressure. Thus, recalling the caveat mentioned in
the case of imposing a constant Dirichlet condition, we must first determine the freestream (i.e. the inlet
boundary) momentum vector of a snapshot, denoted here by ρ̂u. Since the normalised density is unity
at the inlet for all snapshots, this is actually indistinguishable from û in our problem.

Suppose that the momentum takes on boundary values of {ρ̂us}Ns
s=1 respectively in the Ns snapshots

constituting the learning database underlying the POD. Then, the mean flow field will have the average
freestream momentum ρ̂u = N−1

s

∑Ns

s=1 ρ̂us at all points of the inlet boundary. We next determine the fluc-
tuation boundary values of the snapshots {ρ̂u′

s}Ns
s=1, where ρ̂u′

s := ρ̂us − ρ̂u. Then, referring to Equation
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(3), the freestream momentum value of the nth POD mode can be directly found as ̂̃ρun =∑Ns

s=1 ζ n
s ρ̂u′

s,
instead of actually evaluating the POD mode. Finally, to obtain the freestream momentum value of ρ̂u0

corresponding to a particular operating condition μ0 requires the satisfaction of the following set of
linear equations by the vector POD coefficients η(μ0) during the optimisation:

ρ̂u +
Np∑

n=1

ηn(μ0)̂̃ρun = ρ̂u0.

The advantage of this novel implementation is two-fold: (i) we enforce the crucial freestream bound-
ary condition exactly, and (ii) we do not have to evaluate the POD-reconstructed flow solution at the
inlet boundary.

Varying Neumann condition:

Such boundary conditions, if present, can also be addressed in a manner similar to the preceding varying
Dirichlet conditions. We simply expand the set of simultaneous equality constraints to be satisfied during
the optimisation.

4.4 Evaluation of aerodynamic coefficients
The total surface force vector on a body immersed in a turbulent flow is given by

F =
∫

A

(−pn̂ +T·n̂) dA =: P + T, T= (μ + μt)

(
∇u + (∇u)T − 2

3
∇·uI

)
.

Here, n̂ is the local unit normal on the surface, T is the combined viscous and turbulent stress tensor, μ

is the (laminar) viscosity, μt is the turbulent eddy viscosity, I is the identity tensor, and A is the body’s
surface area. Note that p and u are the Reynolds-averaged pressure and velocity, as in our snapshots.
Pressure-based forces are accounted for by P, whereas T gives the contribution of viscous and turbulent
stresses, both shear and normal. Below we propose a very simple method for calculating the exact P and
an approximation of T.

Let the integrated surface pressure force for the sth snapshot in the original database be Ps. This
is known from the pressure contribution to the aerodynamic force coefficients (calculated by the CFD
software, say) multiplied by ρ∞U2

∞Aref /2. Here ρ∞ and U∞ are the freestream density and speed, respec-
tively, and Aref is the reference area (usually square of the missile diameter). Note that, if the database
is computed for various missile speeds and/or flight altitudes, the above multiplier will be different for
each snapshot. Let the mean pressure force on the missile across the database be P, and the consequent
snapshot-wise fluctuation pressure forces be {P′

s}Ns
s=1. Since pressure is one of the POD variables, P for

any condition is linear in the POD coefficients η as

P = −
∫

A

(
p +

Np∑
n=1

ηnp̃n

)
n̂dA = P +

Np∑
n=1

ηnP̃n
, P̃n

:= −
∫

A

p̃nn̂dA =
Ns∑

s=1

ζ n
sP′

s.

Evidently, P̃n is the pressure force corresponding to the nth POD mode. As shown by the second equation
above, it can be computed at no extra expense with the known {P′

s}Ns
s=1 and the snapshot weight vectors

towards POD modes {ζ n}Np

n=1 (see Equation (3)). The pressure moment vector on the missile can also be
calculated from an analogous expression.

