Classical Dynamics

Prof. S. P. Bhat

Department of Aerospace Engineering

Indian Institute of Technology, Bombay

February 7, 2006

イロト イヨト イヨト イヨト

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Introduction

- Classical Dynamics: study of motion of interacting particles and bodies
- Main principles
 - Newton's laws (discovered 1665, published 1687)
 - Drawbacks
 - * Cumbersome to apply, especially for constrained multi-body systems
 - * Difficult to draw conclusion of a general nature

A D > A B > A B > A

Review of Newtonian Dynamics

• Newton's law for a particle

$$\mathbf{F} = m\mathbf{a}$$

- $\mathbf{a} =$ acceleration with respect to an inertial observer
- Newton's law for a system of particles

• To be solved for \mathbf{r}_i as well as \mathbf{R}_i

・ロト ・回ト ・ヨト ・ヨト

Example of a Constrained System

• Particle sliding along an elliptical wire under gravity

• Need to eliminate R_x , R_y , y

・ロト ・回ト ・ヨト ・

• Normal reaction along inward normal

$$\frac{R_y}{R_x} = \frac{a^2}{b^2} \frac{y}{x} \Longrightarrow$$
$$n\ddot{y} = \frac{a^2}{b^2} \frac{y}{x} m\ddot{x} - mg$$

• Eliminate y, \ddot{y}

$$y = -\frac{b}{a}\sqrt{a^2 - x^2}$$

$$\ddot{y} = \frac{b\dot{x}^2}{a\sqrt{a^2 - x^2}} + \frac{bx\ddot{x}}{a\sqrt{a^2 - x^2}} + \frac{bx^2\dot{x}^2}{a(a^2 - x^2)^{3/2}}$$

• Final equation

$$\ddot{x}[(b^2 - a^2)x^2 + a^4] + \frac{a^2bx\dot{x}^2}{(a^2 - x^2)} + agx\sqrt{a^2 - x^2} = 0$$

• Point: Newton's law cumbersome to apply to constrained systems

• Normal reaction along inward normal

$$\frac{R_y}{R_x} = \frac{a^2}{b^2} \frac{y}{x} \Longrightarrow$$

$$m\ddot{y} = \frac{a^2}{b^2}\frac{y}{x}m\ddot{x} - mg$$

• Eliminate y, \ddot{y}

$$y = -\frac{b}{a}\sqrt{a^2 - x^2}$$

$$\ddot{y} = \frac{b\dot{x}^2}{a\sqrt{a^2 - x^2}} + \frac{bx\ddot{x}}{a\sqrt{a^2 - x^2}} + \frac{bx^2\dot{x}^2}{a(a^2 - x^2)^{3/2}}$$

• Final equation

$$\ddot{x}[(b^2 - a^2)x^2 + a^4] + \frac{a^2bx\dot{x}^2}{(a^2 - x^2)} + agx\sqrt{a^2 - x^2} = 0$$

• Point: Newton's law cumbersome to apply to constrained systems

• Normal reaction along inward normal

$$\frac{R_y}{R_x} = \frac{a^2}{b^2} \frac{y}{x} \Longrightarrow$$
$$m\ddot{y} = \frac{a^2}{b^2} \frac{y}{x} m\ddot{x} - mg$$

• Eliminate y, \ddot{y}

$$y = -\frac{b}{a}\sqrt{a^2 - x^2}$$

$$\ddot{y} = \frac{b\dot{x}^2}{a\sqrt{a^2 - x^2}} + \frac{bx\ddot{x}}{a\sqrt{a^2 - x^2}} + \frac{bx^2\dot{x}^2}{a(a^2 - x^2)^{3/2}}$$

• Final equation

$$\ddot{x}[(b^2 - a^2)x^2 + a^4] + \frac{a^2bx\dot{x}^2}{(a^2 - x^2)} + agx\sqrt{a^2 - x^2} = 0$$

• Point: Newton's law cumbersome to apply to constrained systems.

• Normal reaction along inward normal

$$\frac{R_y}{R_x} = \frac{a^2}{b^2} \frac{y}{x} \Longrightarrow$$
$$m\ddot{y} = \frac{a^2}{b^2} \frac{y}{x} m\ddot{x} - mg$$

• Eliminate y, \ddot{y}

$$y = -\frac{b}{a}\sqrt{a^2 - x^2}$$

$$\ddot{y} = \frac{b\dot{x}^2}{a\sqrt{a^2 - x^2}} + \frac{bx\ddot{x}}{a\sqrt{a^2 - x^2}} + \frac{bx^2\dot{x}^2}{a(a^2 - x^2)^{3/2}}$$

• Final equation

$$\ddot{x}[(b^2 - a^2)x^2 + a^4] + \frac{a^2bx\dot{x}^2}{(a^2 - x^2)} + agx\sqrt{a^2 - x^2} = 0$$

Point: Newton's law cumbersome to apply to constrained systems.

• Normal reaction along inward normal

$$\frac{R_y}{R_x} = \frac{a^2}{b^2} \frac{y}{x} \Longrightarrow$$
$$m\ddot{y} = \frac{a^2}{b^2} \frac{y}{x} m\ddot{x} - mg$$

• Eliminate y, \ddot{y}

$$y = -\frac{b}{a}\sqrt{a^2 - x^2}$$

$$\ddot{y} = \frac{b\dot{x}^2}{a\sqrt{a^2 - x^2}} + \frac{bx\ddot{x}}{a\sqrt{a^2 - x^2}} + \frac{bx^2\dot{x}^2}{a(a^2 - x^2)^{3/2}}$$

• Final equation

$$\ddot{x}[(b^2 - a^2)x^2 + a^4] + \frac{a^2bx\dot{x}^2}{(a^2 - x^2)} + agx\sqrt{a^2 - x^2} = 0$$

Point: Newton's law cumbersome to apply to constrained systems.

