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Introduction

@ Classical Dynamics: study of motion of interacting particles and bodies
@ Main principles

» Newton’s laws (discovered 1665, published 1687)

» Drawbacks

* Cumbersome to apply, especially for constrained multi-body systems

* Difficult to draw conclusion of a general nature
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Review of Newtonian Dynamics

@ Newton's law for a particle

F =ma

» a = acceleration with respect to an inertial observer

@ Newton's law for a system of particles

~ —

external force  constraint force

» To be solved for r; as well as R;
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Example of a Constrained System

@ Particle sliding along an elliptical wire under gravity

y
X 0

R -
Ry
mi = R,
miyj = Ry,—mg
2 2
Y
2 e =1

9 Need to eliminate R,, R, ¥
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Example of a Constrained System (cont'd)
@ Normal reaction

Prof. S. P. Bhat (IITB)

Classical Dynamics



Example of a Constrained System (cont'd)

@ Normal reaction along inward normal
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Example of a Constrained System (cont'd)

@ Normal reaction along inward normal

R, a%y
= 7 —
R, b2
_dy
mjj = 53 _mi —mg
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Example of a Constrained System (cont'd)

@ Normal reaction along inward normal

R, a’y
— = —Z =
R, b2
aly .
mj = b—2;mx —mg
@ Eliminate y,
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Example of a Constrained System (cont'd)

@ Normal reaction along inward normal

R, a%y
— = —Z =
R, 1?
aly .
myj = 35 _mE —myg
@ Eliminate y,
b
y=—- a2 — 2
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Example of a Constrained System (cont'd)

@ Normal reaction along inward normal

R, a%y

= 7 —

R, b2
aly .

mjj = 53 _mi —mg
@ Eliminate y,
b
y=—>+a?—a2
a
b2 bxi ba?4?
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Example of a Constrained System (cont'd)

@ Normal reaction along inward normal

R, a%y

L= =

R, 1?
ay

my = p5—mi —mg
@ Eliminate y,
b
y=—-a?—a?
a
bi:? bri ba?i?

i

- -

ava? =22  ava®—22 a(a® —22)3/?
@ Final equation
a’bxi?

F(V? - a®)a? + a'] + (@@ 2 797 a? —22=0

@ Point: Newton's law cumbersome to apply to constrained systems
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Lagrangian Dynamics

@ From “Treatise on Dynamics”, 1687, by Lagrange

@ Lagrange’s equation of motion in terms of scalar functions like kinetic energy
and potential energy

@ No constraint forces to account for
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Lagrangian Dynamics

@ From “Treatise on Dynamics”, 1687, by Lagrange

@ Lagrange’s equation of motion in terms of scalar functions like kinetic energy
and potential energy

@ No constraint forces to account for (conditions apply!)
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Lagrangian Dynamics

@ From “Treatise on Dynamics”, 1687, by Lagrange

@ Lagrange’s equation of motion in terms of scalar functions like kinetic energy
and potential energy

@ No constraint forces to account for (conditions apply!)

@ Provides an “extension” of Newton's laws

Every particle constrained to lie on a frictionless surface moves along a
geodesic unless acted upon by an external unbalanced force

> Geodesic: Locally length minimizing curve on a surface
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Hamiltonian Dynamics
@ Hamilton's principle (1834)

» Among all possible motions between two end points, the physical motion
renders stationary a certain action integral

end
/ L dt
begin
» Nature chooses the “best” path
@ Hamilton's equations

» Reformulation of Lagrange equations

» Can be used to deduce recurrence without solving the equations
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Constraints

@ A system of n~ particles described by 3n coordinates

@ System may be constrained by

¢(r) =0, v =[rg 22 -~ $3n]T ERgn, ¢:R3n — RP

@ Example: Two particles in a plane connected by a rigid rod

t1(z) = (21— 22)? + (w3 — 24)% — 12
def
$2(z) = s
def
¢3(z) = w6
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Holonomic Constraints

@ Constraints expressed directly in terms of position
@ Described by
o(t,z) =0

» Stationary or scleronomic: ¢ is independent of time in a suitable inertial frame

» Moving or rheonomic: ¢ depends on time

@ Examples:

» Particles in a plane connected by a rigid rod -
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Holonomic Constraints

@ Constraints expressed directly in terms of position
9 Described by
o(t,z) =0

» Stationary or scleronomic: ¢ is independent of time in a suitable inertial frame

» Moving or rheonomic: ¢ depends on time

@ Examples:

> Particles in a plane connected by a rigid rod - scleronomic

> Particles connected by a rod with specified length variation -
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Holonomic Constraints

@ Constraints expressed directly in terms of position
9 Described by
o(t,x) =0

» Stationary or scleronomic: ¢ is independent of time in a suitable inertial frame
» Moving or rheonomic: ¢ depends on time
@ Examples:

> Particles in a plane connected by a rigid rod - scleronomic
> Particles connected by a rod with specified length variation - rheonomic

» Spherical pendulum -
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Holonomic Constraints

@ Constraints expressed directly in terms of position

@ Described by
o(t,x) =0

» Stationary or scleronomic: ¢ is independent of time in a suitable inertial frame

» Moving or rheonomic: ¢ depends on time

@ Examples:

> Particles in a plane connected by a rigid rod - scleronomic
> Particles connected by a rod with specified length variation - rheonomic
> Spherical pendulum -scleronomic

» Particle on a rotating hoop -
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Holonomic Constraints

@ Constraints expressed directly in terms of position

@ Described by
o(t,x) =0

» Stationary or scleronomic: ¢ is independent of time in a suitable inertial frame

