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The shooting method is commonly used to solve the linear parallel-flow stability prob-
lem for axisymmetric jets, as well as planar flows, that have one inhomogeneous direction.
The present extension to two inhomogeneous directions (i.e., bi-global stability problem)
is motivated by inviscid non-axisymmetric jets. The azimuthal direction is Fourier trans-
formed to obtain a set of coupled one-dimensional shooting problems that are solved by
two-way integration from either radial boundary. The overall problem is formulated as one
of iterative root-finding to match the solutions from the two integrations. The approach is
validated against results from the well-established direct matrix method that discretizes the
domain to obtain a matrix eigenvalue problem. We demonstrate very good agreement in
two jet problems – an offset dual-stream jet, and a jet exiting from a nozzle with chevrons.

I. Introduction

Although axisymmetric (round) jets constitute a benchmark flow for their azimuthal homogeneity, prac-
tical prerogatives dictate the prevalence of non-axisymmetric jets in engines. The azimuthal inhomogeneity
of such jets may be preferred, either for promoting mixing to reduce noise radiation, or for redirecting the
noise away from the bottom sector of the jet. The former is exemplified by jets exiting from nozzles with
chevrons1, and by jets from round nozzles having additional micro-jets impinging at their lip2. An instance
of the latter is a dual-stream jet where the two streams are not coaxial, but instead have an offset between
them such that the secondary potential core is thickened in the bottom sector3.

The linear Kelvin-Helmholtz (K-H) instability mode of the time-averaged flow field of turbulent jets is
a useful model of their noise sources4. A quasi-parallel flow assumption is often valid as the jet displays a
slow streamwise spread. In case of axisymmetric jets, the consequent spatial stability analysis reduces to an
eigenvalue problem involving an ordinary differential equation (ODE) in the radial coordinate, separately for
every pair of frequency and azimuthal Fourier mode of fluctuation. However, for non-axisymmetric jets the
problem becomes one of bi-global stability involving partial differentials in both the radial and azimuthal
coordinates. This means that, in the Fourier azimuthal domain, although the linear stability equations
still involve ordinary derivatives in the radial coordinates only, the various azimuthal Fourier modes of the
eigenfunction are coupled for a particular frequency of perturbation. The latter problem has been solved
using the direct matrix method5–8. In this approach, the system of coupled ODEs is converted into a matrix
eigenvalue problem by suitable discretization of the radial domain.

In this paper, we adopt the alternative approach of shooting. In this method, the differential eigenvalue
problem with boundary conditions is posed as an initial-value problem. The eigenvalue is guessed to start
with. In the one-way shooting method, the eigenfunction is integrated starting from one boundary and
proceeding towards the other. The satisfaction of the boundary condition thereat is obtained in an iterative
manner by improving the guess of the parameters of the problem that include the eigenvalue. In the two-way
shooting approach, the integration is started separately from both boundaries, and approach each other at
an intermediate point. The matching of the two eigenfunction solutions at this point is again achieved in an
iterative manner.

The shooting method is preferred over the matrix method whenever (a) a single eigensolution is desired,
and (b) a good initial guess is available for it. The bi-global stability problem will be seen to have multiple
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(a)
(b)

Figure 1: (a) Mean axial velocity fields of the two jets analyzed – dual-stream jet with offset of 0.1Dp at
x = 2Dp, and jet from chevron nozzle at x = 3D. The colorscale represents u normalized by the respective
(primary) jet exit velocities. (b) Non-trivial azimuthal Fourier modes of these mean flow fields.

unstable K-H modes as solutions, and shooting may be used conveniently for ‘tracking’ these modes indi-
vidually as some relevant condition (like axial station, Strouhal number, offset between the two jet streams,
etc.) is varied.

The shooting method has been used in non-axisymmetric jet stability analysis earlier by Gudmundsson 6 ;
here we report on some improvements to the procedure. Specifically,

• We use a two-way shooting approach whereas the reference work employed a one-way method; this
bestows greater numerical stability to the computations.

• For faster and more reliable convergence, we calculate the necessary Jacobian of the cost function (see
more later) analytically instead of the numerical computation employed in the reference.

• We explicitly account for the mirror symmetry of the problem, thereby reducing the problem size.

We provide validation of our shooting algorithm against the matrix method solution for an offset jet and
a jet exiting from a nozzle with chevrons.

II. Jets Analyzed for Validation

To motivate the development of the stability theory subsequently, we start by describing the kinds of
non-axisymmetric jets that will serve as test cases for validation.

In a companion paper9, we have described the mean axial velocity function of a dual-stream jet that can
be assigned an arbitrary offset. There we have used the matrix method to analyze such jets with various
offsets at a range of axial stations. Here, one of the validation studies uses the same jet. In particular, the
ratio of the secondary to primary nozzle exit diameters (Ds/Dp) is 1.7, the exit Mach numbers of the primary
and secondary streams are respectively 1.5 and 0.9, the entire jet is at ambient temperature such that there
are no mean density variations, and the offset between the two streams is 0.1Dp. The axial station at which
the analysis is performed is x = 2Dp; fig. 1a shows the mean axial velocity thereat. All length dimensions
are normalized by Dp, and the temporal frequency ω analyzed is reported in terms of the Strouhal number
St := ωDp/(2πUp), where Up is the primary jet exit velocity.