• Normal reaction along inward normal

$$\frac{R_y}{R_x} = \frac{a^2}{b^2} \frac{y}{x} \Longrightarrow$$
$$m\ddot{y} = \frac{a^2}{b^2} \frac{y}{x} m\ddot{x} - mg$$

• Eliminate y, \ddot{y}

$$y = -\frac{b}{a}\sqrt{a^2 - x^2}$$
$$\ddot{y} = \frac{b\dot{x}^2}{a\sqrt{a^2 - x^2}} + \frac{bx\ddot{x}}{a\sqrt{a^2 - x^2}} + \frac{bx^2\dot{x}^2}{a(a^2 - x^2)^{3/2}}$$

• Final equation

$$\ddot{x}[(b^2 - a^2)x^2 + a^4] + \frac{a^2bx\dot{x}^2}{(a^2 - x^2)} + agx\sqrt{a^2 - x^2} = 0$$

Point: Newton's law cumbersome to apply to constrained systems

• Normal reaction along inward normal

$$\frac{R_y}{R_x} = \frac{a^2}{b^2} \frac{y}{x} \Longrightarrow$$
$$m\ddot{y} = \frac{a^2}{b^2} \frac{y}{x} m\ddot{x} - mg$$

• Eliminate y, \ddot{y}

$$y = -\frac{b}{a}\sqrt{a^2 - x^2}$$
$$\ddot{y} = \frac{b\dot{x}^2}{a\sqrt{a^2 - x^2}} + \frac{bx\ddot{x}}{a\sqrt{a^2 - x^2}} + \frac{bx^2\dot{x}^2}{a(a^2 - x^2)^{3/2}}$$

Final equation

$$\ddot{x}[(b^2 - a^2)x^2 + a^4] + \frac{a^2bx\dot{x}^2}{(a^2 - x^2)} + agx\sqrt{a^2 - x^2} = 0$$

Point: Newton's law cumbersome to apply to constrained systems.

Lagrangian Dynamics

- From "Treatise on Dynamics", 1687, by Lagrange
- Lagrange's equation of motion in terms of scalar functions like kinetic energy and potential energy
- No constraint forces to account for (conditions apply!)
- Provides an "extension" of Newton's laws

Every particle constrained to lie on a frictionless surface moves along a geodesic unless acted upon by an external unbalanced force

Geodesic: Locally length minimizing curve on a surface

イロト イポト イヨト イヨ

Lagrangian Dynamics

- From "Treatise on Dynamics", 1687, by Lagrange
- Lagrange's equation of motion in terms of scalar functions like kinetic energy and potential energy
- No constraint forces to account for (conditions apply!)
- Provides an "extension" of Newton's laws

Every particle constrained to lie on a frictionless surface moves along a geodesic unless acted upon by an external unbalanced force

Geodesic: Locally length minimizing curve on a surface

イロト イポト イヨト イヨ

Lagrangian Dynamics

- From "Treatise on Dynamics", 1687, by Lagrange
- Lagrange's equation of motion in terms of scalar functions like kinetic energy and potential energy
- No constraint forces to account for (conditions apply!)
- Provides an "extension" of Newton's laws

Every particle constrained to lie on a frictionless surface moves along a geodesic unless acted upon by an external unbalanced force

Geodesic: Locally length minimizing curve on a surface

Hamiltonian Dynamics

- Hamilton's principle (1834)
 - Among all possible motions between two end points, the physical motion renders stationary a certain action integral

$$\int_{\text{begin}}^{\text{end}} L \ dt$$

- Nature chooses the "best" path
- Hamilton's equations
 - Reformulation of Lagrange equations
 - Can be used to deduce recurrence without solving the equations

• • • • • • • • •

Constraints

- A system of n- particles described by 3n coordinates
- System may be constrained by

$$\phi(x) = 0, \ x = [x_1 \ x_2 \ \cdots \ x_{3n}]^{\mathrm{T}} \in \mathbb{R}^{3n}, \ \phi : \mathbb{R}^{3n} \to \mathbb{R}^p$$

• Example: Two particles in a plane connected by a rigid rod

$$\phi_1(x) \stackrel{\text{def}}{=} (x_1 - x_2)^2 + (x_3 - x_4)^2 - l^2$$

$$\phi_2(x) \stackrel{\text{def}}{=} x_5$$

$$\phi_3(x) \stackrel{\text{def}}{=} x_6$$

・ロト ・ 日 ・ ・ ヨ ・ ・

- Constraints expressed directly in terms of position
- Described by

 $\phi(t, x) = 0$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or *rheonomic*: ϕ depends on time
- Examples:
 - Particles in a plane connected by a rigid rod scleronomic
 - Particles connected by a rod with specified length variation rheonomic
 - Spherical pendulum -scleronomic
 - Particle on a rotating hoop rheonomic

- Constraints expressed directly in terms of position
- Described by

 $\phi(t, x) = 0$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or *rheonomic*: ϕ depends on time
- Examples:
 - Particles in a plane connected by a rigid rod scleronomic
 - Particles connected by a rod with specified length variation rheonomic
 - Spherical pendulum -scleronomic
 - Particle on a rotating hoop rheonomic

- Constraints expressed directly in terms of position
- Described by

 $\phi(t,x) = 0$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or *rheonomic*: ϕ depends on time
- Examples:
 - Particles in a plane connected by a rigid rod scleronomic
 - Particles connected by a rod with specified length variation rheonomic
 - Spherical pendulum -scleronomic
 - Particle on a rotating hoop rheonomic

- Constraints expressed directly in terms of position
- Described by

 $\phi(t, x) = 0$

- Stationary or scleronomic: ϕ is independent of time in a suitable inertial frame
- Moving or *rheonomic*: ϕ depends on time
- Examples:
 - Particles in a plane connected by a rigid rod scleronomic
 - > Particles connected by a rod with specified length variation rheonomic
 - Spherical pendulum -scleronomic
 - Particle on a rotating hoop rheonomic

- Constraints expressed directly in terms of position
- Described by

 $\phi(t,x) = 0$

- Stationary or *scleronomic*: ϕ is independent of time in a suitable inertial frame
- Moving or *rheonomic*: ϕ depends on time
- Examples:
 - Particles in a plane connected by a rigid rod scleronomic
 - > Particles connected by a rod with specified length variation rheonomic
 - Spherical pendulum -scleronomic
 - Particle on a rotating hoop rheonomic

Configuration Space

- A configuration of a system is a particular arrangement of its various particles that is consistent with the holonomic constraints acting on it
- Configuration space $\mathcal{Q} = \mathsf{set}$ of all configurations

$$\mathcal{Q} = \underbrace{\{x \in \mathbb{R}^{3n} : \phi(x) = 0\}}_{\text{intersection of hypersurfaces}}$$

• $\mathcal Q$ can often be identified with familiar low-dimensional spaces

1 particle in 3D space - $\mathcal{Q}=\mathbb{R}^3$

2 particles in 3D space - $Q = \mathbb{R}^3 \times \mathbb{R}^3 = \mathbb{R}^6$

1 particle in plane - $\mathcal{Q} = \mathbb{R}^2$

Configuration Space

- A configuration of a system is a particular arrangement of its various particles that is consistent with the holonomic constraints acting on it
- Configuration space $\mathcal{Q} = \mathsf{set}$ of all configurations

$$\mathcal{Q} = \underbrace{\{x \in \mathbb{R}^{3n} : \phi(x) = 0\}}_{\text{intersection of hypersurfaces}}$$

