Numerical Solutions for Ideal Magnetohydrodynamics

An Introduction

24th May 2006
Outline of Presentation

1. Introduction
2. Plasma Dynamics and Ideal Magnetohydrodynamics
 - The Magnetohydrodynamic Approximation
 - Simplifications and the Ideal MHD Equations
 - Effect of Magnetic Field
 - MHD Waves
3. Computational MHD
 - 1D Ideal MHD
 - The 1D MHD Eigenstructure
 - Numerical Schemes in 1D
 - Multi-dimensional Ideal MHD
 - Numerical Schemes in Multidimensional MHD
4. Conclusion
Introduction

- **Magnetohydrodynamics**: combination of fluid dynamics and electromagnetics → Dynamics of an ionized gas ("plasma") in the presence of magnetic fields
- **Applications**: astrophysics, hypersonic vehicles, thermonuclear fusion, plasma propulsion drag reduction, stealth
- **Wave structure**: magneto-acoustic waves + Alfven waves
- **Ideal Magnetohydrodynamics**: obtained by neglecting dissipative mechanisms (viscosity, thermal and electric conductivity, etc)
- **Hyperbolic** (Non-strict), Non-convex conservative system of equations
- **Numerical Solutions**: Straightforward application of algorithms for Euler equations not possible
Plasma Dynamics

- **Ionized Gas**: ionization occurs at high temperatures due to high-energy collisions; comprises of positive ions and electrons
 - Dynamic process: simultaneous ionization and de-ionization; fraction of ionized gas depends on temperature
- Ionization also possible through **Photo-Ionization** and **Electric Discharge**
 - Photo-ionization: Ionization caused by subjecting gas to UV / X / Gamma rays
 - Electric discharge: ionization caused by presence of very strong electric fields
- **Plasma**: conducting fluid satisfying the plasma criterion
 - **Macroscopic Neutrality** - charge separation allowed for distances of the order of **Debye length**
 - Large number of charged particles inside the...
Plasma Dynamics

- **Debye Shielding Length**: Maximum distance over which the Coulombic field of a particle can be felt; important physical parameter
- **“Fourth State of Matter”**: solid, liquid, gas, plasma; no sharp temperature for gas → plasma phase transition
- **Collective Effects**: Plasma properties dependent on particle interactions and collective effects
 - Each charged particle interacts simultaneously with large number of particles through electromagnetic fields
 - Each particle is a source of electro-static and magnetic fields; aside from externally applied electromagnetic fields
- **Natural Occurrence of Plasma**: Solar corona, Solar wind, Earth’s Ionosphere (Van Allen Radiation Belts)
Earth’s Magnetosphere and the Solar Wind

Outline

Introduction

Plasma Dynamics and Ideal Magnetohydrodynamics

- The Magnetohydrodynamic Approximation
- Simplifications and the Ideal MHD Equations
- Effect of Magnetic Field
- MHD Waves

Computational MHD

Conclusion

Artist Rendition of Solar Wind
Created by: K. Endo

Photo Courtesy of Prof. Yohsuke Kamide
National Geophysical Data Center
Tokamak - Plasma Containment

Outline
Introduction
Plasma Dynamics and Ideal Magnetohydrodynamics
The Magnetohydrodynamic Approximation
Simplifications and the Ideal MHD Equations
Effect of Magnetic Field
MHD Waves
Computational MHD
Conclusion
The Magnetohydrodynamic Approximation

- **Single-fluid continuum assumption** → Plasma treated as a single conducting fluid (may be composed of many species)
- **Extension of the Navier-Stokes** to include electromagnetic force and energy terms
 - Mass Conservation
 \[
 \frac{\partial \rho}{\partial t} + \nabla . (\rho \mathbf{u}) = 0 \tag{1}
 \]
 - Momentum Conservation
 \[
 \frac{\partial (\rho \mathbf{u})}{\partial t} = \rho_e \mathbf{E} + \mathbf{J} \times \mathbf{B} - \nabla . (\rho \mathbf{I} + \frac{1}{2} \rho \mathbf{uu}) + \psi \tag{2}
 \]
 - Energy Conservation
 \[
 \frac{1}{2} \rho \frac{Dv^2}{Dt} + \rho \frac{De}{Dt} = -\rho \nabla . \mathbf{u} + \mathbf{E} . \mathbf{J} + \phi \tag{3}
 \]

