Classical Dynamics

Prof. S. P. Bhat
Department of Aerospace Engineering
Indian Institute of Technology, Bombay

February 7, 2006

Outline

(1) Classical Dynamics

Introduction

- Classical Dynamics: study of motion of interacting particles and bodies
- Main principles
- Newton's laws (discovered 1665, published 1687)
- Drawbacks
* Cumbersome to apply, especially for constrained multi-body systems
* Difficult to draw conclusion of a general nature

Review of Newtonian Dynamics

- Newton's law for a particle

$$
\mathbf{F}=m \mathbf{a}
$$

- $\mathbf{a}=$ acceleration with respect to an inertial observer
- Newton's law for a system of particles

$$
m \ddot{\mathbf{r}}_{i}=\underbrace{\mathbf{F}_{i}}_{\text {external force }}+\underbrace{\mathbf{R}_{i}}_{\text {constraint force }}
$$

- To be solved for \mathbf{r}_{i} as well as \mathbf{R}_{i}

Example of a Constrained System

- Particle sliding along an elliptical wire under gravity

- Need to eliminate R_{x}, R_{y}, y

Example of a Constrained System (cont'd)

- Normal reaction along inward normal

$$
\begin{gathered}
\frac{R_{y}}{R_{x}}=\frac{a^{2}}{b^{2}} \frac{y}{x} \Longrightarrow \\
m \ddot{y}=\frac{a^{2}}{b^{2}} \frac{y}{x} m \ddot{x}-m g
\end{gathered}
$$

- Eliminate y, \ddot{y}

- Final equation

- Point: Newton's law cumbersome to apply to constrained systems

Example of a Constrained System (cont'd)

- Normal reaction along inward normal

$$
\begin{gathered}
\frac{R_{y}}{R_{x}}=\frac{a^{2}}{b^{2}} \frac{y}{x} \Longrightarrow \\
m \ddot{y}=\frac{a^{2}}{b^{2}} \frac{y}{x} m \ddot{x}-m g
\end{gathered}
$$

- Eliminate y, \ddot{y}

- Final equation
- Point: Newton's law cumbersome to apply to constrained systems

Example of a Constrained System (cont'd)

- Normal reaction along inward normal

$$
\begin{gathered}
\frac{R_{y}}{R_{x}}=\frac{a^{2}}{b^{2}} \frac{y}{x} \Longrightarrow \\
m \ddot{y}=\frac{a^{2}}{b^{2}} \frac{y}{x} m \ddot{x}-m g
\end{gathered}
$$

- Eliminate y, \ddot{y}

- Final equation
- Point: Newton's law cumbersome to apply to constrained systems

Example of a Constrained System (cont'd)

- Normal reaction along inward normal

$$
\begin{gathered}
\frac{R_{y}}{R_{x}}=\frac{a^{2}}{b^{2}} \frac{y}{x} \Longrightarrow \\
m \ddot{y}=\frac{a^{2}}{b^{2}} \frac{y}{x} m \ddot{x}-m g
\end{gathered}
$$

- Eliminate y, \ddot{y}
- Final equation
- Point: Newton's law cumbersome to apply to constrained systems

Example of a Constrained System (cont'd)

- Normal reaction along inward normal

$$
\begin{gathered}
\frac{R_{y}}{R_{x}}=\frac{a^{2}}{b^{2}} \frac{y}{x} \Longrightarrow \\
m \ddot{y}=\frac{a^{2}}{b^{2}} \frac{y}{x} m \ddot{x}-m g
\end{gathered}
$$

- Eliminate y, \ddot{y}

$$
y=-\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

- Final equation
- Point: Newton's law cumbersome to apply to constrained systems

Example of a Constrained System (cont'd)

- Normal reaction along inward normal

$$
\begin{gathered}
\frac{R_{y}}{R_{x}}=\frac{a^{2}}{b^{2}} \frac{y}{x} \Longrightarrow \\
m \ddot{y}=\frac{a^{2}}{b^{2}} \frac{y}{x} m \ddot{x}-m g
\end{gathered}
$$

- Eliminate y, \ddot{y}

$$
\begin{gathered}
y=-\frac{b}{a} \sqrt{a^{2}-x^{2}} \\
\ddot{y}=\frac{b \dot{x}^{2}}{a \sqrt{a^{2}-x^{2}}}+\frac{b x \ddot{x}}{a \sqrt{a^{2}-x^{2}}}+\frac{b x^{2} \dot{x}^{2}}{a\left(a^{2}-x^{2}\right)^{3 / 2}}
\end{gathered}
$$

- Final equation
- Point: Newton's law cumbersome to apply to constrained systems

Example of a Constrained System (cont'd)

- Normal reaction along inward normal

$$
\begin{gathered}
\frac{R_{y}}{R_{x}}=\frac{a^{2}}{b^{2}} \frac{y}{x} \Longrightarrow \\
m \ddot{y}=\frac{a^{2}}{b^{2}} \frac{y}{x} m \ddot{x}-m g
\end{gathered}
$$

- Eliminate y, \ddot{y}

$$
\begin{gathered}
y=-\frac{b}{a} \sqrt{a^{2}-x^{2}} \\
\ddot{y}=\frac{b \dot{x}^{2}}{a \sqrt{a^{2}-x^{2}}}+\frac{b x \ddot{x}}{a \sqrt{a^{2}-x^{2}}}+\frac{b x^{2} \dot{x}^{2}}{a\left(a^{2}-x^{2}\right)^{3 / 2}}
\end{gathered}
$$

- Final equation

$$
\ddot{x}\left[\left(b^{2}-a^{2}\right) x^{2}+a^{4}\right]+\frac{a^{2} b x \dot{x}^{2}}{\left(a^{2}-x^{2}\right)}+a g x \sqrt{a^{2}-x^{2}}=0
$$

- Point: Newton's law cumbersome to apply to constrained systems

Lagrangian Dynamics

- From "Treatise on Dynamics", 1687, by Lagrange
- Lagrange's equation of motion in terms of scalar functions like kinetic energy and potential energy
- No constraint forces to account for
- Provides an "extension" of Newton's laws

Every particle constrained to lie on a frictionless surface moves along a geodesic unless acted upon by an external unbalanced force

- Geodesic: Locally length minimizing curve on a surface

Lagrangian Dynamics

- From "Treatise on Dynamics", 1687, by Lagrange
- Lagrange's equation of motion in terms of scalar functions like kinetic energy and potential energy
- No constraint forces to account for (conditions apply!)
- Provides an "extension" of Newton's laws

Every particle constrained to lie on a frictionless surface moves along a geodesic unless acted upon by an external unbalanced force

- Geodesic: Locally length minimizing curve on a surface

Lagrangian Dynamics

- From "Treatise on Dynamics", 1687, by Lagrange
- Lagrange's equation of motion in terms of scalar functions like kinetic energy and potential energy
- No constraint forces to account for (conditions apply!)
- Provides an "extension" of Newton's laws

Every particle constrained to lie on a frictionless surface moves along a geodesic unless acted upon by an external unbalanced force

- Geodesic: Locally length minimizing curve on a surface

Hamiltonian Dynamics

- Hamilton's principle (1834)
- Among all possible motions between two end points, the physical motion renders stationary a certain action integral

$$
\int_{\text {begin }}^{\text {end }} L d t
$$

- Nature chooses the "best" path
- Hamilton's equations
- Reformulation of Lagrange equations
- Can be used to deduce recurrence without solving the equations

Constraints

- A system of n - particles described by $3 n$ coordinates
- System may be constrained by

$$
\phi(x)=0, x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{3 n}
\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{3 n}, \phi: \mathbb{R}^{3 n} \rightarrow \mathbb{R}^{p}
$$

- Example: Two particles in a plane connected by a rigid rod

$$
\begin{array}{ll}
\phi_{1}(x) & \stackrel{\text { def }}{=}\left(x_{1}-x_{2}\right)^{2}+\left(x_{3}-x_{4}\right)^{2}-l^{2} \\
\phi_{2}(x) & \stackrel{\text { def }}{=} x_{5} \\
\phi_{3}(x) & \stackrel{\text { def }}{=} x_{6}
\end{array}
$$

Holonomic Constraints

- Constraints expressed directly in terms of position
- Described by

$$
\phi(t, x)=0
$$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or rheonomic: ϕ depends on time
- Examples:
- Particles in a plane connected by a rigid rod - scleronomic
> Particles connected by a rod with specified length variation - rheonomic
- Spherical pendulum -scleronomic
- Particle on a rotating hoop - rheonomic

Holonomic Constraints

- Constraints expressed directly in terms of position
- Described by

$$
\phi(t, x)=0
$$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or rheonomic: ϕ depends on time
- Examples:
- Particles in a plane connected by a rigid rod - scleronomic
- Particles connected by a rod with specified length variation - rheonomic
- Spherical pendulum -scleronomic
- Particle on a rotating hoop - rheonomic

Holonomic Constraints

- Constraints expressed directly in terms of position
- Described by

$$
\phi(t, x)=0
$$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or rheonomic: ϕ depends on time
- Examples:
- Particles in a plane connected by a rigid rod - scleronomic
- Particles connected by a rod with specified length variation - rheonomic
- Spherical pendulum -scleronomic
- Particle on a rotating hoop - rheonomic

Holonomic Constraints

- Constraints expressed directly in terms of position
- Described by

$$
\phi(t, x)=0
$$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or rheonomic: ϕ depends on time
- Examples:
- Particles in a plane connected by a rigid rod - scleronomic
- Particles connected by a rod with specified length variation - rheonomic
- Spherical pendulum -scleronomic
- Particle on a rotating hoop - rheonomic

Holonomic Constraints

- Constraints expressed directly in terms of position
- Described by

$$
\phi(t, x)=0
$$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or rheonomic: ϕ depends on time
- Examples:
- Particles in a plane connected by a rigid rod - scleronomic
- Particles connected by a rod with specified length variation - rheonomic
- Spherical pendulum -scleronomic
- Particle on a rotating hoop - rheonomic