» Moving or rheonomic: ¢ depends on time

@ Examples:

> Particles in a plane connected by a rigid rod - scleronomic
> Particles connected by a rod with specified length variation - rheonomic
> Spherical pendulum -scleronomic

> Particle on a rotating hoop - rheonomic
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Configuration Space

@ A configuration of a system is a particular arrangement of its various particles
that is consistent with the holonomic constraints acting on it

@ Configuration space Q = set of all configurations

Q={zeR: ¢(z) =0}
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Configuration Space

@ A configuration of a system is a particular arrangement of its various particles
that is consistent with the holonomic constraints acting on it

@ Configuration space Q = set of all configurations

Q={zecR™: ¢(z) =0}

intersection of hypersurfaces

@ @ can often be identified with familiar low-dimensional spaces
1 particle in 3D space - Q = R3
2 particles in 3D space - @ = R? x R3 = RS

1 particle in plane - Q = R?
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Examples of Configuration Spaces

ST @

Simple pendulum Circe @ = S1 Spherical pendulum Sphere @ = 52
Dumbbell
Double pendulum Torus @ = St x st o= 5% x 3 Planar dijmbbell

Q = sl xr?

Number of d.o.f = 3n—number of constraints = dimension of Q
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Generalized Coordinates

@ Need to represent configuration by numbers

» Example: Cartesian coordinates of all particles in the system

* Not independent in presence of constraints

* May be possible to use fewer quantities

@ Generalized coordinates: Any set of quantities that give an unambiguous
representation of the configuration of the system

@ Independent generalized coordinates

» Constraints automatically satisfied when expressed in independent generalized
coordinates
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Generalized Coordinates

@ Need to represent configuration by numbers

» Example: Cartesian coordinates of all particles in the system
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Generalized Coordinates

@ Need to represent configuration by numbers

» Example: Cartesian coordinates of all particles in the system

* Not independent in presence of constraints

* May be possible to use fewer quantities
@ Generalized coordinates: Any set of quantities that give an unambiguous

representation of the configuration of the system

@ Independent generalized coordinates

» Constraints automatically satisfied when expressed in independent generalized

coordinates
Number of independent generalized coordinates = number of d.o.f
» Can be thought of as curvilinear coordinates on Q
q= [q1 qr]T ERT
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Examples of Independent Generalized Coordinates

@ Particle in a plane, @ = R?, q = (q1, q2) coordinates with respect to any set
of independent axes

o Simple pendulum, Q = S*, ¢ = 0 angle from suitable reference
@ Dumbbell in a plane, @ = S! x R?, ¢ = (,y,0)
@ Spherical pendulum, @ = S2%, ¢ = (latitude, longitude)

Double pendulum, @ = S x S, ¢ = (01,6)

©

Two d.o.f. spring mass system

(]

Rigid triangle of particles, d.o.f=6
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Positions and Generalized Coordinates

@ Position of every particle in the system is a function of the generalized
coordinates

@ Examples:
> Particle in a plane, (z,y) = (q1, q2)
> Simple pendulum, (z,y) = (cos g, sinq)
» Dumbbell in a plane
(z1,y1) = (g1 — lcosgs, g2 — lsings)

(z2,92) = (q1 + L cos g3, g2 + Usin gs)

> Spherical pendulum, (x,y, z) = (r cos g1 cos g2, cos ¢1 sin g2, rsin g1 )

» Double pendulum
(z1,y1) = (l1 cosqu, l1singr)

($2, yz) = (l1 cos q1 + l2 cos q2, 1 sin q1 + o sin q2)
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Velocities and Generalized Velocities
@ Generalized velocities are the rates of change of generalized coordinates
]T

i=lir - ¢

@ Velocity of every particle is a function of ¢ and ¢

> Particle in plane, (2,9) = (41, ¢2)
> Simple pendulum, (£,9) = (—¢sing, ¢ cosq)
» Dumbbell in a plane
(21,91) = (¢1 + lgs sings, g2 — g3 cos g3)

(Z2,92) = (41 — Ig3 sings, g2 + lgs cos g3)
» Spherical pendulum

= | —rsinq; sin g2 7 COS g1 COS @2

—rsingi; cosqa —rcosqi sin gz { .
1
2]
T COS q1 0

NS ]
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Generalized Velocities

T :xi(‘ha---y%")
T
ox;
Ti = Z P ~(a)d;
=1 9%

gradient
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Generalized Velocities

v = xi(q1,- -, qr) v =)
T - 8.’E
B ox; T = +—(9)g;
i = ; 74, (9)4; = 0g
ox
B {89&1( )}T Za—q(Q)q
aq ! ! Jacobian
%xi : RT — Rr % . RT N R?m
\g/ 9q;
gradient Ox

= . RT R3n><7’
0q -
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Velocities as Tangents to Configuration Space

@ Suppose z(t) is a motion that satisfies the constraints
¢i (z(t)) =0
@ Motion traces a curve on Q, with velocity vector i (t)
Tt

d i(x = —6¢i T Ti‘
i ¢i(x(t)) [ 9 (0))} (0)
09;

o (2(0)) = Normal to Q at x(0)

= %(0) is tangent to Q at z(0)

» Configurations are points in Q

» Motions are curves in Q

» Rates of change of configurations are tangent vectors to O
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A Basis for Tangent Vector
, ¢, are independent generalized coordinates for system

@ Suppose q1, . ..

satisfying
Ob; T oz
0(0) =0 = 6:(a(a) = 0 foral ¢ — | 52 ot ol =0

9¢; _
%(x(q)) = Normal to Q at z(q)