The second jet analyzed is the one exiting at Mach 0.9 from the SMC001 6-chevron nozzle designed and
tested by Bridges and Brown 1 . The mean flow field originally measured with particle image velocimetry is
smoothed by fitting functions described by Sinha et al. 7 . The stability analysis is performed on the mean
axial velocity field at x = 3D shown in fig. 1a (where D is the nominal nozzle exit diameter). The jet had a
co-flow of Mach 0.01. The density field is again assumed to be uniform. In this case, length dimensions are
normalized by D, and St := ωD/(2πU) with U as the jet exit velocity.

2 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ni
ru

dd
ha

 S
in

ha
 o

n 
M

ay
 2

3,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
27

56
 



III. Inviscid Linear Bi-global Stability Theory for Non-axisymmetric Jets

We use cylindrical coordinates (x, r, θ) even though the formulation is for non-axisymmetric jets, as the
reference case is invariably an axisymmetric jet. Let q := (u, v, w, p, ρ)T be the flow variable vector involving
the axial, radial and azimuthal velocity components, and pressure and density, respectively. The usual
Reynolds decomposition is performed on q to obtain the time-averaged mean q and the residual fluctuations
q′. Assuming the mean flow to be locally parallel in x and stationary in time t, the linearity of the governing
equations allow the following normal mode ansatz for q′

q′(x, r, θ, t) = q̃ω(r, θ)eι(αx−ωt) + c.c. (1)

In spatial stability analysis, q̃ is the shape function corresponding to a specified real angular frequency ω
and the complex wave number α is to be determined. The latter’s real part αr signifies the actual wave
number (inversely proportional to the phase speed) and its imaginary part αi corresponds to the decay rate
(negative of growth rate).

An inviscid analysis is typically warranted since the K-H instability is essentially an inviscid phenomenon
and the jets under study have high Reynolds number. Then, substituting the above ansatz in the linearized
compressible Euler equation obtains the usual compressible Rayleigh equation for pressure fluctuations. For
the non-axisymmetric jets under analysis here, it takes the following bi-global form5

1

r

∂

∂r

(
r
∂p̃ω
∂r

)
+

1

r2
∂2p̃ω
∂θ2

− f ∂p̃ω
∂r
− g 1

r2
∂p̃ω
∂θ
− hp̃ω = 0 . (2)

Here, the space-varying coefficients f , g and h are functions of the mean flow field q apart from α and ω:

f =
2α

αu− ω
∂u

∂r
+

1

ρ

∂ρ

∂r
, g =

2α

αu− ω
∂u

∂θ
+

1

ρ

∂ρ

∂θ
, h = α2 − ρ (αu− ω)

2
. (3)

Instead of solving this problem in the physical (r, θ) domain, we solve it in the Fourier azimuthal and
physical radial domain. This facilitates subsequent specialization to axisymmetric jets, wherein the Fourier
azimuthal modes of the solution are decoupled. Irrespective of the specific problem, the mean flow q and
the pressure mode p̃ can be expanded in their respective azimuthal Fourier modes owing to periodicity in θ

q(θ) =

∞∑
n=−∞

q̂neιnθ, q̂n :=
1

2π

∫ π

−π
q(θ)e−ιnθdθ; p̃ω(θ) =

∞∑
n=−∞

p̂ω,neιnθ, p̂ω,n :=
1

2π

∫ π

−π
p̃ω(θ)e−ιnθdθ,

where we have omitted the r−dependence for notational compactness. For reference, fig. 1b shows the non-
trivial azimuthal Fourier modes of the mean axial velocity fields of the jets studied here. The mean flow
functions f , g and h are also transformed similarly. With this, the Rayleigh equation becomes

1

r

∂

∂r

(
r
∂p̂ω,m
∂r

)
− m2

r2
p̂ω,m −

∞∑
n=−∞

{
f̂n

∂

∂r
+
ι (m− n)

r2
ĝn + ĥn

}
p̂ω,m−n = 0, ∀m. (4)

Thus, for any non-axisymmetric jet, the eigensolutions are coupled in their azimuthal Fourier modes.
In general, our analysis is applicable up to the end of the potential core; beyond that the velocity gradients

are gradual enough so as to stabilize most perturbations. Thus the base flow can be assumed to be locally
uniform at r = 0. In the radial far field, the assumption of local uniformity of the base flow is always valid.
So, at both boundaries, eqn. (4) simplifies to the modified Bessel equation, yielding the boundary conditions

p̂ω,m(r = rc) ∼ Im
(√

α2 − ρ0 (αu0 − ω)
2
rc
)
, p̂ω,m(r = rf ) ∼ Km

(√
α2 − ρ∞ (αu∞ − ω)

2
rf
)
. (5)

Here Im and Km are respectively the modified Bessel functions of first and second kind for azimuthal mode m.
Also, the boundary conditions are enforced at a small non-zero radius rc (to avoid the centreline singularity),
and at a very large radius rf , respectively. Finally, ρ0 and ρ∞ are respectively the mean density at the jet
centreline and the ambient, and u0 and u∞ are the corresponding mean axial velocities. Unless there is a
co-flowing jet, u∞ will vanish in a laboratory setting.