Configuration Space

- A configuration of a system is a particular arrangement of its various particles that is consistent with the holonomic constraints acting on it
- Configuration space $\mathcal{Q}=$ set of all configurations

$$
\mathcal{Q}=\underbrace{\left\{x \in \mathbb{R}^{3 n}: \phi(x)=0\right\}}_{\text {intersection of hypersurfaces }}
$$

- \mathcal{Q} can often be identified with familiar low-dimensional spaces

1 particle in 3 D space - $Q=\mathbb{R}^{3}$
2 particles in 3 D space $-\mathcal{Q}=\mathbb{R}^{3} \times \mathbb{R}^{3}=\mathbb{R}^{6}$
1 particle in plane $-\mathcal{Q}=\mathbb{R}^{2}$

Configuration Space

- A configuration of a system is a particular arrangement of its various particles that is consistent with the holonomic constraints acting on it
- Configuration space $\mathcal{Q}=$ set of all configurations

$$
\mathcal{Q}=\underbrace{\left\{x \in \mathbb{R}^{3 n}: \phi(x)=0\right\}}_{\text {intersection of hypersurfaces }}
$$

- \mathcal{Q} can often be identified with familiar low-dimensional spaces

1 particle in 3D space - $\mathcal{Q}=\mathbb{R}^{3}$
2 particles in 3 D space - $\mathcal{Q}=\mathbb{R}^{3} \times \mathbb{R}^{3}=\mathbb{R}^{6}$
1 particle in plane $-\mathcal{Q}=\mathbb{R}^{2}$

Examples of Configuration Spaces

Simple pendulum

Circle $\mathcal{Q}=S^{1}$

Spherical pendulum

Sphere $\mathcal{Q}=S^{2}$

Dumbbell
$\mathcal{Q}=S^{2} \times \mathbb{R}^{3}$

Planar dumbbell $\mathcal{Q}=S^{1} \times \mathbb{R}^{2}$

Number of d.o.f $=3 n-$ number of constraints $=$ dimension of \mathcal{Q}

Generalized Coordinates

- Need to represent configuration by numbers
- Example: Cartesian coordinates of all particles in the system
\star Not independent in presence of constraints
* May be possible to use fewer quantities
- Generalized coordinates: Any set of quantities that give an unambiguous representation of the configuration of the system
- Independent generalized coordinates
- Constraints automatically satisfied when expressed in independent generalized coordinates

Number of independent generalized coordinates $=$ number of d.o.f

- Can be thought of as curvilinear coordinates on Q

Generalized Coordinates

- Need to represent configuration by numbers
- Example: Cartesian coordinates of all particles in the system
\star Not independent in presence of constraints
* May be possible to use fewer quantities
- Generalized coordinates: Any set of quantities that give an unambiguous representation of the configuration of the system
- Independent generalized coordinates
- Constraints automatically satisfied when expressed in independent generalized coordinates

Number of independent generalized coordinates $=$ number of d.o.f

- Can be thought of as curvilinear coordinates on \mathcal{Q}

Generalized Coordinates

- Need to represent configuration by numbers
- Example: Cartesian coordinates of all particles in the system
\star Not independent in presence of constraints
* May be possible to use fewer quantities
- Generalized coordinates: Any set of quantities that give an unambiguous representation of the configuration of the system
- Independent generalized coordinates
- Constraints automatically satisfied when expressed in independent generalized coordinates

Number of independent generalized coordinates $=$ number of d.o.f

- Can be thought of as curvilinear coordinates on \mathcal{Q}

$$
q=\left[\begin{array}{lll}
q_{1} & \cdots & q_{r}
\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{r}
$$

Examples of Independent Generalized Coordinates

- Particle in a plane, $\mathcal{Q}=\mathbb{R}^{2}, q=\left(q_{1}, q_{2}\right)$ coordinates with respect to any set of independent axes
- Simple pendulum, $\mathcal{Q}=S^{1}, q=\theta$ angle from suitable reference
- Dumbbell in a plane, $\mathcal{Q}=S^{1} \times \mathbb{R}^{2}, q=(x, y, \theta)$
- Spherical pendulum, $\mathcal{Q}=S^{2}, q=$ (latitude, longitude)
- Double pendulum, $\mathcal{Q}=S^{1} \times S^{1}, q=\left(\theta_{1}, \theta_{2}\right)$
- Two d.o.f. spring mass system
- Rigid triangle of particles, d.o.f=6

Positions and Generalized Coordinates

- Position of every particle in the system is a function of the generalized coordinates
- Examples:
- Particle in a plane, $(x, y)=\left(q_{1}, q_{2}\right)$
- Simple pendulum, $(x, y)=(\cos q, \sin q)$
- Dumbbell in a plane

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=\left(q_{1}-l \cos q_{3}, q_{2}-l \sin q_{3}\right) \\
& \left(x_{2}, y_{2}\right)=\left(q_{1}+l \cos q_{3}, q_{2}+l \sin q_{3}\right)
\end{aligned}
$$

- Spherical pendulum, $(x, y, z)=\left(r \cos q_{1} \cos q_{2}, r \cos q_{1} \sin q_{2}, r \sin q_{1}\right)$
- Double pendulum

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)=\left(l_{1} \cos q_{1}, l_{1} \sin q_{1}\right) \\
\left(x_{2}, y_{2}\right)=\left(l_{1} \cos q_{1}+l_{2} \cos q_{2}, l_{1} \sin q_{1}+l_{2} \sin q_{2}\right)
\end{gathered}
$$

Velocities and Generalized Velocities

- Generalized velocities are the rates of change of generalized coordinates

$$
\dot{q}=\left[\begin{array}{lll}
\dot{q}_{1} & \cdots & \dot{q}_{r}
\end{array}\right]^{\mathrm{T}}
$$

- Velocity of every particle is a function of q and \dot{q}
- Particle in plane, $(\dot{x}, \dot{y})=\left(\dot{q}_{1}, \dot{q}_{2}\right)$
- Simple pendulum, $(\dot{x}, \dot{y})=(-\dot{q} \sin q, \dot{q} \cos q)$
- Dumbbell in a plane

$$
\begin{aligned}
& \left(\dot{x}_{1}, \dot{y}_{1}\right)=\left(\dot{q}_{1}+l \dot{q}_{3} \sin q_{3}, \dot{q}_{2}-l \dot{q}_{3} \cos q_{3}\right) \\
& \left(\dot{x}_{2}, \dot{y}_{2}\right)=\left(\dot{q}_{1}-l \dot{q}_{3} \sin q_{3}, \dot{q}_{2}+l \dot{q}_{3} \cos q_{3}\right)
\end{aligned}
$$

- Spherical pendulum

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{cc}
-r \sin q_{1} \cos q_{2} & -r \cos q_{1} \sin q_{2} \\
-r \sin q_{1} \sin q_{2} & r \cos q_{1} \cos q_{2} \\
r \cos q_{1} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right]
$$

Generalized Velocities

$$
\begin{aligned}
x_{i} & =x_{i}\left(q_{1}, \ldots, q_{r}\right) \\
\dot{x}_{i} & =\sum_{j=1}^{r} \frac{\partial x_{i}}{\partial q_{j}}(q) \dot{q}_{j} \\
& =\left[\frac{\partial x_{i}}{\partial q}(q)\right]^{\mathrm{T}} \dot{q} \\
\underbrace{\frac{\partial x_{i}}{\partial q}}_{\text {gradient }} & : \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}
\end{aligned}
$$

Generalized Velocities

$$
\begin{aligned}
x_{i} & =x_{i}\left(q_{1}, \ldots, q_{r}\right) \\
\dot{x}_{i} & =\sum_{j=1}^{r} \frac{\partial x_{i}}{\partial q_{j}}(q) \dot{q}_{j} \\
& =\left[\frac{\partial x_{i}}{\partial q}(q)\right]^{\mathrm{T}} \dot{q} \\
\underbrace{\frac{\partial x_{i}}{\partial q}}_{\text {gradient }} & : \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}
\end{aligned}
$$

$$
\begin{aligned}
x & =x(q) \\
\dot{x} & =\sum_{j=1}^{r} \frac{\partial x}{\partial q_{j}}(q) \dot{q}_{j} \\
& =\underbrace{\frac{\partial x}{\partial q}(q)}_{\text {Jacobian }} \dot{q} \\
\frac{\partial x}{\partial q_{j}} & : \mathbb{R}^{r} \rightarrow \mathbb{R}^{3 n} \\
\frac{\partial x}{\partial q} & : \mathbb{R}^{r} \rightarrow \mathbb{R}^{3 n \times r}
\end{aligned}
$$

Velocities as Tangents to Configuration Space

- Suppose $x(t)$ is a motion that satisfies the constraints

$$
\phi_{i}(x(t))=0
$$

- Motion traces a curve on \mathcal{Q}, with velocity vector $\dot{x}(t)$

$$
\begin{gathered}
0=\left.\frac{d}{d t}\right|_{t=0} \phi_{i}(x(t))=\left[\frac{\partial \phi_{i}}{\partial x}(x(0))\right]^{\mathrm{T}} \dot{x}(0) \\
\frac{\partial \phi_{i}}{\partial x}(x(0))=\text { Normal to } \mathcal{Q} \text { at } x(0) \\
\Longrightarrow \dot{x}(0) \text { is tangent to } \mathcal{Q} \text { at } x(0)
\end{gathered}
$$

- Configurations are points in \mathcal{Q}
- Motions are curves in \mathcal{Q}
- Rates of change of configurations are tangent vectors to \mathcal{Q}

A Basis for Tangent Vector

- Suppose q_{1}, \ldots, q_{r} are independent generalized coordinates for system satisfying

$$
\begin{gathered}
\phi_{i}(x)=0 \Longrightarrow \phi_{i}(x(q))=0 \text { for all } q \Longrightarrow\left[\frac{\partial \phi_{i}}{\partial x}(x(q))\right]^{\mathrm{T}} \frac{\partial x}{\partial q_{j}}(q)=0 \\
\frac{\partial \phi_{i}}{\partial x}(x(q))=\text { Normal to } \mathcal{Q} \text { at } x(q) \\
\Longrightarrow \frac{\partial x}{\partial q_{j}}(q) \text { is tangent to } \mathcal{Q} \text { at } x(q)
\end{gathered}
$$