_x(q) is tangent to Q at x(q)
8qj
9z s tangent to the curve obtained by varying q; for fixed values of other ¢'s

da;
> & € tangent space to Q
ng, j=1,...,r, basis vectors for the tangent space Q

>
j
> qi1,...,G components of & in this basis
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Example

Q=252
o
oq

x(q) = [cos g1 cosga cos gy sings sin g
= [—sin g cos gz —sin ¢; sin gz cos g1

ox
]T, —— = [—cosq singz cosq cosqa 0
0g2

]T
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Non-independent Generalized Coordinates

@ General non-holonomic constraint

o(t,q) =0

@ Transformation to Cartesian coordinates
x = x(t,q)
@ System is

» Scleronomic if neither the constraint nor the transformation equations involve
time

» Rheonomic otherwise
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Differential of a Function
o Given : Q — R, go € Q and v tangent to Q at g

@ Define rate of change of ¢ along v at qq

def d

dipgy (v) = —

SIRGO)

t=0

» r(-) is any motion starting at go with initial velocity v

b (0) = | G| o
_ oY N
dipg(v) = a_ql(Q)d(h(”) ot o, (¢)dg;(v)
@ Abbreviated as dy = a—wdql 4+ 4 6_1/)qu
a(h 8(17”

@ dip(y(-)— differential of 3

> Linear in v at every ¢ € Q
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Velocity Constraints

@ Constraints on positions also give rise to constraints on velocities

» If ¢ = 0 along a motion, then rate of change of ¢ = 0 as well

o If admissible motions satisfy ¢(q) = 0, then every admissible velocity at
g € Q satisfies dgpg(v) =0

» Short hand: Configurations satisfy ¢ = 0, then velocities satisfy d¢p =0

@ At each ¢ € Q, the set of admissible velocities is the linear space

{v: dp,(v) =0} = { [g—j@rv }

tangent space to Q at ¢
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Differential Forms and Velocity Constraints

@ A differential form is a function of ¢ and v which is linear in v for every fixed
q

» Example: dipg(v) forp: Q — R
@ A general differential form is of the form

ag(v) = a(g)’v
= ai(qQui + -+ ar(qQ)vr

» Short hand: a = a1dq1 + - - - + a-dgr
@ Differential form a is exact if a = dv for some function v
@ A general linear velocity constraint is of the form
aq(v) =0, thatis, a1dgi + -+ + ardg, =0

@ Does this velocity constraint arise from a position constraint?
» Yes, if a is exact

» No in general
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Velocity Constraints: An Example

@ Dumbbell on a plane with knife edges orthogonal to the dumbbell

%

q °
3q1

» Khnife edges restrict velocity at each particle to be perpendicular to the rod

@ Along any motion of the dumbbell
q1cos g3 + gasings = 0
@ That is, every admissible velocity vector satisfies

cos q3 dqy + sinqs dgo =0

differential form with a(g)=[cos g3 sings 0]T
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Example: A Few Questions

@ Configuration space 3D
@ Set of allowable velocities at each configuration is a 2D linear space

> Is there a family of 2D surfaces tangent to all these linear spaces?

» Does the velocity constraint restrict configurations that can be reached from a
given initial configuration?

@ Yes, if a is exact, that is, a = dvy for some v

a=0 =dyp=0 = 1Y = constant

T
@ Check: If a = [cosgs sings 0]T = [% Oy @} , then
0 61&) 0 <6¢>
cosqs = — [ =— — | ==]=0!
@ Jq3 (3612 # g2 \ 9g3
@ a is not exact
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A Necessary Condition for Exactness

9 If a = a1dqy + asdgs + aszdqs is exact, then

ap
az| = V4 for some ¢
as
. curl @ =0, that is,
8ai Gaj
- :0,275.], Za.]:172a3
dq;  Oq;

@ In higher dimensions, if a = a1dgq; + - - - + a,dg, is exact, then

aai 8aj . .
- =0,i#j, i,j=1,...,r
dq;  0q;

» Sufficient under additional conditions

@ Question: If a is not exact, does it follow that the configuration space is not
restricted?
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Velocity Constraints: Another Example

@ Dumbbell on a plane with knife edges parallel to the dumbbell

» Knife edges restrict velocity at each particle to lie along the rod

@ Velocity constraint at the center of the dumbbell
sings dqy — cosqs dgz =0

@ Not exact, but dumbbell restricted to move in a straight line
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Integrability

@ Even if a is not exact, a may be integrable, that is, there may exist an
integrating factor n: Q — R such that na = na1dqy + nasdqs + nasdqs is
exact

@ If a is integrable, there exist functions 1 and % such that a = %dz/z

a1
» Abuse of notation: Think of a as a vector field a = [ as ]

as
a = %V@/J
cula = —5(Vnx V) + LcurlVy
n N y
=0
= —;(Vnxa)

ca-curla=0

o (%_%)+a (%_%>+a <%_%>_0
! dq2  Ogs ? dq3  Oq ’ o1 0Ogo
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Non-Holonomic Constraints

o If a velocity constraint a is integrable, then na is exact for some 7
> a and na define the same set of allowable velocities

» The velocity constraint can be “integrated” to yield a position constraint

9 If the velocity constraint is not integrable, then it does not restrict
configurations to a lower dimensional subset

@ Such a constraint is truly “non-holonomic”

@ Issues
» Necessary and sufficient conditions for integrability

> Multiple velocity constraints Calculus of differential forms

> Higher dimensions
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Dumbbell with Perpendicular Knife-Edges

a=[singg cosqz 07, curla=a

a-cula=1%#0

@ Constraint is not integrable. Does not restrict attainable configurations

» Can we explicitly work out paths between configurations?

t ; 1
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Dumbbell with Perpendicular Knife-Edges

a=[singg cosqz 07, curla=a

a-cula=1%#0

@ Constraint is not integrable. Does not restrict attainable configurations

» Can we explicitly work out paths between configurations?