• $\mathcal Q$ can often be identified with familiar low-dimensional spaces

1 particle in 3D space - $\mathcal{Q} = \mathbb{R}^3$

2 particles in 3D space - $\mathcal{Q} = \mathbb{R}^3 \times \mathbb{R}^3 = \mathbb{R}^6$

1 particle in plane - $\mathcal{Q} = \mathbb{R}^2$

Examples of Configuration Spaces

Number of d.o.f = 3n-number of constraints = dimension of Q

Prof.	S. F	P. Bhat	(IITB)

3

・ロト ・回ト ・ヨト ・ヨト

Generalized Coordinates

- Need to represent configuration by numbers
 - Example: Cartesian coordinates of all particles in the system
 - * Not independent in presence of constraints
 - * May be possible to use fewer quantities
- Generalized coordinates: Any set of quantities that give an unambiguous representation of the configuration of the system
- Independent generalized coordinates
 - Constraints automatically satisfied when expressed in independent generalized coordinates

Number of independent generalized coordinates = number of d.o.f

Can be thought of as curvilinear coordinates on Q

$$q = [q_1 \cdots q_r]^{\mathrm{T}} \in \mathbb{R}^r$$

Generalized Coordinates

- Need to represent configuration by numbers
 - Example: Cartesian coordinates of all particles in the system
 - * Not independent in presence of constraints
 - * May be possible to use fewer quantities
- Generalized coordinates: Any set of quantities that give an unambiguous representation of the configuration of the system
- Independent generalized coordinates
 - Constraints automatically satisfied when expressed in independent generalized coordinates

Number of independent generalized coordinates = number of d.o.f

Can be thought of as curvilinear coordinates on Q

$$q = [q_1 \cdots q_r]^{\mathrm{T}} \in \mathbb{R}^r$$

Generalized Coordinates

- Need to represent configuration by numbers
 - > Example: Cartesian coordinates of all particles in the system
 - * Not independent in presence of constraints
 - * May be possible to use fewer quantities
- Generalized coordinates: Any set of quantities that give an unambiguous representation of the configuration of the system
- Independent generalized coordinates
 - Constraints automatically satisfied when expressed in independent generalized coordinates

Number of independent generalized coordinates = number of d.o.f

 \blacktriangleright Can be thought of as curvilinear coordinates on ${\cal Q}$

$$q = [q_1 \cdots q_r]^{\mathrm{T}} \in \mathbb{R}^r$$

Examples of Independent Generalized Coordinates

- Particle in a plane, $Q = \mathbb{R}^2$, $q = (q_1, q_2)$ coordinates with respect to any set of independent axes
- \bullet Simple pendulum, $\mathcal{Q}=S^1, \ q=\theta$ angle from suitable reference
- \bullet Dumbbell in a plane, $\mathcal{Q}=S^1\times \mathbb{R}^2, \ q=(x,y,\theta)$
- \bullet Spherical pendulum, $\mathcal{Q}=S^2, \ q=(\mbox{latitude},\mbox{longitude})$
- Double pendulum, $\mathcal{Q}=S^1 imes S^1, \; q=(heta_1, heta_2)$
- Two d.o.f. spring mass system
- Rigid triangle of particles, d.o.f= 6

イロン スピン スヨン スヨン

Positions and Generalized Coordinates

- Position of every particle in the system is a function of the generalized coordinates
- Examples:
 - Particle in a plane, $(x, y) = (q_1, q_2)$
 - Simple pendulum, $(x, y) = (\cos q, \sin q)$
 - Dumbbell in a plane

 $(x_1, y_1) = (q_1 - l \cos q_3, q_2 - l \sin q_3)$ $(x_2, y_2) = (q_1 + l \cos q_3, q_2 + l \sin q_3)$

- Spherical pendulum, $(x, y, z) = (r \cos q_1 \cos q_2, r \cos q_1 \sin q_2, r \sin q_1)$
- Double pendulum

$$(x_1, y_1) = (l_1 \cos q_1, l_1 \sin q_1)$$
$$(x_2, y_2) = (l_1 \cos q_1 + l_2 \cos q_2, l_1 \sin q_1 + l_2 \sin q_2)$$

イロト イポト イヨト イヨト

Velocities and Generalized Velocities

• Generalized velocities are the rates of change of generalized coordinates

$$\dot{q} = [\dot{q}_1 \cdots \dot{q}_r]^{\mathrm{T}}$$

- Velocity of every particle is a function of q and \dot{q}
 - Particle in plane, $(\dot{x}, \dot{y}) = (\dot{q}_1, \dot{q}_2)$
 - Simple pendulum, $(\dot{x}, \dot{y}) = (-\dot{q} \sin q, \dot{q} \cos q)$
 - Dumbbell in a plane

$$(\dot{x}_1, \dot{y}_1) = (\dot{q}_1 + l\dot{q}_3 \sin q_3, \dot{q}_2 - l\dot{q}_3 \cos q_3)$$

$$(\dot{x}_2, \dot{y}_2) = (\dot{q}_1 - l\dot{q}_3 \sin q_3, \dot{q}_2 + l\dot{q}_3 \cos q_3)$$

Spherical pendulum

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} -r\sin q_1 \cos q_2 & -r\cos q_1 \sin q_2 \\ -r\sin q_1 \sin q_2 & r\cos q_1 \cos q_2 \\ r\cos q_1 & 0 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix}$$

Generalized Velocities

$$\begin{split} x_i &= x_i(q_1, \dots, q_r) \\ \dot{x}_i &= \sum_{j=1}^r \frac{\partial x_i}{\partial q_j}(q) \dot{q}_j \\ &= \left[\frac{\partial x_i}{\partial q}(q) \right]^{\mathrm{T}} \dot{q} \\ \frac{\partial x_i}{\partial q} &: \ \mathbb{R}^r \to \mathbb{R}^r \\ \text{gradient} \end{split}$$

$$\begin{aligned} x &= x(q) \\ \dot{x} &= \sum_{j=1}^{r} \frac{\partial x}{\partial q_j}(q) \dot{q}_j \\ &= \frac{\partial x}{\partial q}(q) \dot{q} \\ \underbrace{\frac{\partial x}{\partial q}(q)}_{\text{Jacobian}} \\ \frac{\partial x}{\partial q_j} : \ \mathbb{R}^r \to \mathbb{R}^{3n} \\ \frac{\partial x}{\partial q} : \ \mathbb{R}^r \to \mathbb{R}^{3n \times r} \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