As demonstrated here, the equations are decoupled in ω. So, for notational convenience, we will omit ω
in the subsequent development wherever it is obvious from the context.
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A. Specialization to base flows with rotational symmetry

Chevron nozzles usually have the chevrons distributed uniformly around the circumference1. Similarly,
nozzles with secondary micro-jets also typically have these devices deployed uniformly in azimuth2. Thus,
the mean flow field in such jets exhibit an L–fold rotational symmetry, where L is the number of chevrons,
micro-jets, etc. (see fig. 1a for an example). In such cases, the mean flow field presents a corresponding
sparsity in the Fourier azimuthal domain5:

q(r, θ) =

∞∑
j=−∞

q̂Lj(r)e
ιLjθ. (6)

This sparsity pattern induces a similar sparsity in the coefficient functions f̂ , ĝ and ĥ. As a consequence,
the Rayleigh equation (see eqn. (4)) becomes

1

r

∂

∂r

(
r
∂p̂m
∂r

)
− m2

r2
p̂m −

∞∑
j=−∞

{
f̂Lj

∂

∂r
+
ι(m− Lj)

r2
ĝLj + ĥLj

}
p̂m−Lj = 0, ∀m. (7)

Equation (7) indicates that the p̂m modes of the eigenfunction have a sparse coupling in the Fourier
azimuthal domain in this case. In particular, the azimuthal mode m is coupled with the set {m+Lj}∞j=−∞.
To distinguish between the different (decoupled) eigensolutions, we define the azimuthal order M as the
central azimuthal mode of the above coupled set. For example, in the azimuthal order M = 0 eigensolution,
the set of coupled azimuthal modes is {Lj}∞j=−∞; that in the azimuthal order M = 1 eigensolution is
{1 + Lj}∞j=−∞, and so on. Evidently, only mode orders M = 0 to M = L − 1 are unique, and need to be
solved for. More details of the properties of the eigensolutions in this case have been described by Sinha
et al. 7 .

As an aside, note that the above formulation reduces to the general non-axisymmetric jet case if we set
L = 1, whereby all azimuthal modes are seen to be (densely) coupled. In this case, the only unique azimuthal
order to solve for is M = 0.

Practical mean flow fields can be represented by a finite set of modes, say {q̂Lj}Nj=−N in eqn. (6). Owing

to their nonlinearity, the corresponding mean flow functions f̂ , ĝ and ĥ, have higher azimuthal complexity,
say N̆ ≥ N . Analogously, the eigensolutions will also converge with a finite coupled set of azimuthal modes
in eqn. (7), say {p̂M+Lj}Sj=−S , with S ≥ N̆ .

It will be noted that, if L is even, then the Nyquist azimuthal order M = L/2 may be desired. In this
case, symmetry considerations dictate that the coupled set of pressure eigenmodes to solve for is actually
{p̂L(j+1/2)}S−1j=−S . In the remainder, this Nyquist azimuthal order will not be considered, as it requires special
notation. This omission may be readily rectified by the interested reader.

B. Specialization to base flows with mirror symmetry

Often, the nozzle geometry has a plane of symmetry, as in offset multi-stream jets or nozzles with symmetric
chevrons, such that the resulting jet mean flow field also has a corresponding symmetry (see fig. 1 for two
examples). In such cases, choosing the plane of symmetry as the θ = 0 reference, the mean axial velocity
and density fields can be written as cosine series, with purely real azimuthal Fourier modes

q(r, θ) =

∞∑
j=0

(2− δj,0)q̂Lj(r) cosLjθ, q̂Lj(r) :=
1

π

∫ π

0

q(r, θ) cosLjθ dθ, q ∈ {u, ρ}. (8)

Correspondingly, the azimuthal Fourier modes of the coefficient functions have the following symmetry
properties:

f̂−m = f̂m, ĝ−m = −ĝm, ĥ−m = ĥm. (9)

Consequently, as shown in Appendix A, the pressure eigenfunctions are also symmetric, i.e., p̂−m = p̂m.
Thus, in flows with mirror symmetry, the Rayleigh equation of eqn. (7) becomes

1

r

∂

∂r

(
r
∂p̂m
∂r

)
− m2

r2
p̂m −

(
f̂0

∂

∂r
+ ĥ0

)
p̂m −

N∑
j=1

(
f̂Lj

∂

∂r
+ ĥLj

)(
p̂|m−Lj| + p̂|m+Lj|

)
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− ι

r2

N∑
j=1

ĝLj
{

(m− Lj)p̂|m−Lj| − (m+ Lj)p̂|m+Lj|
}

= 0, ∀m ≥ 0. (10)

Note that the coupled azimuthal Fourier modes in the azimuthal order eigensolutions M = 1 and M =
L− 1 are the same. Thus, the azimuthal orders to solve for are M = 0 to M = L/2 if L is even, and up to
M = (L− 1)/2 if L is odd.

This symmetry is particularly advantageous for the azimuthal order M = 0 eigensolution. In this case
one needs to solve for only about half the total number of coupled azimuthal modes of the eigenfunction,
viz. {p̂Lj}Sj=0. This not only halves the problem size, but also enforces the symmetries of the eigensolution
exactly. Recall that M = 0 is the only azimuthal order to solve for in flows without rotational symmetry
(i.e., when L = 1), making the computational gains particularly striking.

C. Direct matrix method

The direct matrix approach for this problem has been established over the past few years in a series of
publications7–9. Hence, we will treat the results from this method as the ‘truth’, and validate the shooting
approach proposed here with respect to them. We briefly outline the direct matrix procedure here; the
details can be found in the above references.

The normal mode ansatz for the fluctuations described above is applied to the set of five linearized gov-
erning equations. The resulting eigenvalue problem (coupled in the azimuthal Fourier domain) is discretized
using fourth-order central differences on a radial grid that is clustered close to the primary nozzle’s lip-line.
The pole condition of Mohseni and Colonius 10 is applied at the centreline singularity, and the characteristic
boundary condition of Thompson 11 is implemented at the far-field boundary (r = rf ). This results in a
generalized matrix eigenvalue problem that is solved using the ARPACK library12 in a parallelized fashion.
The implementation allows for the viscous effects to be retained or turned off; inviscid computations are
made for the present comparison.