$\frac{\partial x}{\partial q_{j}}$ is tangent to the curve obtained by varying q_{j} for fixed values of other q 's

- $\dot{x} \in$ tangent space to \mathcal{Q}
- $\frac{\partial x}{\partial q_{j}}, j=1, \ldots, r$, basis vectors for the tangent space \mathcal{Q}
- $\dot{q}_{1}, \ldots, \dot{q}_{r}$ components of \dot{x} in this basis

Example

$$
\begin{gathered}
\mathcal{Q}=S^{2} \\
x(q)=\left[\cos q_{1} \cos q_{2} \cos q_{1} \sin q_{2} \sin q_{1}\right]^{\mathrm{T}} \\
\frac{\partial x}{\partial q_{1}}=\left[-\sin q_{1} \cos q_{2}-\sin q_{1} \sin q_{2} \cos q_{1}\right]^{\mathrm{T}}, \frac{\partial x}{\partial q_{2}}=\left[-\cos q_{1} \sin q_{2} \cos q_{1} \cos q_{2} 0\right]^{\mathrm{T}}
\end{gathered}
$$

Non-independent Generalized Coordinates

- General non-holonomic constraint

$$
\phi(t, q)=0
$$

- Transformation to Cartesian coordinates

$$
x=x(t, q)
$$

- System is
- Scleronomic if neither the constraint nor the transformation equations involve time
- Rheonomic otherwise

Differential of a Function

- Given $\psi: \mathcal{Q} \rightarrow \mathbb{R}, q_{0} \in \mathcal{Q}$ and v tangent to \mathcal{Q} at q_{0}
- Define rate of change of ψ along v at q_{0}

$$
\left.d \psi_{q_{0}}(v) \stackrel{\text { def }}{=} \frac{d}{d t}\right|_{t=0} \psi(r(t))
$$

- $r(\cdot)$ is any motion starting at q_{0} with initial velocity v

$$
\begin{array}{r}
d \psi_{q_{0}}(v)=\left[\frac{\partial \psi}{\partial q}\left(q_{0}\right)\right]^{\mathrm{T}} v \\
d \psi_{q}(v)=\frac{\partial \psi}{\partial q_{1}}(q) d q_{1}(v)+\cdots+\frac{\partial \psi}{\partial q_{r}}(q) d q_{r}(v)
\end{array}
$$

- Abbreviated as $d \psi=\frac{\partial \psi}{\partial q_{1}} d q_{1}+\cdots+\frac{\partial \psi}{\partial q_{r}} d q_{r}$
- $d \psi_{(\cdot)}(\cdot)$ - differential of ψ
- Linear in v at every $q \in \mathcal{Q}$

Velocity Constraints

- Constraints on positions also give rise to constraints on velocities
- If $\phi=0$ along a motion, then rate of change of $\phi=0$ as well
- If admissible motions satisfy $\phi(q)=0$, then every admissible velocity at $q \in \mathcal{Q}$ satisfies $d \phi_{q}(v)=0$
- Short hand: Configurations satisfy $\phi=0$, then velocities satisfy $d \phi=0$
- At each $q \in \mathcal{Q}$, the set of admissible velocities is the linear space

$$
\left\{v: d \phi_{q}(v)=0\right\}=\underbrace{\left\{v:\left[\frac{\partial \phi}{\partial q}(q)\right]^{\mathrm{T}} v=0\right\}}_{\text {tangent space to } \mathcal{Q} \text { at } q}
$$

Differential Forms and Velocity Constraints

- A differential form is a function of q and v which is linear in v for every fixed q
- Example: $d \psi_{q}(v)$ for $\psi: \mathcal{Q} \rightarrow \mathbb{R}$
- A general differential form is of the form

$$
\begin{aligned}
a_{q}(v) & =a(q)^{\mathrm{T}} v \\
& =a_{1}(q) v_{1}+\cdots+a_{r}(q) v_{r}
\end{aligned}
$$

- Short hand: $a=a_{1} d q_{1}+\cdots+a_{r} d q_{r}$
- Differential form a is exact if $a=d \psi$ for some function ψ
- A general linear velocity constraint is of the form

$$
a_{q}(v)=0, \text { that is, } a_{1} d q_{1}+\cdots+a_{r} d q_{r}=0
$$

- Does this velocity constraint arise from a position constraint?
- Yes, if a is exact
- No in general

Velocity Constraints: An Example

- Dumbbell on a plane with knife edges orthogonal to the dumbbell

- Knife edges restrict velocity at each particle to be perpendicular to the rod
- Along any motion of the dumbbell

$$
\dot{q}_{1} \cos q_{3}+\dot{q}_{2} \sin q_{3}=0
$$

- That is, every admissible velocity vector satisfies

$$
\underbrace{\left.\cos q_{3} d\right]_{1}+\sin q_{3} d q_{2}}_{\text {tial form with } a(q)=\left[\cos q_{3} \sin q_{3}\right.}=0
$$

Example: A Few Questions

- Configuration space 3D
- Set of allowable velocities at each configuration is a 2D linear space
- Is there a family of 2D surfaces tangent to all these linear spaces?
- Does the velocity constraint restrict configurations that can be reached from a given initial configuration?
- Yes, if a is exact, that is, $a=d \psi$ for some ψ

$$
a=0 \Rightarrow d \psi=0 \Rightarrow \psi=\mathrm{constant}
$$

- Check: If $a=\left[\begin{array}{lll}\cos q_{3} & \sin q_{3} & 0\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ll}\frac{\partial \psi}{\partial q_{1}} & \frac{\partial \psi}{\partial q_{2}}\end{array} \frac{\partial \psi}{\partial q_{3}}\right]^{\mathrm{T}}$, then

$$
\cos q_{3}=\frac{\partial}{\partial q_{3}}\left(\frac{\partial \psi}{\partial q_{2}}\right) \neq \frac{\partial}{\partial q_{2}}\left(\frac{\partial \psi}{\partial q_{3}}\right)=0!
$$

- a is not exact

A Necessary Condition for Exactness

- If $a=a_{1} d q_{1}+a_{2} d q_{2}+a_{3} d q_{3}$ is exact, then

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\nabla \psi \text { for some } \psi
$$

\therefore curl $a=0$, that is,

$$
\frac{\partial a_{i}}{\partial q_{j}}-\frac{\partial a_{j}}{\partial q_{i}}=0, i \neq j, i, j=1,2,3
$$

- In higher dimensions, if $a=a_{1} d q_{1}+\cdots+a_{r} d q_{r}$ is exact, then

$$
\frac{\partial a_{i}}{\partial q_{j}}-\frac{\partial a_{j}}{\partial q_{i}}=0, i \neq j, i, j=1, \ldots, r .
$$

- Sufficient under additional conditions
- Question: If a is not exact, does it follow that the configuration space is not restricted?

Velocity Constraints: Another Example

- Dumbbell on a plane with knife edges parallel to the dumbbell

- Knife edges restrict velocity at each particle to lie along the rod
- Velocity constraint at the center of the dumbbell

$$
\sin q_{3} d q_{1}-\cos q_{3} d q_{2}=0
$$

- Not exact, but dumbbell restricted to move in a straight line

Integrability

- Even if a is not exact, a may be integrable, that is, there may exist an integrating factor $\eta: \mathcal{Q} \rightarrow \mathbb{R}$ such that $\eta a=\eta a_{1} d q_{1}+\eta a_{2} d q_{2}+\eta a_{3} d q_{3}$ is exact
- If a is integrable, there exist functions η and ψ such that $a=\frac{1}{\eta} d \psi$
- Abuse of notation: Think of a as a vector field $a=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$

$$
\begin{aligned}
& a= \frac{1}{\eta} \nabla \psi \\
& \text { curl } a=-\frac{1}{\eta^{2}}(\nabla \eta \times \nabla \psi)+\frac{1}{\eta} \underbrace{\text { curl } \nabla \psi}_{=0} \\
&=-\frac{1}{\eta}(\nabla \eta \times a) \\
& \therefore a \cdot \text { curl } a=0 \\
& a_{1}\left(\frac{\partial a_{3}}{\partial q_{2}}-\frac{\partial a_{2}}{\partial q_{3}}\right)+ a_{2}\left(\frac{\partial a_{1}}{\partial q_{3}}-\frac{\partial a_{3}}{\partial q_{1}}\right)+a_{3}\left(\frac{\partial a_{2}}{\partial q_{1}}-\frac{\partial a_{1}}{\partial q_{2}}\right)=0
\end{aligned}
$$

Non-Holonomic Constraints

- If a velocity constraint a is integrable, then ηa is exact for some η
- a and ηa define the same set of allowable velocities
- The velocity constraint can be "integrated" to yield a position constraint
- If the velocity constraint is not integrable, then it does not restrict configurations to a lower dimensional subset
- Such a constraint is truly "non-holonomic"
- Issues
- Necessary and sufficient conditions for integrability
- Multiple velocity constraints
- Higher dimensions

Dumbbell with Perpendicular Knife-Edges

$$
\begin{gathered}
a=\left[\sin q_{3} \quad \cos q_{3} 0\right]^{\mathrm{T}}, \text { curl } a=a \\
a \cdot \text { curl } a=1 \neq 0
\end{gathered}
$$

- Constraint is not integrable. Does not restrict attainable configurations
- Can we explicitly work out paths between configurations?

Dumbbell with Perpendicular Knife-Edges

$$
\begin{gathered}
a=\left[\sin q_{3} \quad \cos q_{3} 0\right]^{\mathrm{T}}, \text { curl } a=a \\
a \cdot \text { curl } a=1 \neq 0
\end{gathered}
$$

- Constraint is not integrable. Does not restrict attainable configurations
- Can we explicitly work out paths between configurations?