Generalized Velocities

$$\begin{split} x_i &= x_i(q_1, \dots, q_r) \\ \dot{x}_i &= \sum_{j=1}^r \frac{\partial x_i}{\partial q_j}(q) \dot{q}_j \\ &= \left[\frac{\partial x_i}{\partial q}(q) \right]^{\mathrm{T}} \dot{q} \\ \frac{\partial x_i}{\partial q} \; : \; \mathbb{R}^r \to \mathbb{R}^r \\ \underset{\text{gradient}}{\overset{\text{gradient}}{\longrightarrow}} \end{split}$$

$$\begin{aligned} x &= x(q) \\ \dot{x} &= \sum_{j=1}^{r} \frac{\partial x}{\partial q_j}(q) \dot{q}_j \\ &= \frac{\partial x}{\partial q}(q) \dot{q} \\ \frac{\partial x}{\partial q_j} : \ \mathbb{R}^r \to \mathbb{R}^{3n} \\ \frac{\partial x}{\partial q} : \ \mathbb{R}^r \to \mathbb{R}^{3n \times r} \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

Velocities as Tangents to Configuration Space

• Suppose x(t) is a motion that satisfies the constraints

 $\phi_i\left(x(t)\right) = 0$

• Motion traces a curve on Q, with velocity vector $\dot{x}(t)$

$$0 = \frac{d}{dt} \bigg|_{t=0} \phi_i(x(t)) = \left[\frac{\partial \phi_i}{\partial x}(x(0)) \right]^{\mathrm{T}} \dot{x}(0)$$
$$\frac{\partial \phi_i}{\partial x}(x(0)) = \text{Normal to } \mathcal{Q} \text{ at } x(0)$$

$$\implies \dot{x}(0)$$
 is tangent to \mathcal{Q} at $x(0)$

- Configurations are points in Q
- Motions are curves in Q
- \blacktriangleright Rates of change of configurations are tangent vectors to ${\cal Q}$

Prof. S. P. Bhat (IITB)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

A Basis for Tangent Vector

 \bullet Suppose q_1,\ldots,q_r are independent generalized coordinates for system satisfying

$$\phi_i(x) = 0 \Longrightarrow \phi_i(x(q)) = 0 \text{ for all } q \implies \left[\frac{\partial \phi_i}{\partial x}(x(q))\right]^{\mathrm{T}} \frac{\partial x}{\partial q_j}(q) = 0$$

$$\frac{\partial \phi_i}{\partial x}(x(q)) = \text{ Normal to } \mathcal{Q} \text{ at } x(q)$$

$$\Longrightarrow \frac{\partial x}{\partial q_j}(q)$$
 is tangent to \mathcal{Q} at $x(q)$

 $rac{\partial x}{\partial q_j}$ is tangent to the curve obtained by varying q_j for fixed values of other q's

• $\dot{x} \in \text{tangent space to } \mathcal{Q}$

▶
$$\frac{\partial x}{\partial q_j}$$
, $j = 1, ..., r$, basis vectors for the tangent space Q

• $\dot{q}_1, \ldots, \dot{q}_r$ components of \dot{x} in this basis

Prof. S. P. Bhat (IITB)

イロン イロン イヨン イヨン

Example

$$\mathcal{Q} = S^2$$
$$x(q) = [\cos q_1 \cos q_2 \ \cos q_1 \sin q_2 \ \sin q_1]^{\mathrm{T}}$$
$$\frac{\partial x}{\partial q_1} = [-\sin q_1 \cos q_2 - \sin q_1 \sin q_2 \ \cos q_1]^{\mathrm{T}}, \ \frac{\partial x}{\partial q_2} = [-\cos q_1 \sin q_2 \ \cos q_1 \cos q_2 \ 0]^{\mathrm{T}}$$

Non-independent Generalized Coordinates

• General non-holonomic constraint

$$\phi(t,q) = 0$$

• Transformation to Cartesian coordinates

$$x = x(t,q)$$

- System is
 - Scleronomic if neither the constraint nor the transformation equations involve time
 - Rheonomic otherwise

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Differential of a Function

• Given $\psi: \ \mathcal{Q} \to \mathbb{R}, \ q_0 \in \mathcal{Q}$ and v tangent to \mathcal{Q} at q_0

• Define rate of change of ψ along v at q_0

$$d\psi_{q_0}(v) \stackrel{\text{def}}{=} \left. \frac{d}{dt} \right|_{t=0} \psi(r(t))$$

 $\blacktriangleright \ r(\cdot)$ is any motion starting at q_0 with initial velocity v

$$d\psi_{q_0}(v) = \left[rac{\partial\psi}{\partial q}(q_0)
ight]^{\mathrm{T}} v$$

$$d\psi_q(v) = \frac{\partial\psi}{\partial q_1}(q)dq_1(v) + \dots + \frac{\partial\psi}{\partial q_r}(q)dq_r(v)$$

• Abbreviated as
$$d\psi = \frac{\partial \psi}{\partial q_1} dq_1 + \dots + \frac{\partial \psi}{\partial q_r} dq_r$$

- $d\psi_{(\cdot)}(\cdot)-$ differential of ψ
 - Linear in v at every $q \in \mathcal{Q}$

Prof. S. P. Bhat (IITB)

イロト イヨト イヨト イヨト

Velocity Constraints

- Constraints on positions also give rise to constraints on velocities
 - If $\phi = 0$ along a motion, then rate of change of $\phi = 0$ as well
- If admissible motions satisfy $\phi(q) = 0$, then every admissible velocity at $q \in \mathcal{Q}$ satisfies $d\phi_q(v) = 0$
 - Short hand: Configurations satisfy $\phi = 0$, then velocities satisfy $d\phi = 0$

• At each $q \in Q$, the set of admissible velocities is the linear space

$$\{v: d\phi_q(v) = 0\} = \underbrace{\left\{v: \left[\frac{\partial\phi}{\partial q}(q)\right]^{\mathrm{T}} v = 0\right\}}_{\text{tangent space to } \mathcal{Q} \text{ at } q}$$