(\mathbf{I} is the 3 × 3 identity matrix, \psi is the viscous term and \phi represents terms related to heat conduction, diffusion and work done by viscous forces)
The Magnetohydrodynamic Approximation

Electrodyamics governed by Maxwell’s Equations

\[
\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0 \tag{4}
\]

\[
\frac{\partial \mathbf{D}}{\partial t} - \nabla \times \mathbf{H} + \mathbf{J} = 0 \tag{5}
\]

\[
\nabla \cdot \mathbf{D} = \rho_e \tag{6}
\]

\[
\nabla \cdot \mathbf{B} = 0 \tag{7}
\]

supplemented by the equation for charge conservation:

\[
\frac{\partial \rho_e}{\partial t} + \nabla \cdot \mathbf{J} = 0 \tag{8}
\]

and the generalized Ohm’s law which can be expressed as

\[
\mathbf{J} = \sigma (\mathbf{E} + \mathbf{u} \times \mathbf{B}) \tag{9}
\]
Simplifications and the Ideal MHD Equations

Simplifying Assumptions:
- Neglecting of Displacement Current - valid for low frequencies (till microwave range)
- Macroscopic Neutrality ⇒ neglect electrostatic body forces and convection current
- Dissipative effects (viscosity, conductivity, electrical resistivity) neglected

Ideal Magnetohydrodynamic Equations

\[\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0 \] \hspace{1cm} (10)

\[(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{uu} + P^* \mathbf{I} - \frac{\mathbf{BB}}{\mu}) = 0 \] \hspace{1cm} (11)

\[\mathbf{B}_t + \nabla \cdot (\mathbf{uB} - \mathbf{Bu}) = 0 \] \hspace{1cm} (12)

\[E_t + \nabla \cdot [(E + P^*) \mathbf{u} - \frac{1}{\mu} (\mathbf{u} \cdot \mathbf{B}) \mathbf{B}] = 0 \] \hspace{1cm} (13)

\[P^* = p + \mathbf{B} \cdot \mathbf{B} / 2\mu \] (full pressure = gas pressure + magnetic pressure),

\[E = \rho \mathbf{u} \cdot \mathbf{u} / 2 + p / (\gamma - 1) + \mathbf{B} \cdot \mathbf{B} / 2\mu \] (total energy)

Additionally, \(\nabla \cdot \mathbf{B} = 0 \) (Initial Condition)
Effect of Magnetic Field

- Magnetic force is the gradient of the Magnetic stress tensor

\[
\mathcal{T}_m = \frac{1}{\mu} (\mathbf{B}\mathbf{B} - \frac{1}{2} B^2 \mathcal{I})
\]

(14)

- In principal coordinates with \(\mathbf{B} = Bz \), it is equivalent to

\[
\mathcal{T}_m = \frac{1}{\mu} \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & B^2
\end{bmatrix} + \frac{1}{2\mu} \begin{bmatrix}
-B^2 & 0 & 0 \\
0 & -B^2 & 0 \\
0 & 0 & -B^2
\end{bmatrix}
\]

(15)

- Effect of the magnetic force on fluid elements
 = isotropic magnetic pressure \((B^2/2\mu)\) + tension \((B^2/\mu)\) along field lines
- Freezing of magnetic field lines to the fluid ⇐ conservation of magnetic flux
 - Unrestricted movement of fluid along the field
 - Motion transverse to the field carries the field
MHD Waves

- Two types of wave motion possible: **longitudinal** (acoustic waves) and **transverse** (Alfvén waves)
- Alfvén Waves: equivalent to vibration of elastic cords under tension (due to tensile effect of the magnetic field)

\[V_A = \left(\frac{\text{tension}}{\text{density}} \right)^{1/2} = \left(\frac{B^2}{\mu \rho} \right)^{1/2} \]

(16)

- Carries perturbations in the transverse components of magnetic field and velocity
- Magneto-acoustic waves: similar to sound waves in gasdynamics
 - Parallel to magnetic field: same as gasdynamic sound waves (magnetic field does not affect flow)
 - Perpendicular to magnetic field: in addition to
Numerical Solutions for Ideal Magnetohydrodynamics