On the other hand, the viscous and turbulent force T not only involves the eddy viscosity μt that
is omitted from POD, but is also nonlinear as ρu and ρ are the decomposed variables instead of u.
Moreover, even μ is a nonlinear function of temperature, which in turn is nonlinearly related to the
POD variables density and pressure. Thus, the above straightforward linear relation between the POD
coefficients η and P should not be extended to T (and hence to F). However, we now argue for just that.
For the subsonic database being considered, the wall temperature is not expected to vary significantly.
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This not only means that μ may be assumed to be constant at the wall, but it also implies that pres-
sure and density should be almost proportional. Now, the wall-normal pressure gradient is known to
approximately vanish in a boundary layer, so that the wall-normal density gradient should also not be
strong. But it is this gradient that appears in T, when we expand u in terms of POD modes (that have ρ

and ρu variables). Finally, μt is not even retained in our POD, and thus there is no good justification in
neglecting its surface variations between snapshots, other than the subsequent demonstration through
our results.

In summary, with partial rationalisation, we assume that total forces and moments (not just the
pressure components) are linear functions of the POD coefficients. That is,

F ≈ F +
Np∑

n=1

ηnF̃n
, with F̃n

:=
Ns∑

s=1

ζ n
sF′

s and F := 1

Ns

Ns∑
s=1

F′
s, (9)

with the meaning of F, F′, and F̃ respectively carrying over from P, P′, and P̃ above. The advantage
is that we obtain a procedure for evaluating the aerodynamic coefficients of a reconstructed solution
without having to do the actual reconstruction and the surface integration. Of course, if one finds this
approximation to be tenuous in a certain application, then it is easy to revert to surface integration to get
the exact aerodynamic coefficients.

It should be remarked that the above forces and moments are necessarily obtained in a body-fixed
coordinate system (that which remains anchored in the consistent grid for all snapshots). If one desires
the aerodynamic coefficients in the total-angle-of-attack reference frame, then the appropriate transfor-
mation has to be made separately. Evidently, the force and moment data for the snapshots must also be
presented in the body frame to the above algorithm.

5.0 Results and discussion
5.1 POD results
5.1.1 POD modes
Proper orthogonal decomposition has two main ingredients – the selection of the snapshots is the obvious
one; the definition of the underlying inner product is the other choice for the designer. As pointed out in
the literature (10), the domain of integration �P in the inner product can be a limited sub-domain in the
vicinity of the missile. It need not include the very near-surface region, since the local flow structures
thereat will be filtered out by the global nature of POD in any case. Also, the domain need not include
regions far from the missile, as they will be irrelevant for predicting the forces and moments on the
missile.

Two separate sets of POD (and ROM) calculations were performed with the set of 32 learning snap-
shots. The integration domain in the first POD analysis was the full flow domain, which is a cube of
sides approximately 160 times the missile diameter D. In the second case, the integration domain was
an annular region encasing the missile (see Fig. 3(a) and also Fig. 4). It consisted of the cells of the
unstructured grid whose centroids were more than 0.2D but less than 2 D away from any point on the
surface of the missile – a 30-fold reduction in the number of grid cells. This choice will be explained
subsequently; here we will evaluate if there is a penalty to be paid for this benefit.

Figure 3(b) presents the fractional eigenspectra of the two POD cases. It appears that the first three
eigenvalues are many orders-of-magnitude larger than the fourth and subsequent ones. Also, the major
difference in the two eigenspectra is the quantum of decrease of the eigenvalues between the third and
fourth POD modes.

The above observations can be explained with reference to Fig. 4 that presents the mean flow field and
the first few POD eigenfunctions for the reduced-domain POD. The ρu field appears to be around 0.7 over
the entire domain, except very close to the missile. This is understandable since half the snapshots were at
Mach 0.6 and the other half were at Mach 0.8. Note that the mean velocity at the missile surface is zero in
every snapshot, so that the near-missile mean velocity should indeed be smaller than the mean freestream
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(a)

(b)

Figure 3. (a) Reduced annular domain �P around the missile for POD, shown in a longitudinal section.
(b) POD eigenspectra from two separate calculations using domains � and �P.