イロト イヨト イヨト イヨト

Differential Forms and Velocity Constraints

- A differential form is a function of q and v which is linear in v for every fixed q
 - Example: $d\psi_q(v)$ for ψ : $\mathcal{Q} \to \mathbb{R}$
- A general differential form is of the form

$$a_q(v) = a(q)^{\mathrm{T}} v$$

= $a_1(q)v_1 + \dots + a_r(q)v_r$

- Short hand: $a = a_1 dq_1 + \cdots + a_r dq_r$
- Differential form a is exact if $a=d\psi$ for some function ψ
- A general linear velocity constraint is of the form

$$a_q(v) = 0$$
, that is, $a_1 dq_1 + \cdots + a_r dq_r = 0$

- Does this velocity constraint arise from a position constraint?
 - Yes, if a is exact
 - No in general

Velocity Constraints: An Example

• Dumbbell on a plane with knife edges orthogonal to the dumbbell

- Knife edges restrict velocity at each particle to be perpendicular to the rod
- Along any motion of the dumbbell

$$\dot{q}_1 \cos q_3 + \dot{q}_2 \sin q_3 = 0$$

• That is, every admissible velocity vector satisfies

$$\cos q_3 \, dq_1 + \sin q_3 \, dq_2 \qquad = 0$$

differential form with $a(q) = [\cos q_3 \ \sin q_3 \ 0]^{\mathrm{T}}$

A D N A P N A P N

Example: A Few Questions

- Configuration space 3D
- Set of allowable velocities at each configuration is a 2D linear space
 - Is there a family of 2D surfaces tangent to all these linear spaces?
 - Does the velocity constraint restrict configurations that can be reached from a given initial configuration?
- Yes, if a is exact, that is, $a=d\psi$ for some ψ

$$a=0 \Rightarrow d\psi = 0 \Rightarrow \psi = {\rm constant}$$

• Check: If
$$a = [\cos q_3 \ \sin q_3 \ 0]^{\mathrm{T}} = \left[\frac{\partial \psi}{\partial q_1} \ \frac{\partial \psi}{\partial q_2} \ \frac{\partial \psi}{\partial q_3}\right]^{\mathrm{T}}$$
, then
 $\cos q_3 = \frac{\partial}{\partial q_3} \left(\frac{\partial \psi}{\partial q_2}\right) \neq \frac{\partial}{\partial q_2} \left(\frac{\partial \psi}{\partial q_3}\right) = 0 !$

a is not exact

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A Necessary Condition for Exactness

• If $a = a_1 dq_1 + a_2 dq_2 + a_3 dq_3$ is exact, then

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \quad = \quad \nabla \psi \text{ for some } \psi$$

 \therefore curl a = 0, that is,

$$\frac{\partial a_i}{\partial q_j} - \frac{\partial a_j}{\partial q_i} = 0, \ i \neq j, \ i, j = 1, 2, 3.$$

• In higher dimensions, if $a = a_1 dq_1 + \cdots + a_r dq_r$ is exact, then

$$\frac{\partial a_i}{\partial q_j} - \frac{\partial a_j}{\partial q_i} = 0, \ i \neq j, \ i, j = 1, \dots, r.$$

- Sufficient under additional conditions
- Question: If *a* is not exact, does it follow that the configuration space is not restricted?

Velocity Constraints: Another Example

• Dumbbell on a plane with knife edges parallel to the dumbbell

- Knife edges restrict velocity at each particle to lie along the rod
- Velocity constraint at the center of the dumbbell

$$\sin q_3 \ dq_1 - \cos q_3 \ dq_2 = 0$$

• Not exact, but dumbbell restricted to move in a straight line

Integrability

- Even if a is not exact, a may be *integrable*, that is, there may exist an integrating factor $\eta: \mathcal{Q} \to \mathbb{R}$ such that $\eta a = \eta a_1 dq_1 + \eta a_2 dq_2 + \eta a_3 dq_3$ is exact
- If a is integrable, there exist functions η and ψ such that $a = \frac{1}{n}d\psi$

• Abuse of notation: Think of a as a vector field $a = \begin{bmatrix} a_1 \\ a_2 \\ c \end{bmatrix}$

$$a = \frac{1}{\eta} \nabla \psi$$

curl $a = -\frac{1}{\eta^2} (\nabla \eta \times \nabla \psi) + \frac{1}{\eta} \underbrace{\operatorname{curl} \nabla \psi}_{=0}$
 $= -\frac{1}{\eta} (\nabla \eta \times a)$

 $\therefore \ a \cdot \mathsf{curl} \ a = 0$

$$a_1\left(\frac{\partial a_3}{\partial q_2}-\frac{\partial a_2}{\partial q_3}\right)+a_2\left(\frac{\partial a_1}{\partial q_3}-\frac{\partial a_3}{\partial q_1}\right)+a_3\left(\frac{\partial a_2}{\partial q_1}-\frac{\partial a_1}{\partial q_2}\right)=0$$

イロト イヨト イヨト イヨ

Non-Holonomic Constraints

- If a velocity constraint a is integrable, then ηa is exact for some η
 - $\blacktriangleright~a$ and ηa define the same set of allowable velocities
 - > The velocity constraint can be "integrated" to yield a position constraint
- If the velocity constraint is not integrable, then it does not restrict configurations to a lower dimensional subset
- Such a constraint is truly "non-holonomic"
- Issues
- Necessary and sufficient conditions for integrability
- Multiple velocity constraints
- Higher dimensions

Calculus of differential forms

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$$a = [\sin q_3 \ \cos q_3 \ 0]^{\mathrm{T}}, \text{ curl } a = a$$

 $a \cdot \operatorname{curl} a = 1 \neq 0$

- Constraint is not integrable. Does not restrict attainable configurations
 - Can we explicitly work out paths between configurations?

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$$a = [\sin q_3 \ \cos q_3 \ 0]^{\mathrm{T}}, \text{ curl } a = a$$

$$a \cdot \operatorname{curl} a = 1 \neq 0$$

- Constraint is not integrable. Does not restrict attainable configurations
 - Can we explicitly work out paths between configurations?

Image: A math a math

$$a = [\sin q_3 \ \cos q_3 \ 0]^{\mathrm{T}}, \text{ curl } a = a$$

$$a \cdot \operatorname{curl} a = 1 \neq 0$$

- Constraint is not integrable. Does not restrict attainable configurations
 - Can we explicitly work out paths between configurations?

$$a = [\sin q_3 \ \cos q_3 \ 0]^{\mathrm{T}}, \text{ curl } a = a$$

$$a \cdot \operatorname{curl} a = 1 \neq 0$$

- Constraint is not integrable. Does not restrict attainable configurations
 - Can we explicitly work out paths between configurations?

