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Abstract
Coaxial jets are quieter compared to single stream jet.
Keeping in mind the importance of the downward sector
of the jet, offsetting the secondary jet (with axis parallel
to primary jet) can add more thickness to the jet in
the required downward sector. Experiments have also
shown the noise reduction in the critical downward
sector. Recently we have proposed a fitting function
suitable for modelling the mean axial velocity field
of such offset multi-stream jets. This fitted mean flow
field is used in conjunction with a quasi-parallel linear
bi-global stability analysis to model the wavepacket
noise sources in the jet. We hypothesize azimuthal
dominance based on the character of the eigensolutions.
In this paper, we report on partial consistency in the
directional (azimuthal) dominance of the solution for the
same model with partially offset jet when excited with
0.3 and 0.4 Strouhal number (St) compared to 0.1 St.

Keywords : Linear bi-global stability theory; Turbulent
mean flow; Offset jet ; Unstable modes

I. INTRODUCTION
Coaxial jets are of technological importance in high

bypass ratio jet engines. It not only improves cycle
efficiency but also leads to reduced jet mixing noise as
the bypass stream lowers the jet velocity . Because the
aerodynamic noise scales with the jet velocity, this is a
very efficient way of decreasing the radiated noise [1].
Increasing bypass ratio will require higher jet diameter
which is not feasible to generate required thrust. This
motivates to search for other approaches for noise reduc-
tion that are feasible under aviation regulations. Another
approach is to offset the two jets by keeping the axes
parallel [2]. This modifies the azimuthal directivity of the
bypass stream so as to thicken the bottom sector of shear
layer.

For modeling the noise source, we are interested in
computationally efficient approaches, the one pursued
here being wave packet theory. Such spatially growing,
saturating and decaying structure are prominently found

in hydrodynamic near pressure field which exhibits co-
herence over a significantly larger region compared to
the characteristic length of flow. This large scale coherent
component of the turbulent jet is mostly responsible for
major (loud) part of jet noise radiated at the aft angle [3].

Wave packets in the turbulent jet were initially ob-
served experimentally by Mollo-Christensen [4]. Subse-
quently, they were modeled as linear Kelvin-Helmholtz
(K-H) instability wave for time averaged turbulent jet [5].
In the recent years, Linear Stability theory (LST, paral-
lel flow assumption) and Parabolised Stability Equation
(PSE, slowly varying flow assumption ) have been suc-
cessfully used to model the wave packets with extensive
validation with experiments and large-eddy simulations
for high Reynolds number single stream jet [6,7].

In coaxial jets, using spatial LST, two independent
modes for a given azimuthal wave number and angular
frequency pair have been observed which corresponds to
the inner and outer shear layers[8]. They are called as
‘inner’ and ‘outer’ mode respectively. Of course these
modes can be separately identified before the end of
potential core only.

We have already hypothesized that acoustic benefit
in offset jet is caused due to favorable azimuthal asym-
metry and possibly reduced growth rate of K-H modes
supported by asymmetric mean flow field. For Strouhal
number St = 0.1 (based on primary exit jet diameter and
velocity), the inner eigenmodes (that remain unstable over
a significant length of the jet) are preferentially dominant
in the top sector of the jet. This is hypothesized to be
linked to the dominant acoustic radiation of the offset jet
to the top sector [12]. In this paper we are trying to assess
whether the behavior is replicated at the acoustically-
relevant Strouhal range of St = 0.3 − 0.4.

II. MEAN FLOW DESCRIPTION
Our mean axial velocity fields are derived by fitting the

data for the coaxial C17M90 and eccentric E17M90 jets
studied by Murakami and Papamoschou [2]. The ratio,
secondary jet diameter to primary jet diameter (Ds/DP )
is 1.7 with primary Mach number as 1.5 and secondary
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Mach number as 0.9. In the eccentric case, the secondary
jet was completely offset downwards. All the lengths are
normalized by Dp and velocity by primary nozzle exit
jet velocity Up. For all x axial stations, we fitted the
velocity profiles with offset double truncated Gaussian
by introducing a new parameter ‘C’ as eccentricity.
With this, the mean flow profiles for a concentric jet
could be retrieved just by setting ‘C’=0; alternatively
by setting it to 0.35 we can retrieve fully eccentric jet
flow field of E17M90 case[12]. Positive values of ‘C’
represents downward shift of the secondary jet. With the
same functional form, velocity profiles with intermediate
eccentricity (between C = 0 and 0.35, see fig. 1) can also
be obtained.