Figure 4. The five components (along columns) of the mean flow field and of the first four POD
eigenfunctions (along rows), at a section through the main fins of the missile.

velocity. Also, the above Mach numbers correspond to the velocity magnitude, which is slightly larger
than the mean x-component being portrayed in the plot. The learning database has snapshots with roll
angles of 45◦, 22.5◦ and 0◦, that have increasing y-components of freestream velocity starting from zero.
This explains the slight positive ρv field, with higher values at the tips of the two wings around which the
flow accelerates. Also, the choices of angles of attack and the roll angles in the learning database means
that the z-component of the freestream flow is either zero (in case α = 0) or positive in the snapshots.
This is reflected in the overall positive ρw field, with higher values at the same wing tips as in the ρv
case, and lower values where there might be flow retardation or even separation. The ρu field is also
reflected in the mean density and pressure fields; they relax to unity and γ −1 = 0.714, respectively, far
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away from the missile. Notice that towards the outer edge of the reduced annular domain depicted, the
mean flow field tends to be uniform.

The first POD mode is dominated by the ρu field, which is two orders-of-magnitude higher than the
other components of the momentum. This mode captures the major variation in the database between
the Mach 0.6 and Mach 0.8 snapshots, which is an increased freestream u. (The precise magnitude of
around 0.5 away from the missile is an artifact of the normalisation of the POD eigenfunction; one
should only focus on the relative values of the POD eigenfunctions.) Note that the density and pressure
components of the first POD mode faithfully track the ρu component, but they tend to zero far from the
missile since all snapshots have the same freestream density and pressure that are already accounted for
in the mean flow field.

The second POD mode is dominated by the ρw field; this is to be expected since the next major
variation in the database (after the one captured by the first POD mode) is that due to different angles
of attack from 0◦ to 20◦. The third POD mode has non-zero ρv away from the missile; it captures the
remaining distinctive variation of the roll angles in the database. The fourth POD mode has non-trivial
values only towards the inner edge of the annular domain, and this trend persists in all higher-order
modes that are not shown. All through these four modes, the behaviour of the ρu, density and pressure
components appear to be very similar.

A clear explanation of the observations in Fig. 3(b) is obtained from the results and discussion of
Fig. 4. The full domain differs from the reduced annular domain in its inclusion of the very near-surface
region and the outer region. However, the latter sub-region is much larger in volume (and hence, weigh-
tage in the inner product) than the former. Moreover, the flow field is more or less uniform in the outer
region omitted in the reduced domain. This explains why the relative magnitudes of the first three POD
eigenvalues (that capture the far-surface flow variations in the database) are the same with the two
domain choices. It also explains why the remaining parts of the POD eigenspectra are similar in the
two cases, but only of much smaller relative magnitude in the case of the full domain. Basically, both
choices display similar flow features, and both can only capture the very near-surface flow phenomena
in very high order of modes.

5.1.2 POD-reconstruction of aerodynamic coefficients of cases in learning database
The pressure component of the aerodynamic forces and moments on a missile is not significantly affected
by flow features that are extremely close to the surface. The friction component is apparently affected
by flow in the boundary layer; however, this too is driven by the outer flow, and the boundary layer
physics are also included in the snapshots already. This suggests that although POD is very inefficient
at capturing the very near-surface flow features, it may still be useful for predicting the aerodynamic
coefficients of a missile. This will indeed be validated here.