A D N A P N A P N

$$a = [\sin q_3 \ \cos q_3 \ 0]^{\mathrm{T}}, \text{ curl } a = a$$

 $a \cdot \operatorname{curl} a = 1 \neq 0$

- Constraint is not integrable. Does not restrict attainable configurations
 - Can we explicitly work out paths between configurations?

$$a = [\sin q_3 \ \cos q_3 \ 0]^{\mathrm{T}}, \text{ curl } a = a$$

 $a \cdot \operatorname{curl} a = 1 \neq 0$

- Constraint is not integrable. Does not restrict attainable configurations
 - Can we explicitly work out paths between configurations?

Examples of Non-Holonomic Systems

- Cars, cars with trailers
 - No sideways velocity, but sideways displacement possible
- Snakes, snake board
 - Periodic shape change leads to linear motion
- Ball on a plate
 - Periodic position change leads to a periodic orientation change
- Multi-body space systems
 - Falling cats, divers
 - Periodic shape change leads to orientation change
- Rattle backs, wobble stones, tippy tops

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Unilateral Constraints

- Bilateral constraints are equality constraints of the kind $\phi = 0$ or a = 0
 - Positions and/or velocities constrained to a lower dimensional surface
- Inequality constraints of the form $\phi \ge 0, \ a \ge 0$ also possible
- Example: Particle moving outside a sphere
 - Position constraint $\phi(x, y, z) = x^2 + y^2 + z^2 r^2 \ge 0$
 - Velocity constraint $d\phi_q(v) \ge 0$ whenever $\phi(q) = 0$
- Any motion has two kinds of segments
 - Particle moves in contact with the sphere
 - Particle moves out of contact with the sphere
- Each segment can be solved by using initial conditions from the previous segment
 - Monitor constraint force to detect loss of contact
 - Monitor constraint function to detect contact

Virtual Displacement

• Consider a scleronomic system described using generalized coordinates q_1, \ldots, q_r subject to

$$\phi(q) = 0, \ a_q(v) = 0$$

• A virtual displacement at $q \in \mathcal{Q}$ is a vector $\delta q \in \mathbb{R}^r$ satisfying

$$d\phi_q(\delta q) = 0, \ a_q(\delta q) = 0$$

- A tangent vector to the configuration space lying in the set of admissible velocities
- Particles of the system undergo virtual displacements along δq

$$x = x(q) \Longrightarrow \quad \delta x = \frac{\partial x}{\partial q}(q)\delta q$$

• δx is linear approximation to the change in x when q changes to $q + \delta q$ • A virtual displacement is also an admissible velocity

イロト 不得下 イヨト イヨト

Example

$$\begin{array}{rclrcl} \phi(q) &=& x^2 + y^2 - 1 &=& 0 \\ d\phi_q(\delta q) &=& x \; \delta x + y \; \delta y &=& 0 \\ \delta q &=& \alpha [y \; - x]^{\rm T} \end{array}$$

$$x = \cos q, \quad y = \sin q$$

$$\delta x = -\sin q \ \delta q, \quad \delta y = \cos q \ \delta q$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Virtual Displacement for Rheonomic Systems

- Consider a system subject to time varying position and velocity constraint
- Set of virtual displacements changes every instant
- At each instant, the set of virtual displacements is the set of tangent vectors to the instantaneous surface

$$\phi(q,t) = 0$$

that satisfy the instantaneous velocity constraint

$$a_1(q,t)dq_1 + \dots + a_r(q,t)dq_r = 0$$

• If x = x(q, t), the virtual displacements of the particles are given by

$$\delta x = \frac{\partial x}{\partial q}(q,t) \ \delta q$$

- Treat time as frozen to calculate instantaneous virtual displacement
- Virtual displacements are not actual velocities

Prof. S. P. Bhat (IITB)

イロト 不得下 イヨト イヨト

Virtual Displacements: Example 1

- $Q = \text{circle in the } x_1 y_2 \text{ plane in } (x_1, y_1, x_2, y_2) \text{ space}$
- Along any tangent vector $(\delta x_1, \delta y_1, \delta x_2, \delta y_2)$ to this circle

$$\begin{split} &\delta y_1 = 0 \quad (\text{virtual displacement of A is horizontal}) \\ &\delta x_2 = 0 \quad (\text{virtual displacement of B is vertical}) \\ &x_1 \ \delta x_1 + y_2 \ \delta y_2 = 0 \\ &\frac{(y_2 - y_1)}{(x_2 - x_1)} \frac{(\delta y_2 - \delta y_1)}{(\delta x_2 - \delta x_1)} = -1 \text{ (relative virtual displacement orthogonal to rod)} \end{split}$$

Virtual Displacement: Example 2

$$\begin{aligned} & x_1^2 + y_1^2 - a^2 = 0 \\ & x_2^2 + y_2^2 - a^2 = 0 \\ & (x_1 - x_2)^2 + (y_1 - y_2)^2 - l^2 = 0 \end{aligned}$$

イロト イヨト イヨト イヨ

Along any virtual displacement

 $\begin{array}{rcl} x_1 & \delta x_1 + y_1 & \delta y_1 & = & 0 \\ x_2 & \delta x_2 + y_2 & \delta y_2 & = & 0 \end{array} \right\} \text{virtual displacements of A,B tangent to the circle}$

 $(x_1-x_2)(\delta x_1-\delta x_2)+(y_1-y_2)(\delta y_1-\delta y_2)=0$ — relative virtual displacement perpendicular to rod

Virtual Work

- Consider a n- particle system having coordinates $x\in\mathbb{R}^{3n}$
- Components of total forces acting on the particles $F \in \mathbb{R}^{3n}$
- Along a virtual displacement $\delta q \in \mathbb{R}^r$ of the system

$$\delta x = \frac{\partial x}{\partial q}(q,t) \ \delta q$$

• Virtual work of the system of forces along the virtual displacement δq is defined as

$$\delta W = F^{\mathrm{T}} \delta x = F^{\mathrm{T}} \frac{\partial x}{\partial q} (q, t) \ \delta q$$

- Note: no actual motion or displacement
- Linear in δq at each q, t
- Inner product of $F \in \mathbb{R}^{3n}$ with the vector $\delta x \in \mathbb{R}^{3n}$ tangent to \mathcal{Q}