Dumbbell with Perpendicular Knife-Edges

$$
\begin{gathered}
a=\left[\sin q_{3} \quad \cos q_{3} 0\right]^{\mathrm{T}}, \text { curl } a=a \\
a \cdot \text { curl } a=1 \neq 0
\end{gathered}
$$

- Constraint is not integrable. Does not restrict attainable configurations
- Can we explicitly work out paths between configurations?

Dumbbell with Perpendicular Knife-Edges

$$
\begin{gathered}
a=\left[\sin q_{3} \quad \cos q_{3} 0\right]^{\mathrm{T}}, \text { curl } a=a \\
a \cdot \text { curl } a=1 \neq 0
\end{gathered}
$$

- Constraint is not integrable. Does not restrict attainable configurations
- Can we explicitly work out paths between configurations?

Dumbbell with Perpendicular Knife-Edges

$$
\begin{gathered}
a=\left[\sin q_{3} \cos q_{3} 0\right]^{\mathrm{T}}, \text { curl } a=a \\
a \cdot \operatorname{curl} a=1 \neq 0
\end{gathered}
$$

- Constraint is not integrable. Does not restrict attainable configurations
- Can we explicitly work out paths between configurations?

Dumbbell with Perpendicular Knife-Edges

$$
\begin{gathered}
a=\left[\sin q_{3} \quad \cos q_{3} 0\right]^{\mathrm{T}}, \text { curl } a=a \\
a \cdot \text { curl } a=1 \neq 0
\end{gathered}
$$

- Constraint is not integrable. Does not restrict attainable configurations
- Can we explicitly work out paths between configurations?

Examples of Non-Holonomic Systems

- Cars, cars with trailers
- No sideways velocity, but sideways displacement possible
- Snakes, snake board
- Periodic shape change leads to linear motion
- Ball on a plate
- Periodic position change leads to a periodic orientation change
- Multi-body space systems
- Falling cats, divers
- Periodic shape change leads to orientation change
- Rattle backs, wobble stones, tippy tops

Unilateral Constraints

- Bilateral constraints are equality constraints of the kind $\phi=0$ or $a=0$
- Positions and/or velocities constrained to a lower dimensional surface
- Inequality constraints of the form $\phi \geq 0, a \geq 0$ also possible
- Example: Particle moving outside a sphere
- Position constraint $\phi(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2} \geq 0$
- Velocity constraint $d \phi_{q}(v) \geq 0$ whenever $\phi(q)=0$
- Any motion has two kinds of segments
- Particle moves in contact with the sphere
- Particle moves out of contact with the sphere
- Each segment can be solved by using initial conditions from the previous segment
- Monitor constraint force to detect loss of contact
- Monitor constraint function to detect contact

Virtual Displacement

- Consider a scleronomic system described using generalized coordinates q_{1}, \ldots, q_{r} subject to

$$
\phi(q)=0, a_{q}(v)=0
$$

- A virtual displacement at $q \in \mathcal{Q}$ is a vector $\delta q \in \mathbb{R}^{r}$ satisfying

$$
d \phi_{q}(\delta q)=0, a_{q}(\delta q)=0
$$

- A tangent vector to the configuration space lying in the set of admissible velocities
- Particles of the system undergo virtual displacements along δq

$$
x=x(q) \Longrightarrow \quad \delta x=\frac{\partial x}{\partial q}(q) \delta q
$$

- δx is linear approximation to the change in x when q changes to $q+\delta q$
- A virtual displacement is also an admissible velocity

Example

$$
\begin{aligned}
\phi(q) & =x^{2}+y^{2}-1=0 \\
d \phi_{q}(\delta q) & =x \delta x+y \delta y=0 \\
\delta q & =\alpha[y-x]^{\mathrm{T}}
\end{aligned}
$$

$$
\begin{aligned}
& x=\cos q, \quad y=\sin q \\
& \delta x=-\sin q \delta q, \quad \delta y=\cos q \delta q
\end{aligned}
$$

Virtual Displacement for Rheonomic Systems

- Consider a system subject to time varying position and velocity constraint
- Set of virtual displacements changes every instant
- At each instant, the set of virtual displacements is the set of tangent vectors to the instantaneous surface

$$
\phi(q, t)=0
$$

that satisfy the instantaneous velocity constraint

$$
a_{1}(q, t) d q_{1}+\cdots+a_{r}(q, t) d q_{r}=0
$$

- If $x=x(q, t)$, the virtual displacements of the particles are given by

$$
\delta x=\frac{\partial x}{\partial q}(q, t) \delta q
$$

- Treat time as frozen to calculate instantaneous virtual displacement
- Virtual displacements are not actual velocities

Virtual Displacements: Example 1

Constraints

$$
\begin{aligned}
& y_{1}=0, x_{2}=0 \\
& x_{1}^{2}+y_{2}^{2}=l^{2}
\end{aligned}
$$

- $\mathcal{Q}=$ circle in the $x_{1}-y_{2}$ plane in $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ space
- Along any tangent vector $\left(\delta x_{1}, \delta y_{1}, \delta x_{2}, \delta y_{2}\right)$ to this circle
$\delta y_{1}=0 \quad$ (virtual displacement of A is horizontal)
$\delta x_{2}=0 \quad$ (virtual displacement of B is vertical)
$x_{1} \delta x_{1}+y_{2} \delta y_{2}=0$
$\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)} \frac{\left(\delta y_{2}-\delta y_{1}\right)}{\left(\delta x_{2}-\delta x_{1}\right)}=-1$ (relative virtual displacement orthogonal to rod)

Virtual Displacement: Example 2

$$
\begin{aligned}
& x_{1}^{2}+y_{1}^{2}-a^{2}=0 \\
& x_{2}^{2}+y_{2}^{2}-a^{2}=0 \\
& \left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}-l^{2}=0
\end{aligned}
$$

- Along any virtual displacement

$$
\begin{aligned}
& \left.\begin{array}{l}
x_{1} \delta x_{1}+y_{1} \delta y_{1}=0 \\
x_{2} \delta x_{2}+y_{2} \delta y_{2}=
\end{array}\right\} \text { virtual displacements of } \mathrm{A}, \mathrm{~B} \text { tangent to the circle } \\
& \left(x_{1}-x_{2}\right)\left(\delta x_{1}-\delta x_{2}\right)+\left(y_{1}-y_{2}\right)\left(\delta y_{1}-\delta y_{2}\right)=0-\text { relative virtual } \\
& \text { displacement perpendicular to rod }
\end{aligned}
$$

Virtual Work

- Consider a n - particle system having coordinates $x \in \mathbb{R}^{3 n}$
- Components of total forces acting on the particles $F \in \mathbb{R}^{3 n}$
- Along a virtual displacement $\delta q \in \mathbb{R}^{r}$ of the system

$$
\delta x=\frac{\partial x}{\partial q}(q, t) \delta q
$$

- Virtual work of the system of forces along the virtual displacement δq is defined as

$$
\delta W=F^{\mathrm{T}} \delta x=F^{\mathrm{T}} \frac{\partial x}{\partial q}(q, t) \delta q
$$

- Note: no actual motion or displacement
- Linear in δq at each q, t
- Inner product of $F \in \mathbb{R}^{3 n}$ with the vector $\delta x \in \mathbb{R}^{3 n}$ tangent to \mathcal{Q}
- $\delta \mathbf{r}_{i}=$ virtual displacement of $i^{\text {th }}$ particle, $\mathbf{F}_{i}=$ net force on $i^{\text {th }}$ particle

$$
\delta W=\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i}
$$

Virtual Work: Example 1

$$
\left.\begin{array}{rl}
\delta x & =\left[\begin{array}{llll}
\delta x_{1} & \delta y_{1} & \delta x_{2} & \delta y_{2}
\end{array}\right]^{\mathrm{T}} \\
F & =\left[\begin{array}{lll}
-F-R \cos \theta & N_{1}-m_{1} g & N_{2}+R \cos \theta
\end{array}-m_{2} g-R \sin \theta\right.
\end{array}\right]^{\mathrm{T}}, ~\left(\begin{array}{ll}
-F x_{1}-m_{2} g \delta y_{2}
\end{array}\right.
$$

Virtual Work: Example 2

$$
\begin{aligned}
\mathbf{N}_{2} \cdot \delta \mathbf{r}_{2}= & \mathbf{N}_{1} \cdot \delta \mathbf{r}_{1}=0 \\
\mathbf{R}_{2} \cdot \delta \mathbf{r}_{2}+\mathbf{R}_{1} \cdot \delta \mathbf{r}_{1}= & \mathbf{R}_{2} \cdot\left(\delta \mathbf{r}_{2}-\delta \mathbf{r}_{1}\right)=0 \\
& \delta W=-m_{1} g \delta y_{1}-m_{2} g \delta y_{2}
\end{aligned}
$$

Workless Constraints

- A bilateral constraint is workless if the virtual work of the corresponding constraint forces is zero for every virtual displacement of the system
- Main examples
- Rigid interconnections between particles
* Constraint forces equal and opposite along the interconnection
* Relative virtual displacement orthogonal to the interconnection
- Sliding motion on a frictionless surface
« Constraint force normal to the surface
\star Virtual displacement at point of contact tangent to surface
- Rolling without slipping
* Virtual displacement of point of contact is zero

Equilibrium Configurations

- A configuration in which the total force $(\mathbf{F}+\mathbf{R})$ acting on each particle is zero
- A system in an equilibrium configuration at rest remains in that configuration
- Principle of virtual work: which configurations are equilibrium configurations?