> —

b
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Dumbbell with Perpendicular Knife-Edges

a = [sings cosqs 0

]T

,curla=a

a-cula=1%#0

@ Constraint is not integrable. Does not restrict attainable configurations

» Can we explicitly work out paths between configurations?

—®—

I

—®—
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Dumbbell with Perpendicular Knife-Edges
a=[sings cosqz 0T, curla=a

a-cula=1#0

@ Constraint is not integrable. Does not restrict attainable configurations

» Can we explicitly work out paths between configurations?
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Dumbbell with Perpendicular Knife-Edges
a=[sings cosqz 0T, curla=a

a-cula=1#0

@ Constraint is not integrable. Does not restrict attainable configurations

» Can we explicitly work out paths between configurations?
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Examples of Non-Holonomic Systems

o Cars, cars with trailers

» No sideways velocity, but sideways displacement possible

@ Snakes, snake board
> Periodic shape change leads to linear motion

@ Ball on a plate

» Periodic position change leads to a periodic orientation change

@ Multi-body space systems

» Falling cats, divers

» Periodic shape change leads to orientation change

@ Rattle backs, wobble stones, tippy tops
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Unilateral Constraints

@ Bilateral constraints are equality constraints of the kind ¢ =0 or a =0

> Positions and/or velocities constrained to a lower dimensional surface

@ Inequality constraints of the form ¢ > 0, a > 0 also possible
@ Example: Particle moving outside a sphere

» Position constraint ¢(z,y, z) = 2 + 4> + 2% — 12 >0
> Velocity constraint d¢q(v) > 0 whenever ¢(q) =0

@ Any motion has two kinds of segments

> Particle moves in contact with the sphere
» Particle moves out of contact with the sphere

@ Each segment can be solved by using initial conditions from the previous
segment

» Monitor constraint force to detect loss of contact
» Monitor constraint function to detect contact
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Virtual Displacement

@ Consider a scleronomic system described using generalized coordinates
q1,---,qr Subject to
¢(q) = Oa G/q(’l}) == O

@ A virtual displacement at ¢ € Q is a vector g € R" satisfying

dee(0q) =0, aq(dg) =0

» A tangent vector to the configuration space lying in the set of admissible
velocities

@ Particles of the system undergo virtual displacements along dq

r=ux(q) = dz= %z(qwq

> Ox is linear approximation to the change in z when ¢ changes to ¢ + d¢q

@ A virtual displacement is also an admissible velocity
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Example

O0=(dx,0y)
a=(xy) ol = 2*+y -1 = 0
dpe(0q) = zdx+ydy = 0
3¢ = aly —a]"
(0x,9Y)
(xy)

T =cosq, Yy =sing
dx = —sinq dq, Oy = cosq dq
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Virtual Displacement for Rheonomic Systems

@ Consider a system subject to time varying position and velocity constraint
@ Set of virtual displacements changes every instant

@ At each instant, the set of virtual displacements is the set of tangent vectors
to the instantaneous surface

P(q,t) =0
that satisfy the instantaneous velocity constraint
ai1(g,t)dg + -+ + ar(q,t)dg, =0
o If x = x(q,t), the virtual displacements of the particles are given by

oz
ox = —I(q,t) o
T aq(qv) q

» Treat time as frozen to calculate instantaneous virtual displacement

> Virtual displacements are not actual velocities

Prof. S. P. Bhat (IITB) Classical Dynamics February 7, 2006 36 / 87



Virtual Displacements: Example 1

B

(%2,Y5)

Constraints

y1=0, 22=0
ot ys =12

@ Q = circle in the 21—y, plane in (21,91, 22, y2) space

@ Along any tangent vector (0x1,0y1,0x2,dy2) to this circle
0y1 =0 (virtual displacement of A is horizontal)
dxo =0 (virtual displacement of B is vertical)
x1 0wy + Y2 0y2 =0

(y2 —y1) (dy2 — dy1)
(1‘2 — 1‘1) (5132 — 5131)

= —1 (relative virtual displacement orthogonal to rod)
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Virtual Displacement: Example 2

22497 —a?=0
r34+y5 —a?=0
B (71 —22)* + (1 —92)> = 1P =0

(xp.Y1)

@ Along any virtual displacement

2 gi; I z: gz; _ 8 }virtual displacements of A,B tangent to the circle

(x1 — z2)(0x1 — dx2) + (Y1 — y2)(0y1 — dy2) = 0 — relative virtual
displacement perpendicular to rod
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Virtual Work

@ Consider a n- particle system having coordinates = € R3"
@ Components of total forces acting on the particles F € R3"

@ Along a virtual displacement dg € R" of the system

ox
ox = —I(q,t) o
T aq(fL) q

@ Virtual work of the system of forces along the virtual displacement dq is
defined as

oW = FT6x = FTg—x(q,t) 0q
q

» Note: no actual motion or displacement
» Linear in §q at each ¢, ¢
> Inner product of F' € R3" with the vector §z € R3" tangent to Q