• $\delta \mathbf{r}_i = \mathsf{virtual}$ displacement of i^{th} particle, $\mathbf{F}_i = \mathsf{net}$ force on i^{th} particle

$$\delta W = \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i}$$

イロト 不得下 イヨト イヨト

Virtual Work: Example 1

$$\delta x = [\delta x_1 \ \delta y_1 \ \delta x_2 \ \delta y_2]^{\mathrm{T}}$$

$$F = [-F - R\cos\theta \ N_1 - m_1g \ N_2 + R\cos\theta \ -m_2g - R\sin\theta]^{\mathrm{T}}$$

$$\delta W = -F \ \delta x_1 - m_2g \ \delta y_2$$

・ロト ・ 日 ・ ・ ヨ ・ ・

Virtual Work: Example 2

$$\begin{aligned} \mathbf{N}_2 \cdot \delta \mathbf{r}_2 &= \mathbf{N}_1 \cdot \delta \mathbf{r}_1 &= 0 \\ \mathbf{R}_2 \cdot \delta \mathbf{r}_2 + \mathbf{R}_1 \cdot \delta \mathbf{r}_1 &= \mathbf{R}_2 \cdot (\delta \mathbf{r}_2 - \delta \mathbf{r}_1) &= 0 \end{aligned}$$

$$\delta W = -m_1 g \ \delta y_1 - m_2 g \ \delta y_2$$

・ロト ・ 日 ・ ・ 目 ・ ・

Workless Constraints

- A bilateral constraint is *workless* if the virtual work of the corresponding constraint forces is zero for every virtual displacement of the system
- Main examples
 - Rigid interconnections between particles
 - * Constraint forces equal and opposite along the interconnection
 - * Relative virtual displacement orthogonal to the interconnection
 - Sliding motion on a frictionless surface
 - * Constraint force normal to the surface
 - * Virtual displacement at point of contact tangent to surface
 - Rolling without slipping
 - * Virtual displacement of point of contact is zero

イロト イポト イヨト イヨ

Equilibrium Configurations

- \bullet A configuration in which the total force $({\bf F}+{\bf R})$ acting on each particle is zero
- A system in an equilibrium configuration at rest remains in that configuration
- Principle of virtual work: which configurations are equilibrium configurations?

A configuration q of a scleronomic system having workless constraints is an equilibrium configuration if and only if the virtual work of external (nonconstraint) forces along every virtual displacement at q is zero

• Example: Spherical pendulum

イロト 不得下 イヨト イヨト

Principle of Virtual Work: Example

 $\delta W = -F \ \delta x_1 - m_2 g \ \delta y_2 = 0$ for every $\delta x_1, \delta y_2$ satisfying $\cos \theta \ \delta x_1 + \sin \theta \ \delta y_2 = 0$ $\implies \tan \theta = \frac{m_2 g}{F}$ $\delta W = -m_1 g \ \delta y_1 - m_2 g \ \delta y_2 = 0$ for every $\delta x_1, \delta y_1, \delta x_2, \delta y_2$ satisfying

For every $\delta x_1, \delta y_1, \delta x_2, \delta y_2$ satisfying $x_1 \ \delta x_1 + y_1 \ \delta y_1 = 0$ $x_2 \ \delta x_2 + y_2 \ \delta y_2 = 0$ $(x_1 - x_2)(\delta x_1 - \delta x_2) + (y_1 - y_2)(\delta y_1 - \delta y_2) = 0$ $\implies m_1 x_1 + m_2 x_2 = 0$

イロト 不得下 イヨト イヨト

Generalized Forces

- Principle of virtual work in Cartesian coordinates $\delta W = F^{\mathrm{T}} \delta x = 0$ for every $\delta x \in \mathbb{R}^n$ satisfying $\frac{\partial \phi(x)}{\partial x}(x) \delta x = 0$
- Problem: Components of δx are not independent. Tedious to apply
- Solution: Write principle of virtual work using generalized coordinates

$$\delta W = F^{\mathrm{T}} \delta x = \left(F^{\mathrm{T}} \frac{\partial x(q)}{\partial q}(q) \right) \delta q$$

- Define generalized force $Q \stackrel{\text{def}}{=} \left[\frac{\partial x(q)}{\partial q}(q) \right]^{T} F$
- Generalized force along $q_j, \ Q_j = \sum_{i=1}^{3n} F_i \frac{\partial x_i}{\partial q_j}$

$$\delta W = Q^{\rm T} \delta q$$

- If q_1, \ldots, q_r are independent generalized coordinates, then δq are unconstrained
- Principle of virtual work: A system is in equilibrium if and only if the generalized applied forces along a set of independent generalized coordinates are zero.
 - Position constraints only

Prof. S. P. Bhat (IITB)

イロト 不得下 イヨト イヨト 二日

Example

$$\begin{array}{rcl} x_1 &=& a\cos\theta_1 &=& a\cos(\theta+\alpha) \\ y_1 &=& -a\sin\theta_1 &=& -a\sin(\theta+\alpha) \\ x_2 &=& -a\cos\theta_2 &=& -a\cos(\theta-\alpha) \\ y_2 &=& -a\sin\theta_2 &=& a\sin(\theta-\alpha) \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・

$$Q_{\theta} = -g(m_A x_1 + m_B x_2)$$

э

э

Conservative Forces

 $\bullet\,$ Consider a particle that moves under the influence of a position dependent force ${\bf F}\,$

$$F_x = -\frac{\partial V}{\partial x}(x, y, z), F_y = -\frac{\partial V}{\partial y}(x, y, z), F_z = -\frac{\partial V}{\partial z}(x, y, z)$$

where \boldsymbol{V} is a function of position only

- Work done along a path $\mathbf{r}(t)$ = $\int_0^t \mathbf{F}(\mathbf{r}(\tau)) \cdot \dot{\mathbf{r}}(\tau) d\tau = -\int_0^t \left(\frac{\partial V}{\partial x}\dot{x} + \frac{\partial V}{\partial y}\dot{y} + \frac{\partial V}{\partial z}\dot{z}\right) d\tau$ = $-\int_0^t \frac{d}{d\tau} [V(\mathbf{r}(\tau))] d\tau = -V(\mathbf{r}(t)) + V(\mathbf{r}(0))$
- Work done depends on endpoints, not on the path or the time taken
 - Work done along closed curve = 0
- Such forces are *conservative* forces
- Note: Force is not conservative if potential is time dependent