A configuration q of a scleronomic system having workless constraints is an equilibrium configuration if and only if the virtual work of external (nonconstraint) forces along every virtual displacement at q is zero

- Example: Spherical pendulum

Principle of Virtual Work: Example

$$
\delta W=-F \delta x_{1}-m_{2} g \delta y_{2}=0
$$

for every $\delta x_{1}, \delta y_{2}$ satisfying

$$
\cos \theta \delta x_{1}+\sin \theta \delta y_{2}=0
$$

$$
\Longrightarrow \tan \theta=\frac{m_{2} g}{F}
$$

$\delta W=-m_{1} g \delta y_{1}-m_{2} g \delta y_{2}=0$

for every $\delta x_{1}, \delta y_{1}, \delta x_{2}, \delta y_{2}$ satisfying
$x_{1} \delta x_{1}+y_{1} \delta y_{1}=0$
$x_{2} \delta x_{2}+y_{2} \delta y_{2}=0$
$\left(x_{1}-x_{2}\right)\left(\delta x_{1}-\delta x_{2}\right)+\left(y_{1}-y_{2}\right)\left(\delta y_{1}-\delta y_{2}\right)=0$
$\Longrightarrow m_{1} x_{1}+m_{2} x_{2}=0$

Generalized Forces

- Principle of virtual work in Cartesian coordinates $\delta W=F^{\mathrm{T}} \delta x=0$ for every $\delta x \in \mathbb{R}^{n}$ satisfying $\frac{\partial \phi(x)}{\partial x}(x) \delta x=0$
- Problem: Components of δx are not independent. Tedious to apply
- Solution: Write principle of virtual work using generalized coordinates

$$
\delta W=F^{\mathrm{T}} \delta x=\left(F^{\mathrm{T}} \frac{\partial x(q)}{\partial q}(q)\right) \delta q
$$

- Define generalized force $Q \stackrel{\text { def }}{=}\left[\frac{\partial x(q)}{\partial q}(q)\right]^{\mathrm{T}} F$
- Generalized force along $q_{j}, Q_{j}=\sum_{i=1}^{3 n} F_{i} \frac{\partial x_{i}}{\partial q_{j}}$

$$
\delta W=Q^{\mathrm{T}} \delta q
$$

- If q_{1}, \ldots, q_{r} are independent generalized coordinates, then δq are unconstrained
- Principle of virtual work: A system is in equilibrium if and only if the generalized applied forces along a set of independent generalized coordinates are zero.
- Position constraints only

Example

$Q_{\theta}=l\left(F \sin \theta-m_{2} g \cos \theta\right)=0$ for equilibrium

$$
\begin{aligned}
x_{1} & =a \cos \theta_{1}=a \cos (\theta+\alpha) \\
y_{1} & =-a \sin \theta_{1}=-a \sin (\theta+\alpha) \\
x_{2} & =-a \cos \theta_{2}=-a \cos (\theta-\alpha) \\
y_{2} & =-a \sin \theta_{2}=a \sin (\theta-\alpha) \\
Q_{\theta} & =-g\left(m_{A} x_{1}+m_{B} x_{2}\right)
\end{aligned}
$$

Conservative Forces

- Consider a particle that moves under the influence of a position dependent force \mathbf{F}

$$
F_{x}=-\frac{\partial V}{\partial x}(x, y, z), F_{y}=-\frac{\partial V}{\partial y}(x, y, z), F_{z}=-\frac{\partial V}{\partial z}(x, y, z)
$$

where V is a function of position only

- Work done along a path $\mathbf{r}(t)$

$$
\begin{aligned}
& =\int_{0}^{t} \mathbf{F}(\mathbf{r}(\tau)) \cdot \dot{\mathbf{r}}(\tau) d \tau=-\int_{0}^{t}\left(\frac{\partial V}{\partial x} \dot{x}+\frac{\partial V}{\partial y} \dot{y}+\frac{\partial V}{\partial z} \dot{z}\right) d \tau \\
& =-\int_{0}^{t} \frac{d}{d \tau}[V(\mathbf{r}(\tau))] d \tau=-V(\mathbf{r}(t))+V(\mathbf{r}(0))
\end{aligned}
$$

- Work done depends on endpoints, not on the path or the time taken
- Work done along closed curve $=0$
- Such forces are conservative forces
- Note: Force is not conservative if potential is time dependent

Principle of Virtual Work for Conservative Systems

- Consider a system of n - particles with applied forces given by

$$
F_{i}=-\frac{\partial V}{\partial x_{i}}\left(x_{1}, \ldots, x_{3 n}\right)
$$

- Work done along a path $x(t)$

$$
=\int_{0}^{t} F(x(\tau))^{\mathrm{T}} \dot{x}(\tau) d \tau=-\int_{0}^{t}\left(\frac{\partial V}{\partial x}(x(\tau))\right)^{\mathrm{T}} \dot{x}(\tau) d \tau=V(x(0))-V(x(t))
$$

- Can consider V as a function of q, since $V=V(x), x=x(q)$

$$
V(q) \stackrel{\text { def }}{=} V(x(q))
$$

- Generalized forces

$$
\begin{aligned}
Q & =\left(\frac{\partial x}{\partial q}(q)\right)^{\mathrm{T}} F
\end{aligned}=-\frac{\partial x}{\partial q}(q)^{\mathrm{T}} \frac{\partial V}{\partial x}
$$

- Principle of virtual work: A holonomic, scleronomic, conservative system remains in equilibrium only at a stationary point of the potential function

D'Alembert's Principle

- Consider a system of n - particles. The motion satisfies $m_{i} \ddot{\mathbf{r}}_{i}=\mathbf{F}_{i}+\mathbf{R}_{i}$ at every instant
- At every t, along every virtual displacement of the system, we have

$$
\sum_{i=1}^{n}(\underbrace{\mathbf{F}_{i}}_{\text {applied }}+\underbrace{\mathbf{R}_{i}}_{\text {constraint }}-\underbrace{m_{i} \ddot{\mathbf{r}}_{i}}_{\text {inertial }}) \cdot \delta \mathbf{r}_{i}=0
$$

- For workless constraints,

$$
\delta W=\sum_{i=1}^{n}\left(\mathbf{F}_{i}-m_{i} \ddot{\mathbf{r}}_{i}\right) \cdot \delta \mathbf{r}_{i}=0
$$

- D'Alembert's principle: The accelerations along a motion are such that the virtual work done by applied and inertial forces along any virtual displacement is zero
- Note: Applies to all workless constraints, scleronomic or rheonomic, unlike principle of virtual work

Jean le Rond d'Alembert

- d'Alembert's solution to wave equation
- d'Alembert's ratio test
- d'Alembert's paradox

d'Alembert's Principle: A Scleronomic Example

$$
\delta W=-\left(m_{1} g+m_{1} \ddot{y}_{1}\right) \delta y_{1}-m_{1} \ddot{x}_{1} \delta x_{1}-\left(m_{1} g+m_{1} \ddot{y}_{2}\right) \delta y_{1}-m_{1} \ddot{x}_{2} \delta x_{2}=0
$$

For every ($\delta x_{1}, \delta y_{1}, \delta x_{2}, \delta y_{2}$) satisfying

$$
x_{1} \delta x_{1}+y_{1} \delta y_{1}=0, x_{2} \delta x_{2}+y_{2} \delta y_{2}=0, x_{2} \delta y_{1}-x_{1} \delta y_{2}=0
$$

- Eliminate $\delta x_{1}, \delta x_{2}$

$$
m_{1}\left(x_{1} g+x_{1} \ddot{y}_{1}-y_{1} \ddot{x}_{1}\right)+m_{2}\left(x_{2} g+x_{2} \ddot{y}_{2}-y_{2} \ddot{x}_{2}\right)=0
$$

- Constraint forces eliminated, but not the constraint
- Use generalized coordinates

d'Alembert's Principle: A Rheonomic Example

$$
\begin{gathered}
x=r \sin \theta \cos \omega t, y=r \sin \theta \sin \omega t, z=-r \cos \theta \\
\delta W=-(m g+m \ddot{z}) \delta z-m \ddot{y} \delta y-m \ddot{x} \delta x=0
\end{gathered}
$$

where $\delta x=r \cos \theta \cos \omega t \delta \theta, \delta y=r \cos \theta \sin \omega t \delta \theta, \delta z=r \sin \theta \delta \theta$

- Substitute for $\ddot{x}, \ddot{y}, \ddot{z}$

$$
\ddot{\theta}-\omega^{2} \sin \theta \cos \theta+\frac{g}{r} \sin \theta=0
$$

- Cumbersome to eliminate the constraint
- Need a general procedure to eliminate constraints and constraint forces by combining generalized coordinates with D'Alembert's principle

Eliminate Constraints

- Eliminate constraints from

$$
\sum_{i=1}^{3 n}\left(F_{i}-m_{i} \ddot{x}_{i}\right) \delta x_{i}=0
$$

- Suppose $x_{i}=x_{i}\left(q_{1}, \ldots, q_{r}, t\right), i=1, \ldots, 3 n$

$$
\begin{gathered}
\delta x_{i}=\sum_{j=1}^{r} \frac{\partial x_{i}}{\partial q_{j}} \delta q_{j}, \dot{x}_{i}=\sum_{j=1}^{r} \frac{\partial x_{i}}{\partial q_{j}} \dot{q}_{j}+\frac{\partial x_{i}}{\partial t} \\
\sum_{i=1}^{3 n} F_{i} \delta x_{i}=\sum_{i=1}^{3 n} F_{i}\left(\sum_{j=1}^{r} \frac{\partial x_{i}}{\partial q_{j}} \delta q_{j}\right)=\sum_{j=1}^{r}\left(\sum_{i=1}^{3 n} F_{i} \frac{\partial x_{i}}{\partial q_{j}}\right) \delta q_{j}=\sum_{j=1}^{r} Q_{j} \delta q_{j} \\
-\sum_{i=1}^{3 n} m_{i} \ddot{x}_{i} \delta x_{i}=-\sum_{i=1}^{3 n} m_{i} \ddot{x}_{i}\left(\sum_{j=1}^{r} \frac{\partial x_{i}}{\partial q_{j}} \delta q_{j}\right)=-\sum_{j=1}^{r}(\underbrace{\sum_{i=1}^{3 n} m_{i} \ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}}_{\text {gen. inertia force along } q_{j}}) \delta q_{j}
\end{gathered}
$$

Elimination of Constraints (cont'd)