Before using the POD basis in predicting new cases, we evaluate its effectiveness in reproducing the
aerodynamic coefficients of the cases in the learning database. In particular, Fig. 5 presents the error in
reconstructing the aerodynamic force and moment coefficients of all the learning cases using the first 25
POD modes calculated on the reduced domain (depicted in Fig. 3(a)). Here and subsequently, the errors
are normalised by the respective maxima across the learning database, as indicated in Table 1. In general,
the maximum error occurs for lower angles of attack. This may be a consequence of the very localised
flow features that occur at lower α’s, which are only captured by the very highest order POD modes. The
axial force coefficient CA presents the lowest fractional error. This is interesting since it is dominated
by shear stresses, which are actually nonlinear functions of the POD coefficients (see Section 4.4), but
are approximated as linear functions here. The normal force and pitching moment coefficients present
very low fractional errors. Their cross-sectional counterparts – viz. the side force and yawing moment
coefficients – present the highest errors (although these are still less than 5%); this is probably an artifact
of the order-of-magnitude smaller maximal value used in the normalisation of these errors. Referring to
Fig. 1, for the slender missile body, the normal force is primarily responsible for the pitching moment,
and the yawing moment is mostly due to the side force. This explains why the two pairs appear to go
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Figure 5. Errors in reconstruction of aerodynamic coefficients with 25 POD modes.

Figure 6. Database-averaged error in POD reconstruction of aerodynamic coefficients.

hand in hand across all the cases in Fig. 5. The rolling moment error is intermediate in magnitude, but
is usually still less than 1%. It is in fact very difficult to predict accurately even in FOM analyses, owing
to its insignificance compared to the other two moment components. In the interest of brevity, we will
not show the moment coefficients in most of the subsequent results, concentrating instead on the force
coefficients only.

The above error analysis was performed for the case of the 25-mode POD basis on the reduced
annular domain in the vicinity of the missile surface; we now extend it to all possible numbers of retained
POD modes. For this, we first compact the information presented for any single aerodynamic coefficient
in Fig. 5 into a single number, viz. the simple average of all the normalised errors. The resulting six
numbers, one for each aerodynamic force and moment coefficient, are reported in Fig. 6 versus increasing
number of POD modes retained, for both the choices of POD domains.

Overall, it is observed that the reconstruction error indeed reduces with increasing Np; however, the
decay is not as rapid as observed for the POD eigenvalues in Fig. 3(b). This is not surprising because,
although POD guarantees the best reconstruction (with a given number of basis modes) of the flow field
over the entire domain, it need not be efficient in reproducing the flow field on a boundary like the missile
surface. However, it is very encouraging that POD still delivers an acceptable reconstruction of all the
coefficients, with less than 2% average error for Np = 20 and less than 1% average error for Np = 25.
Figure 6(a) also bears out the overall trends observed in Fig. 5 regarding the relative magnitudes of
coefficient prediction errors.
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Figure 7. Database-averaged POD-reconstructed residuals of momenta and energy equations. Legend
indicates arithmetic average (AA) or 2nd-order upwind (2UP) interpolation used in data pre-processing,
and alternative extents of �R.

We end this discussion on error analysis by noting that the results from the full-domain POD shown
in Fig. 6(b) are very similar to the reduced-domain POD results of Fig. 6(a) being discussed above. This
further corroborates the preservation of information in the cost-effective domain reduction process that
was first noted in the context of their POD eigenspectra presented in Fig. 3(b). Given that the significantly
higher cost associated with the full-domain POD does not result in any appreciable benefit compared to
the reduced-domain POD, we will implicitly use the latter in all the subsequent results presented, unless
mentioned otherwise.

5.1.3 Euler residuals computed from POD reconstruction of cases in learning database
We will subsequently use the Euler equation residuals defined in Equations (7) and (8) to determine
the optimal ROM solution. Figure 7 presents the magnitudes of the residuals of the three momentum
equations and the energy equation; recall that the continuity equation is satisfied to machine precision
in the present context. Specifically, the L1-norm of the residuals are calculated from the flow fields of
the learning database cases reconstructed with increasing number of POD modes Np, and their average
over the database are shown. The residuals asymptote uniformly with Np.