The main parameters for this algorithm are (a) the azimuthal modal complexity of the mean axial velocity
N , (b) that of the eigenfunction solution S, (c) the radial location of the far-field boundary rf , and (d) the
number of points in the radial grid Nr. The first three parameters are shared with the shooting method too,
but it will be obvious subsequently that they have subtle differences in their implications.

IV. Shooting Method for the Bi-global Stability Problem

The shooting method is commonly used for solving two-point boundary value problems arising in one-
dimensional linear stability problems13. To the knowledge of the authors, the only reported application in
bi-global stability problems is the work of Gudmundsson 6 . Here, we solve the bi-global Rayleigh equation
(see eqn. (7)) for both serrated and offset jets. Note that we need to determine an eigenvalue α and the
corresponding pressure eigenfunction {p̂ω,M+Lj}Sj=−S for a particular choice of frequency ω and azimuthal
order M . The shooting method is most useful when only a few eigensolutions are desired, and good guesses
are available for the corresponding eigenvalues. This happens to be the case for jet instability problems, as
most often the K-H mode is the only one of interest.

In this work, we employ a two-way shooting method, extending the one-way shooting approach described
by Gudmundsson 6 . The idea of a shooting method is to convert a two-point boundary value problem into
an iterative initial value problem. We start with a guess of the eigensolution (that will be clarified below)
at both the radial boundaries, and shoot (i.e., integrate) them towards each other using eqn. (7). At a
certain intermediate radial point ri, say, the two eigensolutions are compared through a cost function that
is designed to be zero in case of a match. The process is necessarily iterative as the initial guesses have to
be repeatedly improved with the aim of zeroing the cost function till convergence is achieved.

The shooting starts with a guess of the eigenvalue α that is to be refined progressively, and the integration
of the pressure eigenfunction is initiated from both boundaries, i.e. from r = rc and r = rf (see eqn. (5)).

We will denote these two eigenfunction solutions with superscripts (·)c and (·)f to respectively refer to the
‘centre’ and ‘far’ solutions integrated outward from the centreline and inward from the far field. Equation (5)
indicates that, given the guess of α, one knows the eigenfunction p̂m as well as its first derivative at both rc

and rf for all 2S + 1 azimuthal modes involved. However, this is misleading since the relative amplitudes of
the various p̂m’s must also be known – together the pressure modes have to satisfy the governing eqn. (7)
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Figure 2: Pressure eigenfunctions in azimuthal modes m = 0 and 1 from the ‘centre’ and ‘far’ solutions,
along with their radial derivatives, displaying the apparent mismatch at the intermediate point ri = 0.5.

over the entire r–domain. Thus, we refine the definition of the initial (or boundary) conditions presented in
eqn. (5), and write them compactly as

p̂ζm(rζ) = UζmBm(λζrζ), (ζ,B) ∈ {(c, I), (f,K)}, m ∈ {M + Lj}Sj=−S . (11)

Here, λc :=

√
α2 − ρ0 (αu0 − ω)

2
and λf :=

√
α2 − ρ∞ (αu∞ − ω)

2
, and U cm and Ufm are unknown complex

scalar amplitudes. As the system is homogeneous, the overall amplitude of the eigenfunction is arbitrary so
that one of the above complex scalars in each solution is a free variable; we set U cM = UfM = 1. Once these
two values are fixed, all the remaining coupled azimuthal modes of the solution are fixed relative to each
other. Thus, the vector of unknown parameters is

V :=
(
α,U cM−LS , · · · , U cM−L, U cM+L, · · · , U cM+LS , U

f
M−LS , · · · , U

f
M−L, U

f
M+L, · · · , U

f
M+LS

)T
. (12)

These parameters will be uniquely determined in the correct solution that we are iterating towards.
To initiate the integration of the second-order ODE that is eqn. (7), we not only calculate the pressure

eigenmodes at either boundary from eqn. (11) using the guessed parameter vector, but also their respective
radial derivatives:

∂p̂ζm
∂r

∣∣∣∣
r=rζ

= Uζmλ
ζB′m

(
λζrζ

)
, (ζ,B) ∈ {(c, I), (f,K)}, m ∈ {M + Lj}Sj=−S . (13)

Here, B′ denotes the derivative of the Bessel function B with respect to its argument. The integration from
the boundaries towards the intermediate point ri employs the variable-step-size Runge-Kutta solver ode45

in MATLABR©. For this, the second-order ODE is converted into a set of two coupled first-order ODEs.
Since U cM and UfM are chosen arbitrarily, the two solutions approaching from the two directions will

not match at ri in general (see fig. 2). However, in the correct eigensolution, the ratios of each p̂cm to the
corresponding p̂fm must be same for all azimuthal modes m; similarly, the ratios of their respective radial

derivatives should also match at ri. We choose the value of p̂cM/p̂
f
M at ri as the common ratio to compare

the ratios of all other modes and their radial derivatives. Thus, the set of cost functions to be zeroed are

Λm :=

(
p̂cm −

p̂cM

p̂fM
p̂fm

)∣∣∣∣∣
r=ri

, Λ′m :=

(
∂p̂cm
∂r
− p̂cM

p̂fM

∂p̂fm
∂r

)∣∣∣∣∣
r=ri

, m ∈ {M + Lj}Sj=−S . (14)

Note that the cost function ΛM is trivially zero. Thus, the non-trivial vector of cost functions is

Γ :=
(
ΛM−LS , · · · ,ΛM−L,ΛM+L, · · · ,ΛM+LS ,Λ

′
M−LS , · · · ,Λ′M−L,Λ′M ,Λ′M+L, · · · ,Λ′M+LS

)T
. (15)

It will be observed that, for a certain choice of the number of azimuthal modes of the eigensolution to retain
in the calculation (i.e., S), the cost function vector above and the parameter vector V in eqn. (12) have the
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Figure 3: Offset jet: eigenvalues of the inner and outer modes for µ = 0 and 1 for St = 0.3 at x = 2, obtained
from the shooting method (black crosses) and direct matrix approach (red circles).

same number of elements, viz. 4S + 1. In a mirror-symmetric problem for M = 0, the negative amplitude
factors are omitted from V , as are the cost functions for the negative azimuthal modes from Γ. In this case
the sizes of both V and Γ vectors are 2S + 1.