- Two identities

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial x_{i}}{\partial q_{j}}\right)=\frac{\partial \dot{x}_{i}}{\partial q_{j}}, \frac{\partial x_{i}}{\partial q_{j}}=\frac{\partial \dot{x}_{i}}{\partial \dot{q}_{j}} \\
& \ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}=\frac{d}{d t}\left(\dot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}\right)-\dot{x}_{i} \frac{d}{d t}\left(\frac{\partial x_{i}}{\partial q_{j}}\right) \\
&=\frac{d}{d t}\left(\dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial \dot{q}_{j}}\right)-\dot{x}_{i} \frac{\partial \dot{x}_{i}}{\partial q_{j}} \\
&=\frac{d}{d t}\left[\frac{\partial}{\partial \dot{q}_{j}}\left(\frac{1}{2} \dot{x}_{i}^{2}\right)\right]-\frac{\partial}{\partial q_{j}}\left(\frac{1}{2} \dot{x}_{i}^{2}\right) \\
& \therefore \sum_{i=1}^{3 n} m_{i} \ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}=\frac{d}{d t}\left(\frac{\partial}{\partial \dot{q}_{j}} \sum_{i=1}^{3 n} \frac{1}{2} m_{i} \dot{x}_{i}^{2}\right)-\frac{\partial}{\partial q_{j}}\left(\sum_{i=1}^{3 n} \frac{1}{2} m_{i} \dot{x}_{i}^{2}\right)
\end{aligned}
$$

Lagrange's Equations

- Total kinetic energy $T(q, \dot{q}, t)=\sum_{i=1}^{3 n} \frac{1}{2} m_{i} \dot{x}_{i}^{2}(q, \dot{q}, t)$

$$
\sum_{i=1}^{3 n} m_{i} \ddot{x}_{i} \frac{\partial x_{i}}{\partial q_{j}}=\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}
$$

- d'Alembert's principle implies

$$
\sum_{j=1}^{r}\left[Q_{j}-\left\{\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}\right\}\right] \delta q_{j}=0
$$

- For a holonomic system described by independent generalized coordinates

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}=Q_{j}, j=1, \ldots, r
$$

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}}\right)-\frac{\partial T}{\partial q}=Q
$$

Joseph-Louis Lagrange

- Vibrations

Joseph-Louis Lagrange
1736-1813

- Calculus of variations
- Linear ODE's
- Three-body problem
- Number theory
- Lagrange interpolation
- Mechanics

Lagrange's Equations: An Example

$$
\begin{aligned}
& x_{1}=l \cos \theta \\
& y_{2}=l \sin \theta
\end{aligned}
$$

Lagrange's Equations for Conservative Systems

$$
\begin{gathered}
Q=-\frac{\partial V}{\partial q}, V=V(q) \\
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}}\right)-\frac{\partial T}{\partial q}+\frac{\partial V}{\partial q}=0
\end{gathered}
$$

- Define Lagrangian $L(q, \dot{q}, t)=T(q, \dot{q}, t)-V(q)$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0
$$

- In general, $Q=-\frac{\partial V}{\partial q}+Q_{\mathrm{nc}}$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=Q_{\mathrm{nc}}
$$

Examples

$$
\begin{aligned}
& x_{1}=a \cos (\theta+\alpha) \\
& y_{1}=-a \sin (\theta+\alpha) \\
& x_{2}=-a \cos (\theta-\alpha) \\
& y_{2}=a \sin (\theta-\alpha)
\end{aligned}
$$

$$
x=r \sin \theta \cos \omega t
$$

$$
y=r \sin \theta \sin \omega t
$$

$$
z=-r \cos \theta
$$

Form of the Kinetic Energy

$$
\begin{gathered}
x=x(q, t) \\
\dot{x}=\frac{\partial x}{\partial q}(q, t) \dot{q}+\frac{\partial x}{\partial t}(q, t) \\
T(q, \dot{q}, t)=\sum_{i=1}^{3 n} \frac{1}{2} m_{i} \dot{x}_{i}^{2}=\frac{1}{2} \dot{x}^{\mathrm{T}} J \dot{x}, J=\operatorname{diag}\left\{m_{1}, \ldots, m_{3 n}\right\} \\
T(q, \dot{q}, t)=\frac{1}{2} \dot{q}^{\mathrm{T}} \underbrace{\left[\frac{\partial x^{\mathrm{T}}}{\partial q} J \frac{\partial x}{\partial q}\right]} \dot{q}+\underbrace{\left[\frac{\partial x^{\mathrm{T}}}{\partial q} J \frac{\partial x}{\partial q}\right]}_{M(q, t)} \dot{q}+\frac{1}{2} \frac{\partial x^{\mathrm{T}}}{\partial t} J \frac{\partial x}{\partial t} \\
= \\
T_{2}+T_{1}+T_{0}
\end{gathered}
$$

- M - symmetric inertia matrix, positive-definite at every q, t
- For a scleronomic system, $T=T_{2}$

Form of the Equations

- Generalized momentum along q_{j} is

$$
\begin{gathered}
p_{j}=\frac{\partial T}{\partial \dot{q}_{j}}, \quad j=1, \ldots, r \\
p=\frac{\partial T}{\partial q}=M(q, t) \dot{q}+a(q, t)
\end{gathered}
$$

- Lagrange's equations

$$
\dot{p}-\frac{\partial T}{\partial q}+\frac{\partial V}{\partial q}=Q
$$

- Linear in \ddot{q}
- Coefficient matrix of \ddot{q} is $M(q, t)$, invertible
- Can be solved for accelerations to yield

$$
\ddot{q}+f(q, \dot{q}, t)=0
$$

d'Alembert's Principle with Velocity Constraints

- An n - particle system subject to m velocity constraints

$$
a_{i}^{\mathrm{T}} \dot{q}+a_{i t}=0, \quad i=1, \ldots, m
$$

$$
A \dot{q}+b=0, A=\left[\begin{array}{lll}
a_{1} & \cdots & a_{m}
\end{array}\right]^{\mathrm{T}}, b=\left[\begin{array}{lll}
a_{1 t} & \cdots & a_{m t}
\end{array}\right]^{\mathrm{T}}
$$

- Virtual displacements satisfy

$$
A \delta q=0
$$

- d'Alembert's principle

$$
\left(Q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{\partial L}{\partial q}\right)^{\mathrm{T}} \delta q=0
$$

for every δq satisfying $A \delta q=0$

Lagrange's Equations with Velocity Constraints

$$
\begin{gathered}
\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{c}
A \\
Q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{\partial L}{\partial q}
\end{array}\right] \\
Q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{\partial L}{\partial q} \in \text { span of rows of } A
\end{gathered}
$$

- For every t, there exist scalars $\lambda_{1}(t), \ldots, \lambda_{m}(t)$ such that

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}-Q=\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m} \quad(r \text { equations }) \\
A \dot{q}+b=0 \quad(m \text { equations })
\end{gathered}
$$

- $C=\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m}$ is the constraint force
- Check: $C^{\mathrm{T}} \delta q=0$ for every virtual displacement

Examples

Constants of Motion and Integration

- Example: a simple pendulum

$$
\begin{gathered}
\ddot{\theta}+\frac{g}{l} \sin \theta=0 \\
E(\theta, \dot{\theta})=\frac{1}{2} \dot{\theta}^{2}+\frac{g}{l}(1-\cos \theta)=c \\
\dot{\theta}=\sqrt{c-\frac{2 g}{l}(1-\cos \theta)}
\end{gathered}
$$

- θ can be obtained by direct integration (in terms of Jacobi elliptic integrals)
- E is a first integral, an integral of motion, a constant of motion
- A first integral is a function $f(q, \dot{q}, t)$ such that along any motion, $f(q(t), \dot{q}(t), t)=$ constant

$$
\frac{\partial f}{\partial q} \dot{q}+\frac{\partial f}{\partial \dot{q}} \ddot{q}+\frac{\partial f}{\partial t}=0
$$

- For a 1-d-o-f system, a first integral reduces the problem to an integration (quadrature)
- A n-d-o-f system, having n first integrals can be solved by quadratures Examples: two-body problem, free rigid body

Cyclic Coordinates

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=0, j=1, \ldots, r
$$

- If $\frac{\partial L}{\partial q_{j}}=0$, that is, L is independent of q_{j}, then

$$
p_{j}=\frac{\partial L}{\partial q_{j}}=\text { constant }
$$

- If $\frac{\partial L}{\partial q_{j}}=0, q_{j}$ is an ignorable or cyclic coordinate
- Fact: The generalized momentum corresponding to an ignorable coordinate is a first integral

Example: Kepler Problem

- Motion under inverse-square attraction to a fixed center

$$
\begin{aligned}
& T=\frac{1}{2} m\left(r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right), v=-\frac{\mu}{r}, L=\frac{1}{2} m\left(r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right)+\frac{\mu}{r} \\
& \frac{\partial L}{\partial \theta} \equiv 0, p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta}=m \beta=\mathrm{constant} \\
& \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}}\right)-\frac{\partial L}{\partial r}=0 \Longrightarrow \ddot{r}-r \dot{\theta}^{2}+\frac{\mu}{r^{2}}=0
\end{aligned}
$$

- Substitute for $\dot{\theta}$

$$
\ddot{r}-\frac{\beta^{2}}{r^{3}}+\frac{\mu}{r^{2}}=0
$$

- Solve for r independent of θ, then integrate $\dot{\theta}=\frac{\beta}{r^{2}}$
- Reduce the order to solve for r, perform a quadrature for θ
- Question: Can we do this as a general procedure?