@ dr; = virtual displacement of i*" particle, F; = net force on i** particle

ESW:iFZ(SI'l

i=1
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Virtual Work: Example 1

dx = [0x1 dy1 Oxa 5yg]T
F = [-F—Rcosf® Ny—myg N+ Rcosf —mgg—RSiHG]T
oW = —F dxy —mog 0yo

Prof. S. P. Bhat (IITB) Classical Dynamics February 7, 2006 40 / 87



Virtual Work: Example 2

or,
B
Mg
ory g
Ny:-drs = Nj-dry = 0
Ry -dr2+Ry-dr;y = Ry-(dra—dry) = 0

OW = —mag dy1 — mag 0y2

Prof. S. P. Bhat (IITB) Classical Dynamics
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Workless Constraints

@ A bilateral constraint is workless if the virtual work of the corresponding
constraint forces is zero for every virtual displacement of the system

@ Main examples
> Rigid interconnections between particles

* Constraint forces equal and opposite along the interconnection

* Relative virtual displacement orthogonal to the interconnection

» Sliding motion on a frictionless surface

* Constraint force normal to the surface

* Virtual displacement at point of contact tangent to surface
> Rolling without slipping

* Virtual displacement of point of contact is zero
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Equilibrium Configurations

@ A configuration in which the total force (F + R) acting on each particle is
zero

@ A system in an equilibrium configuration at rest remains in that configuration

@ Principle of virtual work: which configurations are equilibrium configurations?

A configuration q of a scleronomic system having workless constraints is an
equilibrium configuration if and only if the virtual work of external
(nonconstraint) forces along every virtual displacement at q is zero

@ Example: Spherical pendulum
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Principle of Virtual Work: Example

OW = —F dx1 —mag 0y =0

for every dx1,dy- satisfying

m29 cosf dxy +sinf dys =0
8/ = tanf = %
vml‘é]

OW = —myg dy1 — mag d0y2 =0
for every dx1,0y1, dxo, dys satisfying

x1 6x1 +y1 6y =0

e T3 6w + Y2 0y2 =0
M9 (xl—:cg)(dxl—5&02)4-(2/1—2/2)(53/1—53/2) =0

g = m1x1 +moxe =0
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Generalized Forces
@ Principle of virtual work in Cartesian coordinates §W = FT§z = 0 for every
9¢(x)
dx =0
o (x)dz
@ Problem: Components of dx are not independent. Tedious to apply
@ Solution: Write principle of virtual work using generalized coordinates

SW = FToz = (FTax—((])(q)> 5q

dx € R™ satisfying

dq
, act [0z(q), 1"
o Define generalized force Q = { 3 (q)] F
q
3n s
G lized f | ; =) F—
o Generalized force along ¢;, Q; ; 94,
W = Q%iq
@ If ¢1,...,q, are independent generalized coordinates, then dq are

unconstrained
@ Principle of virtual work: A system is in equilibrium if and only if the
generalized applied forces along a set of independent generalized coordinates
are zero.
> Position constraints only
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Example

m g

1 = acosb =
y1 = —asinf; =
r9 = —acosf, =
Yo = —asinfy =
Qo = —g(max + mpxs)
Prof. S. P. Bhat (IITB) Classical Dynamics

g Qo =1(Fsinf — magcosh) =0
2 for equilibrium
0
F
Y

acos(f + a)
—asin(0 + «)
—acos(f — )
asin(f — «)
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Conservative Forces

@ Consider a particle that moves under the influence of a position dependent
force F

1% oV oV
F, = —%(az,y,z),Fy = _a_y(xvyvz)an = —E(J«“,y, Z)

where V is a function of position only

@ Work done along a path r(t)

t . trov . V.. avV .
/0 F(e(r) - £(r)dr = — / <%x+a—yy+§z) ir

- / LW = V(D) + V)

@ Work done depends on endpoints, not on the path or the time taken
» Work done along closed curve = 0
@ Such forces are conservative forces

@ Note: Force is not conservative if potential is time dependent
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Principle of Virtual Work for Conservative Systems

@ Consider a system of n- particles with applied forces given by

ov
Fi = _8_.1%(:E1’.“’x3n)

@ Work done along a path z(t)
*tx Ti *fta—VxT T:Z.TTT*ZL’ —Viz
= [ FatyTiir = [ (Ga@) i =veo) - Vo)
@ Can consider V as a function of ¢, since V. =V(z), = = z(q)
Vig) < V(a()

@ Generalized forces

o \ ' ox, Tov
= —_— F = _— PR
Q (aq (q)> 94 (@) 5
3n
oV ox; ov
QJ o ;azz (9(]j o aq]'

@ Principle of virtual work: A holonomic, scleronomic, conservative system
remains in equilibrium only at a stationary point of the potential function
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D'Alembert’s Principle

@ Consider a system of n- particles. The motion satisfies m;v; = F; + R; at
every instant

@ At every t, along every virtual displacement of the system, we have

n

E ( Fz + Rl - mzrl ) . (SI‘Z‘ =0
c ~—~ ~—~ ~—~—
=1 . . . .

applied constraint inertial

@ For workless constraints,

oW = Z i —mut;) - 0r; =0

@ D’Alembert’s principle: The accelerations along a motion are such that the
virtual work done by applied and inertial forces along any virtual displacement
is zero

» Note: Applies to all workless constraints, scleronomic or rheonomic, unlike
principle of virtual work
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Jean le Rond d'Alembert

o d'Alembert's solution to wave
equation

@ d'Alembert’s ratio test

@ d'Alembert’s paradox

1717-1783
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d’'Alembert’s Principle: A Scleronomic Example