The multi-dimensional Newton-Raphson method is used as the iterative algorithm to find the parameter
vector V that zeroes the cost function vector Γ. Specifically, for a trial V , we evaluate Γ at the intermediate
radial point ri, as well as the Jacobian J of Γ with respect to V at this point. Then the Newton step for the
parameter vector δV is given by the solution of the linear system of equations JδV = −Γ. The problem is
well-posed as V and Γ are vectors of the same size, so that the Jacobian J is a square matrix.

Unlike Gudmundsson 6 who evaluated the Jacobian numerically using multi-dimensional finite differences,
we calculate it analytically as described in Appendix B. This requires additional quantities to be integrated
from the boundaries along with the ‘center’ and ‘far’ pressure eigensolutions (see Appendix B). For a given
choice of azimuthal complexity S, the resulting size of the vector to be integrated separately from each
boundary becomes 4(S + 1)(2S + 1). In a mirror-symmetric problem for the M = 0 azimuthal order
eigensolution, this size reduces to 2(S + 1)(S + 2).

V. Results

We present results from the study undertaken to validate the shooting method against the matrix method.
The code is made general enough to handle both the offset multi-stream jet (having a mirror symmetry)
and the jet exiting from the chevron nozzle (having rotational symmetry in addition to mirror symmetry),
as described in § II.

A. Validation with offset dual-stream jet

The first validation case is the offset dual-stream jet, whose mean flow at x = 2 is considered (see fig. 1a).
Stability calculations are performed for St = 0.3. The azimuthal modal complexity of the mean axial velocity
field is set to N = 3 for both shooting and direct matrix approaches (see fig. 1b for reference). The inner and
outer shear layers of such a dual-stream jet have respective inner and outer K-H instability modes associated
with them8,9,14; we solve for both the modes here. As explained in § III, each eigensolution has many coupled
azimuthal Fourier modes. However, typically one azimuthal mode can be found to dominate a particular
eigensolution. We label the eigensolution dominated by the axisymmetric mode as µ = 0, the one dominated
by the first helical mode as µ = 1, and so on; see Sohoni and Sinha 8 and Singh et al. 9 for more details. In
this study, we solve for the µ = 0 and 1 eigensolutions of both the inner and outer modes.

Before discussing the validation results, we present the eigensolutions for this problem (computed from
the shooting method). Figure 3 shows the eigenspectrum, in terms of the growth rate −αi vs. the phase
speed cp := ω/αr. Owing to the Mach 1.5 primary jet, the inner modes associated with the inner shear layer
display supersonic phase speeds. Conversely, the outer modes have subsonic phase speeds, as the secondary
jet is subsonic. At this frequency (St = 0.3), the outer modes are more unstable than the inner ones. It
must be noted, however, that such comparisons are confounded by normalization issues – the outer modes’
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Figure 4: Offset jet: real parts of the normalized pressure eigenfunctions corresponding to the modes depicted
in fig. 3. Shooting method results are as solid contours in the left halves, whereas those from the direct matrix
approach are as dashed contours in the right halves.

Inner Modes

µ = 0 µ = 1

Direct matrix Shooting Direct matrix Shooting

S cp −αi S N̆ cp −αi S cp −αi S N̆ cp −αi
6 1.3338 0.2643 6 4 1.3338 0.2643 6 1.2602 0.2916 6 4 1.2602 0.2916

8 1.3338 0.2643 8 6 1.3338 0.2643 8 1.2602 0.2916 8 6 1.2602 0.2916

Outer Modes

µ = 0 µ = 1

Direct matrix Shooting Direct matrix Shooting

S cp −αi S N̆ cp −αi S cp −αi S N̆ cp −αi
15 0.6179 0.2772 15 9 0.6179 0.2770 11 0.5990 0.4040 11 8 0.5990 0.4040

16 0.6179 0.2770 15 10 0.6179 0.2770 12 0.5990 0.4040 12 9 0.5990 0.4040

Table 1: Offset jet: convergence of eigenvalues in four modes calculated by the two methods. Parameter set
cases used in eigenfunction investigations are highlighted.

results should rightly be normalized with the outer jet parameters for that exercise.
Figure 4 shows the real part of the pressure eigenfunctions corresponding to the four modes described

above. The ‘far’ shooting solution for an eigenfunction is adjusted with a complex scalar to match its ‘centre’
solution counterpart at the intermediate radial grid point. Subsequently, the eigenfunction is normalized to
have a maximum of unity over the y−z domain; moreover, the phase of the complex function is set to vanish
at the point of maximum. The normalization is consistently applied to the direct matrix method results
also.