Outline
Introduction
Plasma Dynamics and Ideal Magnetohydrodynamics
The Magnetohydrodynamic Approximation
Simplifications and the Ideal MHD Equations
Effect of Magnetic Field
MHD Waves
Computational MHD
Conclusion

Figure: Parallel to Magnetic Field

Figure: Perpendicular to Magnetic Field
MHD Waves

- **Parallel to the Magnetic Field** - Two waves can exist
 - Alfvén Waves (transverse magnetic field and velocity components vary): wavespeed is
 \[A = \sqrt{\frac{B^2}{\mu \rho}} \]
 - Acoustic Waves (pure sound waves): wavespeed is
 \[a = \sqrt{\frac{\gamma p}{\rho}} \]

- **Perpendicular to the Magnetic Field** - Only the magneto-acoustic mode exists with wavespeed
 \[V = \sqrt{a^2 + A^2} \]

- **Propagation along arbitrary direction** - Small perturbation equations give three solutions (slow MHD wave, fast MHD wave and Alfvén wave) with wavespeeds
 \[c_a = A \cdot k = \frac{B \cos \theta}{\sqrt{\rho \mu}} \quad (A = \frac{B}{\sqrt{\rho \mu}}) \quad (18) \]
Figure: Alfven Speed greater than speed of sound

Figure: Alfven Speed less than speed of sound
1D MHD Equations

- The 1D system can be obtained by assuming that the gradients exist only along the x-direction.
- 1D MHD system in conservative form is:

\[u_t + f(u)_x = 0 \] \hspace{1cm} (20)

where \(u \) is the conserved vector and \(f(u) \) is the flux vector.

\[
\begin{bmatrix}
\rho \\
\rho u \\
\rho v \\
\rho w \\
B_y \\
B_z \\
E
\end{bmatrix}, \quad
\begin{bmatrix}
\rho u \\
\rho u^2 + P^* \\
\rho uv - B_y B_x \\
\rho uw - B_z B_x \\
uB_y - vB_x \\
uB_z - wB_x \\
(E + P^*)u - B_x(uB_x + vB_y)
\end{bmatrix}
\] \hspace{1cm} (21)

- Zero divergence constraint \(\Rightarrow B_x = \text{constant} \)
- Flux \(f(u) \) is non-convex and non-strictly hyperbolic.
1D MHD Eigenstructure

- The 1D MHD system admits 7 eigenvalues
 - **Entropy wave** with wavespeed $\lambda_e = u$
 - two **Alfvén waves** with wavespeeds $\lambda^\pm_a = u \pm c_a$
 - two **fast magneto-sonic waves** with wavespeeds $\lambda^\pm_f = u \pm c_f$
 - two **slow magneto-sonic waves** with wavespeeds $\lambda^\pm_s = u \pm c_s$

where

$$c_a = \frac{B_x}{\sqrt{\rho}}$$ \hspace{1cm} (22)

$$c_{f,s}^2 = \frac{1}{2} \left[\frac{\gamma \rho + B \cdot B}{\rho} \pm \sqrt{ \left(\frac{\gamma \rho + B \cdot B}{\rho} \right)^2 - \frac{4 \gamma \rho B_x^2}{\rho^2} } \right]$$ \hspace{1cm} (23)

- **Coincidence of Eigenvalues:**
 - $B_x = 0$ (Propagation perpendicular to the magnetic field): $c_a = c_s = 0 \rightarrow u$ is an eigenvalue with multiplicity 5
 - $B_y^2 + B_z^2 = 0$ (Propagation parallel to the magnetic field): c_a, c_s are real and u is an eigenvalue with multiplicity 3

Roe and Balsara's Eigensystem used for the present study
Numerical Scheme in 1D

- **Semi-discrete form** is
 \[
 \frac{du_i}{dt} + \frac{1}{\Delta x} \left(f_{i+1/2} - f_{i-1/2} \right) = 0 \tag{24}
 \]