B
"b
9

oW = —(mlg + mlj}l)éyl — mlféléxl — (mlg + mly2)5y1 — mljv'g(ng =0
For every (dx1,dy1, dz2, dy2) satisfying

11071 + Y10y1 = 0, 220w2 + y20y2 = 0, w20y; — r10y2 =0
@ Eliminate dx1,dxo

mi(x1g + 2191 — y1%1) + Mo (22g + Tafe — Yoiz) =0
@ Constraint forces eliminated, but not the constraint

@ Use generalized coordinates
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d'Alembert’s Principle: A Rheonomic Example

\
P

x =rsinfcoswt, y =rsinfsinwt, z = —rcos
W = —(mg + m2)dz — mijdy — madzr = 0

where §z = rcosf coswt §6, dy = rcosfsinwt 60, 6z = rsinf §6
@ Substitute for #, 4, 2
0 — w?sinfcosl + %sin@ =0
@ Cumbersome to eliminate the constraint

@ Need a general procedure to eliminate constraints and constraint forces by
combining generalized coordinates with D’Alembert's principle
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Eliminate Constraints

@ Eliminate constraints from

3n

Z(F m@;)0x; =0

i=1

@ Suppose z; = x;(q1,...,qr,t), i=1,...,3n

S - &zrz 5(] P - &zrz 62171
T = =045, T 549 T 57
= 0q; — Jq; ot
3n T 61' r 3n 89: r
> Fibx; = ZF il (Z F a_> dg; = D _Q;04;
i=1 9q; j=1 \i=1 qj j=1
3n T T 3n
. ox; . Ox;
—Zmixi&ri = Z:mza:Z Z5 g | =- Z:mz:z:za—qZ 0g;
i=1 = j=11 =1 J

gen. inertia force along q;
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Elimination of Constraints (cont'd)

@ Two identities

d <8:v,> 0%y Oz Ody
dt (9(13' n aq]‘7 aq]‘ B (9(]]
x% — i (x&&) _gb,i (81@)
! 8q]' dt ! ('3qj ! dt 8qj
d (. 0%, . 0%;
T od (ziadj) ~ g,
dalo (1, o (1,
= ailog ()]~ (57)

[«
3
3
&8
Q| Q

ISE
Il
&=
N
5}
2o
E
3
| =
E
K-
=N
~
gle
VO
E
3
DN | —
E
8
=N
~
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Lagrange's Equations

@ Total kinetic energy T'(q, ¢,t) szz (g,4,t

Sl 4 (I)_ 08
— ! Zaq]‘ dt \ 0¢; 0q;
@ d’Alembert’s principle implies
. d (0T\ oT

o= {i (5) -~ f] v =0
;[ 7 dt qu 8qj J

@ For a holonomic system described by independent generalized coordinates

d (0T oT
— == | —=—=Q;, j=1,...
o (8%) aqj Q]7 J 5 T

d (0T _oT _
dt \ 9¢ oq
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Joseph-Louis Lagrange

Vibrations

Calculus of variations

©

Linear ODE’s

©

Three-body problem

Number theory

Joseph-Louis Lagrange
1736-1813

©

Lagrange interpolation

Mechanics

©
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Lagrange's Equations: An Example

x1 = lcosf
Yo = lsind
0
F

Prof. S. P. Bhat (IITB)

Classical Dynamics



Lagrange's Equations for Conservative Systems

@ In general, Q = —%—‘; + Qne

d (LY oL _
dt \ 0q dqg "
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Examples

1 = acos(f + )
y1 = —asin(f + «)
x9 = —acos(f — )
y2 = asin(f — )

x = rsinf coswt
y = rsinf sinwt

E’ z = —rcosf
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Form of the Kinetic Energy
x = x(g,t)

b= S0+ e

1
T(q,q,t Z mE; = §i7TJ5c, J = diag{mi,...,msn}

. I oz oz | ox™ x| . 10z ox
T(q,4,t) = 54 la—q a—q] [6_11 Jf)_q 29t Jat
M(q,1) a¥(q,t)
= Ty+T+1Ty

@ M— symmetric inertia matrix, positive-definite at every ¢, ¢

@ For a scleronomic system, T' =T
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Form of the Equations

o Generalized momentum along g; is

P = —aT =1 r
p]_aq.jv J=4...

oT
= — = M(q,t)q t

P= 3 (¢,t)q +alq,t)
@ Lagrange’'s equations
oTr oV
P g o ¢

» Linear in §
» Coefficient matrix of G is M (g, t), invertible

» Can be solved for accelerations to yield

G+ f(g,¢,t) =0

Prof. S. P. Bhat (IITB) Classical Dynamics February 7, 2006

61/ 87



d’'Alembert’s Principle with Velocity Constraints

@ An n- particle system subject to m velocity constraints

ald4ay=0,i=1,...,m
AGg+b=0, A= [al am]T, b= [au amt]T
@ Virtual displacements satisfy
Adg =0
@ d'Alembert’s principle
d (oL\ oL\
—— (= — ) d¢g=0
(0~ 5 (5) +55) o
for every dq satisfying Adg =0
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Lagrange's Equations with Velocity Constraints

A
rankA= rank d [(OL 0L
-5 (5) %

d (0L OL
Q_E (8—q) +a—q€span of rows of A

@ For every t, there exist scalars A1 (t),..., A\, (t) such that
d (0L L
pr <g—q> - g—q —Q=Ma1+ -+ Ana, (7 equations)
A¢+b=0 (m equations)