Figure 1: Mean axial velocity u/Up contours at x = 1
station

In the round coaxial jets, the Fourier azimuthal modes
are decoupled. The offset jet’s mean flow field is inho-
mogeneous in the azimuth, which couples all azimuthal
Fourier modes of the fluctuations. For comparison be-
tween coaxial and offset jet results, the LST will be
formulated in polar coordinates. Thus, expanding the
mean flow axial velocity in azimuthal Fourier modes

ū(x, r, θ) =
+∞∑

m=−∞
ˆ̄um(x, r)eimθ (1)

where ˆ̄um is the mth azimuthal Fourier mode of ū.
Exploiting the mirror symmetry of the offset jet (θ defined
with reference to z axis), all positive azimuthal modes
are identical to negative azimuthal modes. Let M be the
maximum azimuthal mode needed to describe the mean
flow by neglecting the contribution of higher order modes.

In the following problem, we have used parallel flow
assumption such that the mean radial and azimuthal ve-
locities are negligible. We assumed jet to be isothermal as
no information regarding mean temperature (and density)
was reported in Ref.2.

III. SPATIAL LINEAR STABILITY THEORY
Neglecting the axial variation of the mean flow and

considering it as time invariant, the remaining problem
is stated as bi-global stability problem owing to in-
homogeneity in r and θ (cylindrical coordinates). Let
q = {u, v, w, p, ζ}T be the mean flow variable, which
denotes axial, radial, azimuthal velocity, pressure and
specific volume respectively. In LST, we decompose flow
variable into its mean component (q̄) and its fluctuating
component (q′). The solution (q′) is separable in fre-
quency and axial wave number components. Since we
do spatial LST, we keep the axial wave number to be
complex. Thus, the ansatz will be

q′(x, r, θ) = q̂ω(r, θ)ei(αx−ωt) + c.c. (2)

q̂ω(r, θ) =
+∞∑

m=−∞
q̃ω,m(r)eimθ (3)

Here, m is the azimuthal Fourier mode, ω is the real
frequency described in terms of Strouhal number St =
ωDp/2πUp. The complex wave number α has real part
(αr) and imaginary part (αi) which defines as wave num-
ber and decay rate (negative of growth rates) respectively.

Substituting the ansatz into the linearized governing
equations with mean flow decomposition as described in
eq. 1 and taking the azimuthal Fourier transform of the
resulting equation for an arbitrary azimuthal Fourier mode
n, one arrives at a generalized eigen value problem. The
nth azimuthal mode of the solution q̃ is coupled with
other azimuthal modes in the set [n−M,n+M ] [12].
Usually, the solution converges with a finite number of
azimuthal modes contributing to the solution, say ±N .
In coaxial jets, since the azimuthal Fourier modes are
independent, the resulting solution can also be charac-
terized with m = 0, 1, 2 and so on. But in case of
offset jets, this is not an option due to inhomogeneity
in the azimuthal domain. Thus we introduced a new
nomenclature µ. When we say µ = 0, it means that eigen
solution is dominated by m = 0, for µ = 1, solution is
dominated by m =1 and so on.

The grid is clustered in the shear layer where the mean
velocity gradient is maximum. The fourth order central
difference is use to discretize radial domain. The resulting
eigen value problem is sparse, and it is solved using the
parallel implementation of the ARPACK library (11) with
usual boundary conditions applied to the centerline [9]
and the far field [10].

IV. RESULTS
Recently, the effect of offset on the growth rates and

eigen function dominance for St = 0.1 has been studied
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[12]. In this paper, we have compared the results of St
= 0.1 with St = 0.3 and St = 0.4 results at the first
axial station where we have mean flow data, viz. x = 1.
Here we have presented pressure eigen functions (in r,
θ domain) since they are most relevant to acoustics. For
the convergence of LST calculations, maximum number
of azimuthal mode required to describe the mean flow
(azimuthal complexity, M ) and for the solution (N ) are
25 and 30 respectively. The radial domain (limited to r=
8.5) is discretized with 800 points.
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Figure 2: Eigen spectrum for C = 0 and C = 0.15
cases plotted for three different St (0.1, 0.3 and 0.4).
Left column represents inner modes and right column
represents outer modes. Only first two dominant
azimuthal mode (µ = 0 and 1) traverse is shown for
variation in St and C

Fig. 2 shows the eigen spectra for inner and outer
modes representing St of 0.1, 0.3 and 0.4, for first two
azimuthally dominant modes (µ = 0 and 1). Focusing
on inner modes, we observe that for µ = 0, there is no
significant change in the growth rates and phase speed
between C = 0 (coaxial) and C = 0.15 (eccentric) cases,
for respective St’s. However for µ = 1 case, by adding
the eccentricity, slight decrease in growth rates can be
seen. The offset is seen to slightly stabilize the µ = 1
modes. Further, looking at eigen function plot (see fig.
4(a)), for St = 0.1 and µ = 0, eigen functions are dominant
at the bottom sector of the jet. This effect is consistent
for St = 0.3 and St = 0.4 cases. On the other hand, for
µ = 1, even though St 0.1 case is dominant on the upper
part of jet, eigen functions for St 0.3 and St 0.4 have
distributed strengths on both, upper and bottom sector of
jet, with broader spread of eigen function on the upper
sector.