This analysis affords an assessment of some of the options available in the POD-ROM approach.
Firstly, the calculated residuals depend on the specific method used to interpolate the cell-centre FOM
data to the faces, prior to the POD step. Figure 7 presents results from the simplest arithmetic aver-
age (AA) approach, as well as the second-order upwind (2UP) method used in the FOM solver [17].
We find that the former delivers significantly lower energy residuals, but somewhat higher momentum
residuals. This result suggests that the much simpler arithmetic-average method may give accept-
able predictions. All the POD results presented previously use the arithmetic average method in the
pre-processing; essentially identical graphs (not shown) are obtained with the second-order upwind
method also.

The second option evaluated here is the choice of the spatial domain on which the residual is cal-
culated. The domain has already been reduced once prior to the POD (see Fig. 3(a) and its associated
discussion); here we consider even smaller sub-domains of this. Specifically, we assess three annular
regions that are successively farther removed from the missile surface. The annular regions are of 0.1D
width, and they start from 0.2, 0.3 and 0.4D away from the missile surface, respectively. As expected,
the Euler residuals decrease uniformly with increasing distance of the sub-domain of evaluation from
the missile surface. Even though the nearest sub-domain results in two to three times higher residual
values, it will be shown later to be the most suitable for the ROM.

The geometry of grid cells chosen for evaluating the residuals is crucial. In a 3-D unstructured mesh,
some non-triangular faces of cells may be non-planar due to errors in meshing. Such faces do not have
a unique normal direction, and the fluxes calculated on them by the FOM solver presumably depend on
the particular method adopted to have a consistent normal. Due to the inherent redundancy in our ROM
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Figure 8. Database-averaged cross-validation errors in ROM-prediction of force coefficients. In the
legend, R and F refer to use of �P vs. � for POD; choices of �R are also indicated. The P indicates the
result of projection, instead of ROM.

optimisation problem, we chose to eliminate all cells with non-planar faces from �R. This reduced the
cell count from ∼ 70K to ∼ 3600 in the annular zone from 0.2 to 0.3D, for example. The ROM was
degraded if this pruning step was skipped.

5.2 ROM results
5.2.1 Cross-validation of the ROM reusing the learning database
The POD is guaranteed to be the most efficient at reconstructing the flow field of a snapshot in the
learning database. However, this is only in an average sense, and also in the sense of reconstruction
accuracy evaluated over the domain of definition of the inner product. On the other hand, we wish to
use the POD basis in the ROM for predicting the forces and moments on the missile surface, and that
too for a case that is not included in the learning database. Before testing the POD-ROM approach on
new cases, we can assess it by reusing the learning database itself in a cross-validation strategy. This is
useful in ascertaining the optimal values of some of the parameters of the approach itself for the specific
problem at hand, and incurs no extra FOM simulation cost.

Snapshots are available for Ns (= 32) operating conditions in the learning database. We form Ns

separate POD bases, each omitting one of the original snapshots. Then, each of these Ns POD basis
sets is used in the POD-ROM approach to predict the aerodynamic coefficients of the respective omitted
snapshot only. The full learning database of course has the truth values of these aerodynamic coefficients,
so that the predictive effectiveness of the model can be assessed readily.

Figure 8 presents the results of this validation exercise. As in the results shown in Fig. 6, we assess
the performance of the approach by averaging the fractional error across all the Ns predictions, each for
a snapshot that was omitted in calculating the respective POD basis. This method allows us to evaluate
three parameter choices: (a) the effect of using a reduced domain in the POD instead of the full FOM
domain, (b) the appropriate number of POD modes to retain, and (c) the choice of the annular region
around the missile on which to evaluate the Euler residual in the ROM. Each of these options have been
partially assessed in Section 5.1, but without exercising the ROM.

Before describing the ROM prediction errors, we discuss the average errors incurred in estimation
of the aerodynamic coefficients when simply ‘projecting’ a learning database snapshot onto the POD
basis formed by leaving it out. This is denoted by R: P in Fig. 8. These results may be compared with
their counterparts in Fig. 6(a), where the projection was onto the POD basis created by including the
one being projected. Evidently, the errors in the present case are an order of magnitude higher than those
found earlier. This reflects the difficulty in estimating surface flow conditions from POD-reconstruction
targeting the overall flow domain.