The departure from axisymmetry due to the offset is apparent, although the mirror symmetry is preserved.
The mean flow depicted in fig. 1a should be referred for orientation of the axes maintained consistent here.
The inner modes can be seen to peak around the inner shear layer (r ≈ 0.5) and the outer modes are
maximum around the outer shear layer (r ≈ 0.85). Recall that r is normalized by the primary nozzle exit
diameter, and the diameter ratio of the two nozzles is 1.7.

The rationale of the µ = 0 and µ = 1 nomenclature is apparent for the inner modes, but is confounded for
the outer modes. Thus, this nomenclature should be considered as merely a way of labelling eigensolutions
here. More meaning can be ascribed to these labels when the modes are tracked starting from the concentric
jet case (where the azimuthal Fourier modes are decoupled) by varying the offset, as described by Singh
et al. 9 .

Table 1 establishes the convergence of the eigensolution calculations with the direct matrix method
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Figure 5: Offset jet: normalized pressure eigenfunctions of the outer and inner modes for µ = 0. Coloured
solid lines and black dashed lines are from the shooting and direct matrix methods, respectively.

Figure 6: Offset jet: absolute value of differences between the direct and shooting method results for the
normalized pressure eigenfunctions of the inner and outer modes of both µ = 0 and 1 cases. The legend
shows the mode numbers m of the various coupled azimuthal Fourier modes depicted.

with respect to the eigenfunctions’ azimuthal modal complexity S. In the shooting method, the important
parameters for convergence are S, as well as the azimuthal modal complexity N̆ of the mean flow functions

f̂ , ĝ and ĥ. Recall that the azimuthal complexity of the mean flow field itself is held at N = 3 for all these
calculations for the purpose of comparison, as it forms the common input to both the methods. The results
in table 1 thus demonstrates that the shooting method replicates the eigenvalues from the direct matrix
approach up to the fourth place of decimal, as depicted in fig. 3 also.

Table 1 also demonstrates the different azimuthal complexities of the inner and outer modes. The inner
shear layer is almost axisymmetric, the centreline being set to the centre of the primary jet. The asymmetry
due to the offset between the two streams mainly manifests in the outer shear layer, thereby necessitating
more azimuthal modes for the representation of the corresponding eigensolution.

The validation of the eigenfunctions was demonstrated in fig. 4; in fact, the contours from the two
approaches were so similar in this representation that they were not overlaid to reduce visual clutter. A
further demonstration of the similarity of the results from the two methods appears in fig. 5, where we resort
to the azimuthal Fourier domain and plot the coupled modes as in fig. 2. The first few azimuthal modes
of the pressure eigenfunction are shown for µ = 0 in both the inner and outer modes. The direct matrix
method results are overlaid on those from the shooting approach, and the differences are indeed very small.
The inner mode decays slowly toward the far field, and shows somewhat greater discrepancy than the outer
mode; this is explained below.

The minor differences are further highlighted in fig. 6, which also extends the presentation to the µ = 1
modes. The normalized eigenfunctions of the outer mode calculated by the two approaches differ by less
than 1 part in 10,000. The inner mode cases show greater discrepancies, as expected from fig. 5.
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Figure 7: Offset jet: reduction in the discrepancies between the shooting and direct matrix eigenfunctions
for the µ = 0 and 1 inner modes by furthering of the far-field boundary rf in the latter approach.

M = 0 M = 1

Direct matrix Shooting Direct matrix Shooting

S cp −αi S N̆ cp −αi S cp −αi S N̆ cp −αi
1 0.7453 0.2236 1 1 0.7452 0.2221 1 0.6638 0.2181 1 1 0.6651 0.2145

2 0.7446 0.2215 2 1 0.7448 0.2231 2 0.6608 0.2136 2 1 0.6618 0.2193

3 0.7445 0.2215 2 2 0.7445 0.2216 3 0.6606 0.2145 2 2 0.6607 0.2141

4 0.7445 0.2215 4 0.6606 0.2146

Table 2: Chevron jet: convergence of eigenvalues in two modes calculated by the two methods. Parameter
set cases used in eigenfunction investigations are highlighted.

To determine the cause of the discrepancy in the inner mode eigenfunction results, the direct matrix
calculation of these modes is repeated with larger values of rf , the ‘far-field’ radius where we apply the
characteristic boundary condition of Thompson 11 . The results heretofore have been obtained with rf = 10
for both the shooting and direct matrix methods. Without redoing the shooting calculations, we evaluate
their discrepancy against the direct matrix results recalculated with rf = 15 and 20. Figure 7 demonstrates
that this reduces the error drastically; the eigenvalues were found to remain unchanged. Apparently, the
inner modes have sufficient amplitude at r = 10 (see fig. 5), so that the characteristic boundary condition in
the direct matrix approach is inappropriate at this point. It is interesting to note that the shooting method
fares much better in this regard as it implements an analytical boundary condition that only requires the
mean flow to be uniform at the boundary.

Finally, we note the parameters of the calculations that were not discussed above. For the shooting
method, the ‘centre’ solution calculation was started from rc = 0.01, whereas the ‘far’ solution was initiated
from rf = 10. The Runge-Kutta solver ode45 of MATLABR© takes steps of variable size; however, on an
average about 5000 points were automatically evaluated in this interval. For the direct method, the number
of radial grid points Nr was 2000 in all the calculations, even when rf was increased for the cases presented
in fig. 7. Changing this did not affect the results materially.

B. Validation with single-stream chevron jet

The second validation case is the jet exiting from the 6-chevron nozzle sliced at x = 3 (see fig. 1a). We solve
for the M = 0 and 1 eigensolutions for St = 0.3. The azimuthal modal complexity of the mean flow was
N = 1 at this axial station. That is, only the m = 0 and 6 azimuthal modes of the mean axial velocity are
relevant (see fig. 1b).