Routhian Reduction

$$
\begin{aligned}
L & =L\left(q_{k+1}, \ldots, q_{r}, \dot{q}_{1}, \ldots, \dot{q}_{r}, t\right) \\
& =L\left(q_{\mathrm{n}}, \dot{q}_{\mathrm{i}}, \dot{q}_{\mathrm{n}}, t\right) \\
p= & {\left[\begin{array}{c}
p_{\mathrm{i}} \\
p_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{cc}
M_{1} & M_{12} \\
M_{12}^{\mathrm{T}} & M_{2}
\end{array}\right]\left[\begin{array}{c}
\dot{q}_{\mathrm{i}} \\
\dot{q}_{\mathrm{n}}
\end{array}\right]+\left[\begin{array}{c}
a_{\mathrm{i}} \\
a_{\mathrm{n}}
\end{array}\right] }
\end{aligned}
$$

- M positive definite $\Longrightarrow M_{1}$ positive definite (hence invertible)
- Solve for \dot{q}_{i} in terms of $p_{\mathrm{i}}, \dot{q}_{\mathrm{n}}, q_{\mathrm{n}}, t$

$$
\dot{q}_{\mathrm{i}}=M_{1}^{-1} p_{\mathrm{i}}-M_{1}^{-1} M_{12} \dot{q}_{\mathrm{n}}-M_{1}^{-1} a_{\mathrm{i}}
$$

- Define Routhian

$$
R\left(q_{\mathrm{n}}, \dot{q}_{\mathrm{n}}, p_{\mathrm{i}}, t\right)=\underbrace{L\left(q_{\mathrm{n}}, \dot{q}_{\mathrm{i}}, \dot{q}_{\mathrm{n}}, t\right)-p_{\mathrm{T}}^{\mathrm{T}} \dot{q}_{\mathrm{i}}}_{\text {substitutefor } \dot{q}_{\mathrm{i}}}
$$

Routhian Reduction (cont'd)

$$
\frac{\partial R}{\partial q_{j}}=\frac{\partial L}{\partial q_{j}}+\underbrace{\left(\frac{\partial L}{\partial \dot{q}_{\mathrm{i}}}-p_{\mathrm{i}}\right)^{\mathrm{T}}}_{=0 \text { along motion }} \frac{\partial \dot{q}_{\mathrm{i}}}{\partial q_{j}}
$$

- Along every motion with generalized momentum p_{i}

$$
\frac{\partial R}{\partial q_{\mathrm{n}}}=\frac{\partial L}{\partial q_{\mathrm{n}}}, \frac{\partial R}{\partial \dot{q}_{\mathrm{n}}}=\frac{\partial L}{\partial \dot{q}_{\mathrm{n}}}, \frac{\partial R}{\partial t}=\frac{\partial L}{\partial t}, \frac{\partial R}{\partial p_{\mathrm{i}}}=-\dot{q}_{\mathrm{i}}
$$

- Reduced equations for nonignorable coordinates

$$
\frac{d}{d t}\left(\frac{\partial R}{\partial \dot{q}_{\mathrm{n}}}\right)-\frac{\partial R}{\partial q_{\mathrm{n}}}=0
$$

- Quadrature for ignorable coordinates

$$
\dot{q}_{\mathrm{i}}=-\frac{\partial R}{\partial p_{\mathrm{i}}}
$$

Edward Routh

- Dynamics
- Stability

Edward Routh 1831-1907

Kepler's Problem Again

$$
\begin{aligned}
L & =\frac{1}{2}\left(r^{2} \dot{\theta}^{2}+\dot{r}^{2}\right)+\frac{\mu}{r} \\
p_{\theta} & =\frac{\partial L}{\partial \dot{\theta}}=r^{2} \dot{\theta} \\
R & =-\frac{1}{2} \frac{p_{\theta}^{2}}{r^{2}}+\frac{1}{2} \dot{r}^{2}+\frac{\mu}{r} \\
& \ddot{r}-\frac{p_{\theta}^{2}}{r^{3}}+\frac{\mu}{r^{2}}=0 \\
& \dot{\theta}=-\frac{\partial R}{\partial p_{\theta}}=\frac{p_{\theta}}{r^{2}}
\end{aligned}
$$

- Note: $R=T^{\prime}-V^{\prime}, T^{\prime}=\frac{1}{2} \dot{r}^{2}, V^{\prime}=\frac{p_{\theta}^{2}}{2 r^{2}}-\frac{\mu}{r}$
- For a given $p_{\theta}, \dot{\theta}$ is a function of r
- $V^{\prime}=$ potential due to centrifugal force + gravity

Example: Spherical Pendulum

$$
\begin{aligned}
L= & \frac{1}{2} m l^{2}\left(\dot{\theta}^{2}+\dot{\phi}^{2} \sin ^{2} \theta\right)-m g l(1-\cos \theta) \\
p_{\phi} & =\frac{\partial L}{\partial \dot{\phi}}=m l^{2} \dot{\phi} \sin ^{2} \theta(\text { angular momentum about vertical) } \\
R= & \frac{1}{2} m l^{2} \dot{\theta}^{2}-\frac{1}{2} \frac{p_{\phi}^{2}}{m l^{2} \sin ^{2} \theta}-m g l(1-\cos \theta) \\
& m l^{2} \ddot{\theta}-\underbrace{\frac{p_{\phi}^{2} \cos \theta}{m l^{2} \sin ^{3} \theta}}_{\text {centrifugal }}+\underbrace{m g l \sin \theta}_{\text {gravity }}=0
\end{aligned}
$$

Energy Integral

- Assume the system is conservative, that is
- All applied forces are conservative
- Lagrangian is independent of time
- Velocity constraints are of the form $a_{i}^{\mathrm{T}}(q, t) \dot{q}=0$
* Implies position constraints on q are constant

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m} \\
& \frac{d}{d t}\left({\frac{\partial L^{\mathrm{T}}}{\partial \dot{q}}}^{\dot{q}}-L\right)=\frac{d}{d t}\left({\left.\frac{\partial L^{\mathrm{T}}}{\partial \dot{q}}\right) \dot{q}+{\frac{\partial L^{\mathrm{T}}}{\partial \dot{q}}}^{\mathrm{q}}-{\frac{\partial L^{\mathrm{T}}}{\partial \dot{q}}}^{\ddot{q}}-\frac{\partial L^{\mathrm{T}}}{\partial q} \dot{q}-\frac{\partial L}{\partial t}}^{\frac{\mathrm{T}}{}}\right. \\
& =\left[\lambda_{1} a_{1}+\cdots+\lambda_{m} a_{m}\right]^{\mathrm{T}} \dot{q}-\frac{\partial L}{\partial t} \\
& =0 \\
& \frac{d}{d t}\left({\frac{\partial L^{\mathrm{T}}}{\partial \dot{q}}}^{\dot{q}-L)=-\frac{\partial L}{\partial t}=0}\right.
\end{aligned}
$$

- $h(q, \dot{q})={\frac{\partial L^{\mathrm{T}}}{\partial \dot{q}}}^{\mathrm{q}}-L$, Jacobi integral, energy integral

Form of the Jacobi Integral

$$
\begin{aligned}
L & =T_{2}+T_{1}+T_{0}-V \\
T_{2}=\frac{1}{2} \dot{q}^{\mathrm{T}} M \dot{q}, T_{1} & =\left[\frac{\partial x^{\mathrm{T}}}{\partial t} J \frac{\partial x}{\partial q}\right] \dot{q}, T_{0}=\frac{1}{2} \frac{\partial x^{\mathrm{T}}}{\partial t} J \frac{\partial x}{\partial t} \\
\frac{\partial L^{\mathrm{T}}}{\partial \dot{q}} \dot{q}=\left[\dot{q}^{\mathrm{T}} M\right. & +{\left.\frac{\partial x^{\mathrm{T}}}{\partial t} J \frac{\partial x}{\partial q}\right]^{\mathrm{T}} \dot{q}=2 T_{2}+T_{1}}^{h}=2 T_{2}+T_{1}-L \\
& =T_{2}+\left(V-T_{0}\right) \\
& =T^{\prime}+V^{\prime}
\end{aligned}
$$

$T^{\prime}=T_{2}=$ Kinetic energy when all moving constraints/forces are held stationary $V^{\prime}=V-T_{0}=$ Potential energy that includes effect of inertia forces due to moving constraints

Jacobi Integral and Total Energy

- Energy integral equals real energy if $T^{\prime}=T, V^{\prime}=V$, that is, $T_{1}=T_{0}=0$
- $T_{0}=0 \Longrightarrow \frac{\partial x}{\partial t}=0$, transformation does not depend on time
- A system is called natural if $T=T_{2}$
- Fact: Total energy of a natural system is conserved if the Lagrangian is independent of time

Example: Particle on a Rotating Hoop

$$
\begin{aligned}
L & =\frac{1}{2} m\left(r^{2} \dot{\theta}^{2}+r^{2} \omega^{2} \sin ^{2} \theta+2 g r \cos \theta\right) \\
h & =\frac{1}{2} m r^{2} \dot{\theta}^{2}-\frac{1}{2} m r^{2} \omega^{2} \sin ^{2} \theta-m g r \cos \theta \\
V^{\prime} & =-m g r \cos \theta-\frac{1}{2} m r^{2} \omega^{2} \sin 2 \theta \\
-\frac{\partial V^{\prime}}{\partial \theta} & =\underbrace{-m g r \sin \theta}_{\text {gravity } \operatorname{torque}}+\underbrace{m r^{2} \omega^{2} \sin \theta \cos \theta}_{\text {centrifugal torque }}
\end{aligned}
$$

Example: Reduced Kepler's Problem

$$
\begin{gathered}
R=\frac{1}{2} \dot{r}^{2}-\frac{1}{2} \frac{p_{\theta}^{2}}{r^{2}}+\frac{\mu}{r} \\
h=\frac{\partial R}{\partial \dot{r}} \dot{r}-R=\frac{1}{2} \dot{r}^{2}+\frac{1}{2} \frac{p_{\theta}^{2}}{r^{2}}-\frac{\mu}{r} \\
V^{\prime}=\frac{1}{2} \frac{p_{\theta}^{2}}{r^{2}}-\frac{\mu}{r}=\text { potential due to centrifugal + gravity }
\end{gathered}
$$

- Can solve reduced problem by quadratures

$$
\dot{r}=\sqrt{2 h-\frac{p_{\theta}^{2}}{r^{2}}+\frac{\mu}{r}}
$$

- Reduction by using ignorable coordinates, solutions by using energy integral

Ignorable Coordinates Revisited

- If one set of coordinates has an ignorable coordinates, would every other set have one too?
- Spherical pendulum: ϕ ignorable if, for every $\theta, \dot{\phi}, \dot{\theta}$ and ϕ_{1}, ϕ_{2},

$$
\left.L\left(\phi_{1}, \theta, \dot{\phi}, \dot{\theta}\right)=L\left(\phi_{2}, \theta, \dot{\phi}, \dot{\theta}\right)\right)
$$

- Lagrangian is invariant under rotations of position and velocity about the vertical axis
- Not invariant under rotations about any other axis
- Any other set of spherical coordinates will not have an ignorable coordinates
- System should continue to have an integral of motion in any coordinates!
- How to find integrals of motion when ignorable coordinates are not obvious?