The ROM prediction error decreases almost monotonically with increasing Np, but saturates beyond
Np ≈ 25. While the initial improvement is expected from the discussion of Fig. 6, the final saturation
behaviour may not have been anticipated. However, there is an obvious difference in the two scenarios
that explains this. Earlier we were looking at the vanishing of the error over the learning database when
the POD basis spanned the same database. On the other hand, here we are assessing the effectiveness
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Figure 9. Error in cross-validation of force coefficients with the 25 POD-mode R: 0.2 − 0.3 ROM. The
scheme of presentation follows Fig. 5.

of the POD basis in reconstructing the aerodynamic coefficients of a case that is outside its span. Thus,
the present observation is in line with the idea of over-fitting – there is an optimal number of degrees of
freedom for the most robust fit of data.

There appears to be an optimal offset of the annular region on which the ROM residual is evaluated;
overall, the most effective choice appears to be the region between 0.2D and 0.3D from the missile
surface. This trend is not followed in the case of prediction of the side force coefficient using the smaller
values of Np. The probable reason for the overall trend was surmised in Section 5.1.1. Namely, Euler
residuals evaluated on viscous-dominated regions close to the surface are a poor indicator of the actual
accuracy of the solution; on the other hand, regions too far from the missile have diminishing correlation
with the surface forces and moments. In fact, it is based on the above result that the POD itself was
performed on the snapshots abstracted to the reduced domain extending between 0.2D and 2.0D off
of the missile surface, as pictured in Fig. 3(a). Indeed, Fig. 8 demonstrates that the subsequent ROM
delivers almost identical results as the case where the POD is performed on the full FOM domain.
This equivalence is particularly advantageous since usage of the snapshots abstracted on the smaller
domain drastically reduces the cost and time expense of the POD-ROM implementation. The choice of
the outer extent (i.e. 2.0D) of the reduced domain for POD was not optimised further. Since the grid
coarsens rapidly away from the missile surface, this choice does not materially affect the computational
efficiency of the POD-ROM.

It may appear that the imposition of the far-field boundary condition is impossible if the POD is per-
formed on snapshots abstracted on a near-surface domain. This apparent paradox is resolved by recalling
that the freestream boundary condition is actually evaluated indirectly with the strategy delineated in
Section 4.3. Basically, we are using an inner product whose induced norm is positive semi-definite (i.e.
defined over a part of the domain), so that the POD modes are notionally defined over the entire FOM
domain that extends to the far-field boundary.

Figure 9 presents a detailed view of the aerodynamic coefficient prediction error with the most per-
tinent model, viz. using the first 25 POD modes computed on the reduced 0.2D − 2.0D domain, and
evaluating the Euler residual in the ROM on the 0.2D − 0.3D annular domain. One finds fairly reliable
prediction in most of the cases with fractional errors limited to 2%, but the errors do increase signifi-
cantly at the highest angles of attack – viz. α = 20◦, and to some extent at α = 15◦. It is to be noted that
cases with α = 20◦ represent an extrapolation of the learning database. Also, cases with α ≥ 15◦ have
massive flow separation that makes the aerodynamic coefficient vs. angle-of-attack curve nonlinear.
Given these challenges, it is quite encouraging to note that even in these extreme conditions, the predic-
tions are accurate to about 10%. Of course, a direct juxtaposition with the POD interpolation results in
Fig. 5 shows these ROM results in poor light, but the comparison is not a fair one as the former approach
did not have any predictive value.