Looking at the outer modes (see fig. 2), minor decrease
in the growth rates can be observed for µ = 0 compared

to µ = 1 by adding the offset for respective St cases.
The major differences in growth rates are within different
St cases for both azimuthal modes (µ = 0 and 1).
Compared to the inner modes, these modes seems to
posses higher growth rates as the secondary Mach number
is very high (around 0.9) which is not usually the case.
So even though, in this study, outer modes seems to be
more important, but in actual case, it is the inner modes
which are of the prime concern. Contrary to inner modes,
we observe that, for St = 0.1, eigen function for µ = 0
dominates on the upper part of the jet (see fig. 4(b)).

For offset jet, the characterization of outer modes with
nomenclature as µ for St = 0.3 and St = 0.4 is not
straight forward, as we can see that we cannot clearly
distinguish outer mode as axisymmetrical or helically
dominated by merely comparing with concentric jet cases.
For identifying these modes as described above, analysis
for intermediate eccentricity (C = 0.05) was conducted
(see fig. 3) at St = 0.3 and St = 0.4 (not shown in figure)
for tracking the behavior of respective azimuthal mode in
respect of azimuthal directivity as well as growth rates.

Figure 3: Outer modes pressure eigen function plots
for concentric (C = 0), intermediate (C = 0.05) and
partially eccentric (C= 0.15) jet at St = 0.3. First row
represents mode ‘i’ and second row represents mode
‘ii’ showing µ = 0 and µ = 1 mode characteristics
respectively. Eigen spectra shows their respective tra-
verse with increasing C

For concentric jet (C = 0), say axisymmetric mode
(m = 0) be the mode ‘i’ and the first helical mode (m
= 1) be the mode ‘ii’. By offsetting the jet with C =
0.05, we see that the mode ‘i’ and the mode ‘ii’ carries
the characteristics of axisymmetric mode and first helical
mode respectively, with the former being dominant in the
upper sector and the later being dominant at the bottom
sector. By further offsetting the jet up to C = 0.15, the
respective azimuthal dominance is retained by mode ‘i’
and mode ‘ii’. This justifies the use of nomenclature for
mode ‘i’ as µ = 0 and mode ‘ii’ as µ = 1 at C = 0.15.

Comparing St = 0.3 and St = 0.4 cases with St =
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0.1, µ = 0 mode is consistently dominated at downward
sector, on the other hand, µ = 1 mode for St = 0.3 and
St = 0.4 shows dominance in the downward sector, which
is contrary to St = 0.1 case.

(a)

(b)

Figure 4: (a) Inner mode pressure eigen function,
(b) Outer mode pressure eigen function plots for
concentric (C = 0) and partially eccentric (C= 0.15) jet
at St of 0.1, 0.3 and 0.4 (arranged row wise). First two
columns represents µ = 0 mode and last two columns
represents µ = 1 mode.

V. CONCLUSIONS
Recently we have modeled the noise source for the

offset jet at 0.1 Strouhal number (St) [12]. In this paper,
we have compared the eigen solution of above stated
model with the solution obtained at St 0.3 and St 0.4 with
partial eccentricity (C = 0.15) added in the secondary
jet (downward jet thickened). Here, we have reported
comparison for the modes dominated by axisymmetric
(µ = 0) and first helical mode (µ = 1), as the lower
order modes are acoustically efficient due to their stronger
coherence.

LST results shows that, for all St cases (0.1, 0.3 and
0.4), both inner and outer azimuthal modes dominated by
axisymmetric modes shows consistent azimuthal direc-
tivity with former showing preference at upward sector
and later strengthening at downward sector of the jet.
However, at St = 0.3 and 0.4, inner modes dominated
by first helical modes partially retains the azimuthal
character of eigen solutions compared to St = 0.1 case
by showing preference at the upward sector of the jet.
Further, at St = 0.1, the outer modes dominated by first
helical mode have strong azimuthal preference in the
upward sector whereas at St = 0.3 and St = 0.4, these
modes have major dominance in the downward sector of
the jet.
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