@ C = \ai+ -+ Apmay, is the constraint force

» Check: CT8q = 0 for every virtual displacement
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Examples

qd,
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Constants of Motion and Integration
@ Example: a simple pendulum

é—i—%sin@zo

1.
E(0,6) = 56% + %(1 — cosf) =

0= \/0219(10059)

» 0 can be obtained by direct integration (in terms of Jacobi elliptic integrals)
» FEis a first integral, an integral of motion, a constant of motion

@ A first integral is a function f(g, ¢, t) such that along any motion,
f(q(t),q(t), t)=constant

of . of. of
- — =0
001 91" o
@ For a 1-d-o-f system, a first integral reduces the problem to an integration

(quadrature)
@ A n-d-o-f system, having n first integrals can be solved by quadratures
Examples: two-body problem, free rigid body
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Cyclic Coordinates

dt \ogq;) 9q;
oL . .
o If -— =0, that is, L is independent of ¢;, then
8(]]‘
i = 8—L = constant
oL . . ) .
o If ol 0, g; is an ignorable or cyclic coordinate
d;

@ Fact: The generalized momentum corresponding to an ignorable coordinate is
a first integral
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Example: Kepler Problem
@ Motion under inverse-square attraction to a fixed center

1 . 1 .
?;L: §m(r202 —g;z), v = —%, L= §m(r202 +72) + g
20 =0, pg = — = mr’6 = mj3 = constant

00

@ Substitute for 6

» Solve for r independent of 6, then integrate 6=

7.2
@ Reduce the order to solve for r, perform a quadrature for 6
@ Question: Can we do this as a general procedure?
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Routhian Reduction

L = L(qk+17"’vQTaqlv“',(jmt)
= L(quiaqmt)

o= [ =T Sl [+ [

@ M positive definite = M positive definite (hence invertible)

@ Solve for ¢; in terms of p;, Gn, Gn,t

G = My 'pi — My Myagn — My '

@ Define Routhian

R(Qnadnapivt) = L(Qnyqi’(jn’t) _p:rql

substitutefor ¢;
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Routhian Reduction (cont'd)

on_oL (oL} o
dq;  Oq; oG ') 0Og;

=0 along motion

@ Along every motion with generalized momentum p;

OR _ 0L R _OL OR_OL OR __.
Jan O’ 0dn 04y OL O Op
@ Reduced equations for nonignorable coordinates
d(9RY_OR
dt \Ogn) Oqn

@ Quadrature for ignorable coordinates

OR

Qi:_a_pi
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Edward Routh

@ Dynamics

@ Stability

Edward Routh
1831-1907
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Kepler's Problem Again

__OR _pe
T Opg 2

1 2
o Note: R=T'—V', T' = =2, v/ = 2o _ I
2 2r2  r

@ For a given py, 0 is a function of r

o V’'=potential due to centrifugal force + gravity
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Example: Spherical Pendulum

1 . .
L = §m12(92 + $?sin? @) — mgl(1 — cos )
OL 2 . o .
Py = % = ml®¢sin” 6 (angular momentum about vertical)
1 o0 1 D
R = -—ml*6*—- ¢ —mgl(1 — cos6
2 2 ml2 sin” 0 9l )
2 cos®
ml?0 — Po

+mglsind =0
mi2 sin® 0 i,—/

centrifugal gravity
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Energy Integral

@ Assume the system is conservative, that is
» All applied forces are conservative
> Lagrangian is independent of time
» Velocity constraints are of the form a} (¢,t)¢ = 0
* Implies position constraints on g are constant

d <8L> _@:A1a1+...+Amam

dt \ 9g dq
afor’ [\ _d o™\  oLT. oL™ o” oL
dat \ aq ! “at\og )" ag Ve 19 1 ot
oL
= [\ e Apam] T — =
Pray+ -4 Amam] 4 = o
=0
d [oL" oL
— = gL ===
dt(é)qq ) o "
L oL, . :
® h(q,q) = (‘3_(] q — L, Jacobi integral, energy integral
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Form of the Jacobi Integral

L=To+T +Ty -V

1 ozT oz
Ty==4"M¢§ T\ = |— J—|q, To=
2 2(1 q, 11 a1 g q, 1o =

oL™T oz Oz
s = M+ == =275+ T;
8q,q lq +8t‘]6]q 2 +1
h = 2T, +Ti—L
= T2+(V—T0)
— TI+VI

1 336 T oz
ot

T’ = To= Kinetic energy when all moving constraints/forces are held stationary

V' =V — To= Potential energy that includes effect of inertia forces due to

moving constraints
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Jacobi Integral and Total Energy

o Energy integral equals real energy if T/ =T,V’' =V, thatis, T} =Ty =0

oz

To=0—
> to ot

= 0, transformation does not depend on time

@ A system is called natural if T =T,

@ Fact: Total energy of a natural system is conserved if the Lagrangian is
independent of time
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Example: Particle on a Rotating Hoop

Y

<>
&)
1 .
L = 5™ (7“292 + r2w? sin” 0 + 2gr cos 9)
1 . 1
h = imr292 - §mr2w2 sin? 6 — mgr cos 0
1
V' = —mgrcost — Emr2w2 sin 26
v’
——— = —mgrsinf + mriw?sinfcosf
00 —_—— ——

gravity torque ~centrifugal torque
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Example: Reduced Kepler's Problem

1, 1pz u

R=—-p2_-80 7

2" 2.2y

OR 1 1 p2

he et R=gP -]
lpg p
V' = 5_2 — — = potential due to centrifugal + gravity

r r

@ Can solve reduced problem by quadratures

2
P=yf2n -8 L B
T T

» Reduction by using ignorable coordinates, solutions by using energy integral

Prof. S. P. Bhat (IITB) Classical Dynamics February 7, 2006 77 /87



lgnorable Coordinates Revisited
@ If one set of coordinates has an ignorable coordinates, would every other set
have one too?