The preceding presentations of aerodynamic coefficients’ prediction errors were normalised by their
respective maximum values observed in the database (as listed in Table 1); this provides a sense of the
accuracy of the method in absolute terms. However, from a design perspective, it is more pertinent to
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Table 2. Computational expense and timing of optimisation ROM runs, averaged over all
model evaluations; the variability is indicated in terms of the standard deviation

No. of POD modes, Np 20 25 30
Run time [seconds] 9.0 ± 1.6 15.3 ± 2.7 23.0 ± 4.0
No. of iterations 40.1 ± 7.1 50.8 ± 9.0 56.8 ± 10.0
No. of function evaluations 856.2 ± 151.4 1323.3 ± 233.8 1763.1 ± 310.9

Table 3. Top half: parameter combinations of cases on which POD-ROM approach is validated.
Bottom half: the respective normalized prediction errors (%) of the A/D coefficients with the 25 POD-
mode R: 0.2 − 0.3 model

Case no. 1 2 3 4 5 6 7 8 9
α [◦] 7.5 8 8 10 10 10 13 18 18
M 0.6 0.65 0.8 0.6 0.7 0.8 0.8 0.75 0.8
φ [◦] 22.5 15 22.5 11.25 22.5 11.25 22.5 30 22.5

CA 0.6 2.6 1.3 1.1 1.8 0.0 1.5 0.2 3.6
CS 0.7 0.6 0.1 0.6 2.2 1.4 1.2 3.8 4.1
CN 0.4 0.4 0.0 0.2 0.0 0.2 0.2 2.9 1.5
Cl 0.6 0.2 0.2 0.6 0.0 0.4 0.0 22.3 11.9
Cm 0.4 0.4 0.0 0.2 0.0 0.2 0.2 4.1 2.1
Cn 1.0 0.6 0.0 0.3 2.5 1.1 0.4 4.1 4.6

understand the prediction errors associated with the POD-ROM approach relative to their respective
individual truth values (as found from the FOM). In the industry, it is typically deemed acceptable if
wind-tunnel/flight data reveal up to 5% error in the FOM prediction of CS, CN , Cm and Cn, up to 10% in
CA, and up to 20% in Cl. Although not presented here, the relative errors corresponding to the data in
Fig. 9 are well within these bounds. The only exceptions are: (a) cases where the coefficients themselves
are very small – e.g. CS and Cn at low angles of attack for φ �= 45◦, (b) the rolling moment coefficient
for which maximum relative errors approach 30%, and (c) extrapolative cases – e.g. when angle-of-
attack is 20◦. Even in the latter instances, the relative errors were around 6% in Cm and 11% in CA.
These results demonstrate that the proposed POD-ROM approach for missile data generation meets the
industry standards for acceptability.

Table 2 gives an idea of the computational expense and time consumed for the ROM runs. The algo-
rithm was implemented in Python, and the calculations were performed on a single processor in serial
mode. The expense is primarily a function of the number of POD modes included in the optimisation,
with the time taken being at most half a minute for Np = 30. This run time for the ROM is almost negli-
gible compared to an FOM calculation that is performed on a grid with approximately 10 million cells.

5.2.2 Validation of the ROM on new cases
The validity of the ROM can be tested on other unlearnt snapshots, as long as they are free of shocks.
Table 3 presents the operating condition details of the validation cases employed in the present work.
It will be observed that the cases differ in at least one freestream parameter from nearby points in the
learning database matrix.

The result of the validation tests is also presented in Table 3 using the most appropriate ROM coming
out of the cross-validation exercise in Section 5.2.1, viz. R: 0.2 − 0.3. Flow separation is minimal for
α ≤ 13◦, and we find that the errors in the predicted aerodynamic coefficients are very reasonable, being
less than 3% overall, and in fact less that 1% in most cases. Even in the last two cases of α = 18◦ where
flow separation is severe, errors are generally less than 5%. The only outlier is the rolling moment in these
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Figure 10. Errors in force coefficients predicted using TPS-RBF interpolation with the first 25 POD
modes defined on the reduced domain. The scheme of presentation follows Fig. 5.

two cases, which display large errors. It was mentioned earlier that rolling moment is indeed difficult
to predict, and it is also small compared to the other two moments. Overall the proposed POD-ROM
approach is delivering encouraging estimates of all the aerodynamic force and moment coefficients.