The results from the convergence study are presented in table 2. The direct matrix method is seen to
be converged with S = 3. The eigenvalues thus calculated are matched closely by those from the shooting
approach with S = 2 and N̆ = 2.

10 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ni
ru

dd
ha

 S
in

ha
 o

n 
M

ay
 2

3,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
27

56
 



Figure 8: Chevron jet: leftmost pane shows real parts of the normalized M = 0 pressure eigenfunctions.
Remaining panes show real, imaginary and absolute values of the M = 1 eigenfunctions. Shooting method
results are as solid contours in the left halves, whereas those from the direct matrix approach are as dashed
contours in the right halves.

Figure 9: Chevron jet: normalized pressure eigenfunctions of the M = 0 and 1 modes. Coloured solid lines
and black dashed lines are from the shooting and direct matrix methods, respectively.

Figure 8 presents the eigenfunctions corresponding to these two modes. The real part of the M = 0
pressure eigenfunction displays a 6-fold rotational symmetry and mirror symmetry; the latter is similar to
the offset jet results. Neither of these symmetries are apparent in the real (or imaginary) part of the M = 1
eigenfunction. However, the absolute value of the same displays the 6-fold rotational symmetry. Note that
the absolute value of the M = −1 eigenfunction is mirror symmetric with its M = 1 counterpart. These are
known properties of the eigenfunctions of chevron jets, and discussed extensively by Sinha et al. 7 .

Figure 8 also demonstrates the match of the eigenfunctions between the two approaches. This is further
clarified in figs. 9 and 10. The very low discrepancies serve to validate the shooting approach.

We faced some numerical issues in the shooting calculations for the chevron jet, as discussed below.
With 6 chevrons, every 6th azimuthal mode is coupled in the eigensolution. Figure 9 shows that the values
of these successive coupled pressure eigenfunctions drop by several orders of magnitude at the centre and
far boundaries. It will be recalled that the shooting approach attempts to determine these very ratios (viz.

p̂c6/p̂c0 |r=rc , p̂
c
12/p̂c0 |r=rc , p̂

f
6

/
p̂f0

∣∣∣
r=rf

, p̂f12

/
p̂f0

∣∣∣
r=rf

, etc. for the M = 0 calculation), in an iterative manner

so as to satisfy the matching criteria at the intermediate radial point. It is the extremely small values of these
ratios that make the numerical computation ill-conditioned when more azimuthal modes of the solution are
coupled (i.e., higher S values are considered). Specifically, the Jacobian of the cost function becomes poorly
conditioned.

The problem was mitigated somewhat by limiting the radial domain – we started the ‘centre’ shooting
from rc = 0.05 and the ‘far’ shooting from rf = 5. Even with this, we could not obtain converged results
for S > 2. Further curtailing of the radial domain is not warranted as the mean axial velocity becomes
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Figure 10: Chevron jet: absolute value of differences between the direct and shooting method results for the
normalized pressure eigenfunctions of the M = 0 and 1 modes. The legend shows the mode numbers m of
the various coupled azimuthal Fourier modes depicted.

non-uniform otherwise, invalidating the boundary conditions formulated. A future workaround will be to
start higher-order modes from successively closer to the lip-line, so that the initial values of the various
pressure modes are never less than the precision afforded by double-precision arithmetic.

To conclude the discussion, we note that in the direct method, rf was set to 10, and Nr = 600 radial
grid points was found to be sufficient for convergence.

VI. Conclusions

This paper describes a shooting approach to solve the bi-global inviscid parallel-flow stability problem
for non-axisymmetric jets. The shooting method is especially useful in tracking eigensolutions in parametric
sweeps. The solution obtained with one set of parameters may be conveniently used as the initial condition
for solving with another parameter set that is not too different from the first, thereby hastening convergence.

To the authors’ knowledge, Gudmundsson 6 gives the only other report of the formulation of the shooting
method for the bi-global problem. We implemented three important improvements to the algorithm – viz.
(a) a two-way integration approach for increased numerical stability, (b) analytical evaluation of the Jacobian
of the cost function, and (c) explicit implementation of mirror symmetry to halve the problem size wherever
possible. Apart from detailing the formulation, we provide extensive evidence of the validity of our approach.
Indeed, results from two jet cases are compared against the direct matrix approach to the same problem,
and excellent agreement is demonstrated in all the tests.

In this paper, we have not discussed the advantages of shooting method over the direct matrix approach
with regards to computational efficiency, due to differences in implementation. The direct matrix method
has been implemented in Fortran, and it is parallelized. Calculations are run on tens of processors, and
results are obtained within a few minutes on a cluster of Intel Xeon multi-core processors, depending on
the complexity of the calculation and the number of eigenvalues desired. On the other hand, the shooting
method is implemented in serial mode in MATLABR©, and calculations take a few minutes on a MacBook Air
laptop. Thus, while precise comparison would require commensurate codes and architecture, one can still
draw conclusions on the substantial efficiency of the shooting method vis-à-vis the direct matrix approach.

APPENDIX

A. Eigenfunction symmetry in mirror-symmetric base flow

To deduce the azimuthal Fourier symmetry of the eigenfunctions of a mirror-symmetric base flow, we
replace m (assumed to be positive) by −m and j by −j in eqn. (7) to obtain

1

r

∂

∂r

(
r
∂p̂−m
∂r

)
− m2

r2
p̂−m −

∞∑
j=−∞

{
f̂−Lj

∂

∂r
+
ι(−m+ Lj)

r2
ĝ−Lj + ĥ−Lj

}
p̂−m+Lj = 0, ∀m > 0.