@ Spherical pendulum: ¢ ignorable if, for every 6, ¢, 0 and ¢1, éo,
L(¢)17 07 év 9) = L(¢27 97 (ﬁ) 0))

» Lagrangian is invariant under rotations of position and velocity about the
vertical axis

> Not invariant under rotations about any other axis
> Any other set of spherical coordinates will not have an ignorable coordinates
@ System should continue to have an integral of motion in any coordinates!

@ How to find integrals of motion when ignorable coordinates are not obvious?
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Transformations

@ Existence of ignorable coordinates related to invariance of L under some
transformation of ¢, ¢

@ A transformation on the configuration space is an invertible function

h:Q—Q

» Rotation about a given axis for a spherical pendulum

v

Rotation about symmetry axis for a particle on a cylinder

\4

Rotation about center of attraction in Kepler's problem

v

Rotation about center of mass of a rigid body

v

Translation of the center of mass by a given vector v

@ The set of all transformations on Q is a group G

> If hi1, ho aare transformations, then so are hy o hg, hy*

> The identity map id : @ — Q given by id(¢) = ¢ is a transformation
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One-Parameter Group of Transformations

@ A one-parameter group of transformations on Q is a map
h:R—@g
such that hsl ] hsg = h51+52, ho =id

@ Example: Rotation about z-axis through angle s

Cartesian coordinates: ¢ = (z,y, 2),

coss —sins 0| |x
hs(q¢) = |sins coss 0f |y
0 0 1] |z

Spherical coordinates: ¢ = (7,0, ¢), hs(r,0,¢) = (1,0, ¢ + s)

@ Example: Translation along a vector w by amount s
hs(q) = q + sw
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Transformation of Velocities

at) hs (a(t);

@ A velocity v at gq transforms to

a
dt

la(®) = G (@)

t=0
where ¢(t) is any curve satisfying ¢(0) = v,¢(0) = ¢o

Translation: hy(q) = q + sw, hs(q(t)) = q(t) + sw, %q(o) = ¢(0)

dq
Rotation: J
| 0,606 = G

Prof. S. P. Bhat (IITB)
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Invariance Under a One-Parameter Group

@ A Lagrangian L is invariant under the one-parameter group of
transformations h if

L(q,v,t) =L (hS(q)7 (Z—];S(Q)v?t)

for every s,q,v,t
> L has same value at all (g, ¢) obtained by transforming the original (g, q)
@ hg is a one-parameter group of symmetries

@ Example: Spherical pendulum

1
L= im(ds2 + 9% + %) — mgz

coss —sins 0] |x coss —sins 0| |z

) Ohs , .. ) .

hs(q) = |sins coss O] |y|, 3 (q)g= |sins coss 0| |y
0 0 1| |z 4 0 0 1|z

» Check: L is invariant under hg

@ Example: Particle on a sphere, no gravity. L invariant under all rotations
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Consequences of Invariance

@ Fact: If ¢(t) is a motion of the system, then so is h4(g(t)) for every s
> hs(q(t)) satisfies Lagrange's equation if ¢(t) does
» Assuming no non-conservative forces, holonomic constraints

» A transformed motion is also a motion

@ Noether's Theorem: If L is invariant under the one-parameter group of
d
T JE—

I hs(q) is a first

s=0

oL
transformations hg, then p(q, ¢,t) = ?(q, q,t)
q
integral

> p(g,q,t)= generalized momentum along the direction in which h; tends to
change the configuration
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Proof of Noether's Theorem

o Let L be invariant under hg, and q(t) be a motion. For all s,¢

L(h-(a(0), oeha(a(t), 1) = L(g(t), (1)1

t

T
% (netaton, gemutat)t) ot

T
5 |5 (1), grmutaton.t) %hs@(t))] =0

o Puts=0 % |9 (q(t).q(t).1)" 2|, hola(t))] =0
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Emmy Noether

9 Algebra

» Theory of Rings

Emmy Noether
1882-1935
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Noether's Theorem: An Example

1 ) .
T= 3 [2552 + 207 + 12 +120°+

21 (i cos 0 + 9 sin 0) + 210(5j cos § — i sin 9)]

@ L is invariant under translations along =
h(wy,1,0)=[z+s y 1 0]
d T
hs(z,y,1,0) =11 0 0 O
P (z,y,1,0) = [ ]

s=0

oL oL oL
S

T
%L oL % 21 0 0 0]
oL

or

2mx + mlcosd — mlfsind = mz + mz, = z linear momentum

@ L is invariant under transformation along y = y linear momentum is
conserved
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Example (cont'd)

@ Rotation about the origin

hs(x,y,l,G):[xcoss—ysins rsins+ycoss 60+ s l]T
9 . - o . ;AT
ahs(q:(t),y(t),l(t),ﬁ(t)): [#coss—gysins @sins+ycoss 6 I
o L is invariant under rotations (check)
d
il Jq) =[- 1
ds Szoh @ [ v 0]
AN . )
p3 = 9L\~ 4 hs(q) = m(z+1lcosh)(y+1lsind + 16 cosh)
ot ds|,_,

—m(y + Isin ) (& + [ cos 6 — 10 sin 6)
+m(xy — yi)

= k-[m(r; x 1) + m(ry X i3)]

= angular momentum about origin
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