5.3 Comparison of the ROM results with those from interpolation
A computationally inexpensive alternative to the optimisation ROM is the interpolation approach based
on POD [4] discussed in Section 1; here we assess how it performs vis-à-vis the more expensive POD-
ROM method. Recall that this method avoids a direct interpolation of the aerodynamic coefficients.
Instead, the first Np POD coefficients of the empirical database are interpolated to estimate those cor-
responding to a novel case, followed by evaluation of the aerodynamic coefficients therefrom using
the approach described in Section 4.4. There are various interpolation options available, but instead of
weighing their relative benefits, we follow earlier references [5] to employ thin-plate-spline (TPS) radial
basis functions (RBF) using the interpolate.Rbf class of Scipy [26]. The learning database resides
in a 3-D domain of operating parameters – viz. M, α and φ – that is scaled to the unit hypercube prior
to interpolation.

Figure 10 presents the result of the cross-validation exercise (as described in Section 5.2.1) in terms of
the fractional errors in interpolation-based prediction of the three aerodynamic force coefficients using
the first 25 POD modes, evaluated on the database of 32 cases. The interpolation fares quite poorly in
comparison with the corresponding ROM results shown in Fig. 9, with errors that are almost an order
of magnitude greater. This attests to the inherent difficulty of the modelling problem undertaken in this
work.

6.0 Conclusions
In this work, we demonstrate the application of a reduced-order model (ROM) approach to the prediction
of aerodynamic force and moment coefficients of a subsonic missile. It leverages an existing RANS-
based full-order model (FOM) database, where flow solutions have been calculated using ANSYS
Fluent for certain missile operating conditions consisting of combinations of freestream parameters –
viz. Mach number, angle-of-attack and roll angle. The ROM developed in this project learns from the
FOM database, and is subsequently able to predict the aerodynamic coefficients at any other operating
condition that falls within the range of conditions evaluated in the learning database. Limited excursions
outside this range (i.e. extrapolations) are also possible.

The ROM approach makes use of proper orthogonal decomposition (POD) to extract the essential
flow features from the learning database. It subsequently solves an optimisation problem, wherein a flow
solution is sought that satisfies the boundary conditions corresponding to a new operating condition,
all the while ensuring that the solution produces the minimum residual with respect to the governing
equations. The main contributions of this work are:
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• Application of model order reduction approach to an industrial problem involving three-
dimensional steady subsonic aerodynamic flow over a missile at a range of relevant freestream
conditions, including angle-of-attack up to 20◦.

• Introduction of a reformulation of freestream boundary conditions in external aerodynamics
problems as a linear equality constraint that can be imposed exactly.

• Demonstration of a physically motivated hyper-reduction approach for the problem.
• Introduction of a strategy for the approximate evaluation of aerodynamic coefficients from a

reduced-order solution directly, without having to reconstruct the full solution.
• Obtaining aerodynamic coefficients from the ROM within half a minute on a single processor,

whereas the FOM necessitates RANS simulation on ∼ 107 cells – a matter of hours or days.
• Pursuit of an extensive cross-validation programme to understand the trade-offs involved at

various stages of the model order reduction process.
• Demonstration of accuracy of all six predicted aerodynamic coefficients to within 5% of their

respective maximum values (attained in the learning database) across nine different validation
cases. The only exception is the difficult-to-predict rolling moment, which is off by up to 20% in
one case, and by 10% in another. In terms of the relative errors, the accuracy of the POD-ROM
method proves to be quite acceptable by industry standards.

The effectiveness of the POD-ROM approach is compared with a database interpolation method
based on thin-plate spline radial basis functions, that is extant in the literature. For routine interpolations,
this method is seen to result in around 10% errors, but the errors approach 100% in some interpolation
cases, and definitely in cases involving extrapolation. This reinforces the superior performance of the
proposed ROM approach.
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