- **Spatial Reconstruction**: done using an upwinded scheme

- **Time Evolution**: Runge-Kutta time-stepping usually used
The multi-dimensional MHD system can be written in the **conservative form**

\[\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{F} = 0 \quad \text{or} \quad \frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{f}}{\partial x} + \frac{\partial \mathbf{g}}{\partial y} + \frac{\partial \mathbf{h}}{\partial z} = 0 \] (25)

Non-strictly hyperbolic system with complete set of eigenvectors

Eight eigenvalues corresponding to entropy wave, left and right moving slow, fast and Alfvén waves and zero

2D Ideal MHD equations:

\[
\begin{bmatrix}
\rho u \\
\rho u^2 + P^* - B_x^2 \\
\rho uv - B_y B_x \\
\rho uw - B_z B_x \\
0 \\
u B_y - v B_x
\end{bmatrix}, \quad
\begin{bmatrix}
\rho v \\
\rho v^2 + P^* - B_y^2 \\
\rho vw - B_z B_y \\
v B_x - u B_y \\
0
\end{bmatrix}
\]
Multi-dimensional algorithms: To ensure solenoidal nature of magnetic field (in multi-dimensions, $\sum_{faces} B_n \cdot ds = 0$)

- **Projection Scheme**: Poisson equation is solved to subtract the magnetic field with non-zero divergence

- **Constrained Transport / Central Difference (CT/CD)** using a staggered mesh

- **Eight-wave formulation**: Multi-dimensional MHD system modified to include source terms proportional to $\nabla \cdot B$ (non-conservative)

Eight-Wave Formulation: derived from governing equations by adding term proportional to $\nabla \cdot B$ as source term

$$\frac{\partial u}{\partial t} + \nabla \cdot F = S \text{ where } S = -(\nabla \cdot B)[0 \ B u \ u \cdot B]^T$$

(27)
The governing equation, discretized in space is given as:

\[
\frac{d\mathbf{u}_{ij}}{dt} V_{ij} + \sum_{\text{faces}} \mathbf{F} \cdot \mathbf{n} dS = \mathbf{S}_{ij} V_{ij} \Rightarrow \frac{d\mathbf{u}_{ij}}{dt} = \mathbf{Res}(i, j) \quad (28)
\]

where the residual is given by (for a quadrilateral cell)

\[
\mathbf{Res}(i, j) = -\frac{1}{V_{ij}} \left[\sum_{l=1}^{4} \mathbf{F}_l \mathbf{n}_l dS_l + \mathbf{s}_{ij} \sum_{l=1}^{4} \mathbf{B}_l \mathbf{n}_l dS_l \right] \quad (29)
\]

where \(\mathbf{s} = [0 \ \mathbf{B} \ \mathbf{u} \ \mathbf{u} \cdot \mathbf{B}]^T \)

- **Spatial Reconstruction**: Upwinded reconstruction based on characteristic decoupling
- **Time Evolution**: Done using Runge-Kutta family of schemes
Some Problems and Applications

Numerical Solutions for Ideal Magnetohydrodynamics

Outline
Introduction
Plasma Dynamics and Ideal Magnetohydrodynamics
Computational MHD
1D Ideal MHD
The 1D MHD Eigenstructure
Numerical Schemes in 1D
Multi-dimensional Ideal MHD
Numerical Schemes in Multidimensional MHD
Conclusion

Figure: Cloud Shock Interaction

Figure: Orszag Tang Vortex
Some Problems and Applications

Figure: Planetary Interaction with Solar Wind
Some Problems and Applications

Figure: Blunt Body Computations - Shock Stand-Off Distances
Conclusion

- Lots of unresolved issues still remain in MHD
- **Lack of Roe-type averaging** for flux computation
 - Roe-type averaging possible only for $\gamma = 2$
 - Arithmetic averaging used by all Roe-type schemes
- **Admissibility of “exotic shocks”:**
 - **Non-Convex Flux function:** Rankine-Hugoniot conditions admit “**intermediate waves**” across which only one family of characteristics converge
 - Admissibility is debated \rightarrow straightforward extension of admissibility conditions of convex systems does not work
- MHD system **highly non-linear** \rightarrow Higher order schemes yield oscillatory solutions, even at low CFL \rightarrow most schemes used till now are highly TVD