12 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

ni
ru

dd
ha

 S
in

ha
 o

n 
M

ay
 2

3,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
27

56
 



Applying the symmetry properties of f̂ , ĝ and ĥ introduced in eqn. (9), we obtain

1

r

∂

∂r

(
r
∂p̂−m
∂r

)
− m2

r2
p̂−m −

∞∑
j=−∞

{
f̂Lj

∂

∂r
+
ι(m− Lj)

r2
ĝLj + ĥLj

}
p̂−(m−Lj) = 0, ∀m > 0.

Comparison with eqn. (7) reveals that p̂−m = p̂m.

B. Analytically Evaluating the Jacobian

We describe the analytical evaluation of the Jacobian J of the cost function vector Γ with respect to
the parameter vector V . Equation (14) shows that Γ has two kinds of entries, viz, Λm and Λ′m, for various
azimuthal modes m. It will be recalled that m ∈ {M + Lj}Sj=−S in general, whereas m ∈ {Lj}Sj=0 for the
M = 0 azimuthal order of eigenfunction in mirror symmetric base flows. On the other hand, eqn. (12) shows
that V consists of α, U cn and Ufn for various azimuthal modes n. In general n ∈ {M +Lj}Sj=−S with n 6= M ,

but n ∈ {Lj}Sj=1 in the special case of the M = 0 solution in mirror symmetric base flows. The evaluation
of the Jacobian thus requires the following derivatives at r = ri:

∂Λm
∂α

=
∂p̂cm
∂α
− p̂fm

p̂fM

∂p̂cM
∂α
− p̂cM

p̂fM

(
∂p̂fm
∂α
− p̂fm

p̂fM

∂p̂fM
∂α

)
,

∂Λ′m
∂α

=
∂2p̂cm
∂α∂r

− 1

p̂fM

∂p̂cM
∂α

∂p̂fm
∂r
− p̂cM

p̂fM

(
∂2p̂fm
∂α∂r

− 1

p̂fM

∂p̂fM
∂α

∂p̂fm
∂r

)
,

∂Λm
∂U cn

=
∂p̂cm
∂U cn

− p̂fm

p̂fM

∂p̂cM
∂U cn

,
∂Λm

∂Ufn
=
p̂cM

p̂fM

(
p̂fm

p̂fM

∂p̂fM
∂Ufn

− ∂p̂fm

∂Ufn

)
,

∂Λ′m
∂U cn

=
∂2p̂cm
∂U cn∂r

− 1

p̂fM

∂p̂cM
∂U cn

∂p̂fm
∂r

,
∂Λ′m

∂Ufn
=
p̂cM

p̂fM

(
1

p̂fM

∂p̂fm
∂r

∂p̂fM
∂Ufn

− ∂2p̂fm

∂Ufn∂r

)
.

The above expressions further suggest that we require the following set of quantities at the intermediate
radial point ri in order to evaluate the Jacobian:{

p̂ζm,
∂p̂ζm
∂r

,
∂p̂ζm
∂α

,
∂2p̂ζm
∂α∂r

,
∂p̂ζm

∂Uζn
,
∂2p̂ζm

∂Uζn∂r

}
, ζ ∈ {c, f}. (16)

In the above, Einstein summing convention does not apply to repeated ζ indices. The first two quantities
are found by default in the integration of the eigenfunction itself. To determine the four other quantities,
we need to integrate them from the two boundaries also. Thus, the set of quantities in eqn. (16) actually
constitute the augmented vector to be integrated. The necessary initial conditions at the boundaries for
these additional terms are found as the corresponding derivatives of the boundary conditions in eqns. (11)
and (13):

∂p̂ζm
∂α

∣∣∣∣
r=rζ

= Uζmr
ζ ∂λ

ζ

∂α
B′m

(
λζrζ

)
,

∂p̂ζm

∂Uζn

∣∣∣∣
r=rζ

= Bm
(
λζrζ

)
δm,n,

∂2p̂ζm
∂α∂r

∣∣∣∣
r=rζ

= Uζm
∂λζ

∂α

{
B′m

(
λζrζ

)
+ rζλζB′′m

(
λζrζ

)}
,

∂2p̂ζm

∂Uζn∂r

∣∣∣∣
r=rζ

= λζB′m
(
λζrζ

)
δm,n.

As before, the pair (ζ,B) takes values in (c, I) or (f,K).
We differentiate eqn. (7) with respect to the relevant entries of V (viz. α and Uζn) to obtain the second-

order ODEs governing the last four quantities in the augmented integration vector of eqn. (16):

1

r

∂

∂r

(
r
∂2p̂ζm
∂r∂α

)
− m2

r2
∂p̂ζm
∂α
−

∞∑
j=−∞

{
f̂Lj

∂

∂r
+
ι(m− Lj)

r2
ĝLj + ĥLj

}
∂p̂ζm−Lj
∂α

−
∞∑

j=−∞

∂f̂Lj∂α

∂

∂r
+
ι(m− Lj)

r2
∂ĝLj
∂α

+
∂ĥLj
∂α

 p̂ζm−Lj = 0, (17)
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1

r

∂

∂r

(
r
∂2p̂ζm

∂r∂Uζn

)
− m2

r2
∂p̂ζm

∂Uζn
−

∞∑
j=−∞

{
f̂Lj

∂

∂r
+
ι(m− Lj)

r2
ĝLj + ĥLj

}
∂p̂ζm−Lj

∂Uζn
= 0. (18)
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