Transformations

- Existence of ignorable coordinates related to invariance of L under some transformation of q, \dot{q}
- A transformation on the configuration space is an invertible function $h: \mathcal{Q} \rightarrow \mathcal{Q}$
- Rotation about a given axis for a spherical pendulum
- Rotation about symmetry axis for a particle on a cylinder
- Rotation about center of attraction in Kepler's problem
- Rotation about center of mass of a rigid body
- Translation of the center of mass by a given vector v
- The set of all transformations on \mathcal{Q} is a group \mathcal{G}
- If h_{1}, h_{2} aare transformations, then so are $h_{1} \circ h_{2}, h_{1}^{-1}$
- The identity map id : $\mathcal{Q} \rightarrow \mathcal{Q}$ given by $\operatorname{id}(q)=q$ is a transformation

One-Parameter Group of Transformations

- A one-parameter group of transformations on \mathcal{Q} is a map

$$
h: \mathbb{R} \rightarrow \mathcal{G}
$$

such that $h_{s 1} \circ h_{s 2}=h_{s 1+s 2}, h_{0}=\mathrm{id}$

- Example: Rotation about z-axis through angle s

Cartesian coordinates: $q=(x, y, z)$,

$$
h_{s}(q)=\left[\begin{array}{ccc}
\cos s & -\sin s & 0 \\
\sin s & \cos s & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Spherical coordinates: $q=(r, \theta, \phi), h_{s}(r, \theta, \phi)=(r, \theta, \phi+s)$

- Example: Translation along a vector w by amount s

$$
h_{s}(q)=q+s w
$$

Transformation of Velocities

- A velocity v at q_{0} transforms to

$$
\left.\frac{d}{d t}\right|_{t=0} h_{s}(q(t))=\frac{\partial h_{s}}{\partial q}\left(q_{0}\right) v
$$

where $q(t)$ is any curve satisfying $\dot{q}(0)=v, q(0)=q_{0}$
Translation: $h_{s}(q)=q+s w, h_{s}(q(t))=q(t)+s w, \frac{\partial h_{s}}{\partial q} \dot{q}(0)=\dot{q}(0)$
Rotation:
$\left.\frac{d}{d t}\right|_{t=0} h_{s}(r(t), \theta(t), \phi(t))=\left.\frac{d}{d t}\right|_{t=0}(r(t), \theta(t), \phi(t)+s)=(\dot{r}(0), \dot{\theta}(0), \dot{\phi}(0))$

Invariance Under a One-Parameter Group

- A Lagrangian L is invariant under the one-parameter group of transformations h_{s} if

$$
L(q, v, t)=L\left(h_{s}(q), \frac{\partial h_{s}}{\partial q}(q) v, t\right)
$$

for every s, q, v, t

- L has same value at all (q, \dot{q}) obtained by transforming the original (q, \dot{q})
- h_{s} is a one-parameter group of symmetries
- Example: Spherical pendulum

$$
\begin{gathered}
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-m g z \\
h_{s}(q)=\left[\begin{array}{ccc}
\cos s & -\sin s & 0 \\
\sin s & \cos s & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \frac{\partial h_{s}}{\partial q}(q) \dot{q}=\left[\begin{array}{ccc}
\cos s & -\sin s & 0 \\
\sin s & \cos s & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]
\end{gathered}
$$

- Check: L is invariant under h_{s}
- Example: Particle on a sphere, no gravity. L invariant under all rotations

Consequences of Invariance

- Fact: If $q(t)$ is a motion of the system, then so is $h_{s}(q(t))$ for every s
- $h_{s}(q(t))$ satisfies Lagrange's equation if $q(t)$ does
- Assuming no non-conservative forces, holonomic constraints
- A transformed motion is also a motion
- Noether's Theorem: If L is invariant under the one-parameter group of transformations h_{s}, then $p(q, \dot{q}, t)=\left.\frac{\partial L}{\partial \dot{q}}(q, \dot{q}, t)^{\mathrm{T}} \frac{d}{d s}\right|_{s=0} h_{s}(q)$ is a first integral
- $p(q, \dot{q}, t)=$ generalized momentum along the direction in which h_{s} tends to change the configuration

Proof of Noether's Theorem

- Let L be invariant under h_{s}, and $q(t)$ be a motion. For all s, t

$$
\begin{gathered}
L\left(h_{s}(q(t)), \frac{\partial}{\partial t} h_{s}(q(t)), t\right)=L(q(t), \dot{q}(t), t) \\
\frac{\partial L}{\partial q}\left(h_{s}(q(t)),\right. \\
\left.\frac{\partial}{\partial t} h_{s}(q(t)), t\right)^{\mathrm{T}} \frac{\partial}{\partial s} h_{s}(q(t)) \\
+\frac{\partial L}{\partial \dot{q}}\left(h_{s}(q(t)), \frac{\partial}{\partial t} h_{s}(q(t)), t\right)^{\mathrm{T}} \frac{\partial}{\partial s}\left(\frac{\partial}{\partial t} h_{s}(q(t))\right)=0 \\
\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{q}}\left(h_{s}(q(t)), \frac{\partial}{\partial t} h_{s}(q(t)), t\right)\right)^{\mathrm{T}} \frac{\partial}{\partial s} h_{s}(q(t)) \\
\quad+\frac{\partial L}{\partial \dot{q}}\left(h_{s}(q(t)), \frac{\partial}{\partial t} h_{s}(q(t)), t\right)^{\mathrm{T}} \frac{\partial}{\partial s}\left(\frac{\partial}{\partial t} h_{s}(q(t))\right)=0 \\
\frac{\partial}{\partial t}\left[\frac{\partial L}{\partial \dot{q}}\left(h_{s}(q(t)), \frac{\partial}{\partial t} h_{s}(q(t)), t\right)^{\mathrm{T}} \frac{\partial}{\partial s} h_{s}(q(t))\right]=0
\end{gathered}
$$

- Put $s=0 \quad \frac{d}{d t}\left[\left.\frac{\partial L}{\partial \dot{q}}(q(t), \dot{q}(t), t)^{\mathrm{T}} \frac{\partial}{\partial s}\right|_{s=0} h_{s}(q(t))\right]=0$

Emmy Noether

- Algebra
- Theory of Rings

Emmy Noether 1882-1935

Noether's Theorem: An Example

$$
\begin{aligned}
& T=\frac{1}{2} m\left[2 \dot{x}^{2}+2 \dot{y}^{2}+\dot{l}^{2}+\dot{l}^{2} \dot{\theta}^{2}+\right. \\
& 2 \dot{l}(\dot{x} \cos \theta+\dot{y} \sin \theta)+2 l \dot{\theta}(\dot{y} \cos \theta-\dot{x} \sin \theta)] \\
& V=\frac{1}{2} k\left(l-l_{0}\right)^{2}
\end{aligned}
$$

- L is invariant under translations along x

$$
\begin{aligned}
& h_{s}(x, y, l, \theta)=\left[\begin{array}{llll}
x+s & y & l & \theta
\end{array}\right]^{\mathrm{T}} \\
& \left.\frac{d}{d s}\right|_{s=0} h_{s}(x, y, l, \theta)=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}} \\
& p_{1} \\
& =\left[\begin{array}{llll}
\frac{\partial L}{\partial \dot{x}} & \frac{\partial L}{\partial \dot{y}} & \frac{\partial L}{\partial \dot{l}} & \frac{\partial L}{\partial \dot{\theta}}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}} \\
& \\
& \\
& =\frac{\partial L}{\partial \dot{x}}=2 m \dot{x}+m \dot{l} \cos \theta-m l \dot{\theta} \sin \theta=m \dot{x}+m \dot{x}_{1}=x \text { linear momentum }
\end{aligned}
$$

- L is invariant under transformation along $y \Rightarrow y$ linear momentum is conserved

Example (cont'd)

- Rotation about the origin

$$
\begin{gathered}
h_{s}(x, y, l, \theta)=\left[\begin{array}{llll}
x \cos s-y \sin s & x \sin s+y \cos s & \theta+s & l
\end{array}\right]^{\mathrm{T}} \\
\frac{\partial}{\partial t} h_{s}(x(t), y(t), l(t), \theta(t))=\left[\begin{array}{llll}
\dot{x} \cos s-\dot{y} \sin s & \dot{x} \sin s+\dot{y} \cos s & \dot{\theta} & i
\end{array}\right]^{\mathrm{T}}
\end{gathered}
$$

- L is invariant under rotations (check)

$$
\begin{aligned}
\left.\frac{d}{d s}\right|_{s=0} h_{s}(q)= & {\left[\begin{array}{lll}
-y & x & 1
\end{array}\right.} \\
p_{3}=\left.\left(\frac{\partial L}{\partial t}\right)^{\mathrm{T}} \frac{d}{d s}\right|_{s=0} h_{s}(q)= & m(x+l \cos \theta)(\dot{y}+\dot{l} \sin \theta+l \dot{\theta} \cos \theta) \\
& -m(y+l \sin \theta)(\dot{x}+\dot{l} \cos \theta-l \dot{\theta} \sin \theta) \\
& +m(x \dot{y}-y \dot{x}) \\
= & \mathbf{k} \cdot\left[m\left(\mathbf{r}_{1} \times \dot{\mathbf{r}}_{1}\right)+m\left(\mathbf{r}_{2} \times \dot{\mathbf{r}}_{2}\right)\right] \\
= & \text { angular momentum about origin }
\end{aligned}
$$