Principle of Virtual Work for Conservative Systems

• Consider a system of n- particles with applied forces given by

$$F_i = -\frac{\partial V}{\partial x_i}(x_1, \dots, x_{3n})$$

- Work done along a path x(t)= $\int_0^t F(x(\tau))^{\mathrm{T}} \dot{x}(\tau) d\tau = -\int_0^t \left(\frac{\partial V}{\partial x}(x(\tau))\right)^{\mathrm{T}} \dot{x}(\tau) d\tau = V(x(0)) - V(x(t))$
- \bullet Can consider V as a function of q, since $V=V(x),\ x=x(q)$ $V(q)\stackrel{\mathrm{def}}{=}V(x(q))$
- Generalized forces

$$Q = \left(\frac{\partial x}{\partial q}(q)\right)^{\mathrm{T}} F = -\frac{\partial x}{\partial q}(q)^{\mathrm{T}} \frac{\partial V}{\partial x}$$
$$Q_{j} = -\sum_{i=1}^{3n} \frac{\partial V}{\partial x_{i}} \frac{\partial x_{i}}{\partial q_{j}} = -\frac{\partial V}{\partial q_{j}}$$

 Principle of virtual work: A holonomic, scleronomic, conservative system remains in equilibrium only at a stationary point of the potential function

D'Alembert's Principle

- Consider a system of n- particles. The motion satisfies $m_i \ddot{\mathbf{r}}_i = \mathbf{F}_i + \mathbf{R}_i$ at every instant
- At every t, along every virtual displacement of the system, we have

• For workless constraints,

$$\delta W = \sum_{i=1}^{n} (\mathbf{F}_{i} - m_{i} \ddot{\mathbf{r}}_{i}) \cdot \delta \mathbf{r}_{i} = 0$$

- D'Alembert's principle: The accelerations along a motion are such that the virtual work done by applied and inertial forces along any virtual displacement is zero
 - Note: Applies to all workless constraints, scleronomic or rheonomic, unlike principle of virtual work

Jean le Rond d'Alembert

1717-1783

- d'Alembert's solution to wave equation
- d'Alembert's ratio test
- d'Alembert's paradox

・ロト ・ 日 ト ・ ヨ ト ・

d'Alembert's Principle: A Scleronomic Example

 $\delta W = -(m_1g + m_1\ddot{y}_1)\delta y_1 - m_1\ddot{x}_1\delta x_1 - (m_1g + m_1\ddot{y}_2)\delta y_1 - m_1\ddot{x}_2\delta x_2 = 0$ For every $(\delta x_1, \delta y_1, \delta x_2, \delta y_2)$ satisfying

$$x_1\delta x_1 + y_1\delta y_1 = 0, \ x_2\delta x_2 + y_2\delta y_2 = 0, \ x_2\delta y_1 - x_1\delta y_2 = 0$$

• Eliminate $\delta x_1, \delta x_2$

$$m_1(x_1g + x_1\ddot{y}_1 - y_1\ddot{x}_1) + m_2(x_2g + x_2\ddot{y}_2 - y_2\ddot{x}_2) = 0$$

- Constraint forces eliminated, but not the constraint
- Use generalized coordinates

Prof. S. P. Bhat (IITB)

A D N A P N A P N
d'Alembert's Principle: A Rheonomic Example

$$x = r \sin \theta \cos \omega t, \ y = r \sin \theta \sin \omega t, \ z = -r \cos \theta$$
$$\delta W = -(mg + m\ddot{z})\delta z - m\ddot{y}\delta y - m\ddot{x}\delta x = 0$$

where $\delta x = r \cos \theta \cos \omega t \, \delta \theta$, $\delta y = r \cos \theta \sin \omega t \, \delta \theta$, $\delta z = r \sin \theta \, \delta \theta$

• Substitute for $\ddot{x}, \ddot{y}, \ddot{z}$

$$\ddot{\theta} - \omega^2 \sin \theta \cos \theta + \frac{g}{r} \sin \theta = 0$$

- Cumbersome to eliminate the constraint
- Need a general procedure to eliminate constraints and constraint forces by combining generalized coordinates with D'Alembert's principle

Prof. S. P. Bhat (IITB)

Classical Dynamics

Eliminate Constraints

• Eliminate constraints from

$$\sum_{i=1}^{3n} (F_i - m_i \ddot{x}_i) \delta x_i = 0$$

• Suppose $x_i = x_i(q_1, \ldots, q_r, t), \ i = 1, \ldots, 3n$

$$\delta x_i = \sum_{j=1}^r \frac{\partial x_i}{\partial q_j} \delta q_j, \ \dot{x}_i = \sum_{j=1}^r \frac{\partial x_i}{\partial q_j} \dot{q}_j + \frac{\partial x_i}{\partial t}$$

$$\begin{split} \sum_{i=1}^{3n} F_i \delta x_i &= \sum_{i=1}^{3n} F_i \left(\sum_{j=1}^r \frac{\partial x_i}{\partial q_j} \delta q_j \right) = \sum_{j=1}^r \left(\sum_{i=1}^{3n} F_i \frac{\partial x_i}{\partial q_j} \right) \delta q_j = \sum_{j=1}^r Q_j \delta q_j \\ &- \sum_{i=1}^{3n} m_i \ddot{x}_i \delta x_i = - \sum_{i=1}^{3n} m_i \ddot{x}_i \left(\sum_{j=1}^r \frac{\partial x_i}{\partial q_j} \delta q_j \right) = - \sum_{j=1}^r \left(\sum_{\substack{i=1\\gen: \text{ inertia force along } q_j}}^{3n} \delta q_j \right) \delta q_j \end{split}$$

Elimination of Constraints (cont'd)

• Two identities

$$\frac{d}{dt} \left(\frac{\partial x_i}{\partial q_j} \right) = \frac{\partial \dot{x}_i}{\partial q_j}, \quad \frac{\partial x_i}{\partial q_j} = \frac{\partial \dot{x}_i}{\partial \dot{q}_j}$$
$$\ddot{x}_i \frac{\partial x_i}{\partial q_j} = \frac{d}{dt} \left(\dot{x}_i \frac{\partial x_i}{\partial q_j} \right) - \dot{x}_i \frac{d}{dt} \left(\frac{\partial x_i}{\partial q_j} \right)$$
$$= \frac{d}{dt} \left(\dot{x}_i \frac{\partial \dot{x}_i}{\partial \dot{q}_j} \right) - \dot{x}_i \frac{\partial \dot{x}_i}{\partial q_j}$$
$$= \frac{d}{dt} \left[\frac{\partial}{\partial \dot{q}_j} \left(\frac{1}{2} \dot{x}_i^2 \right) \right] - \frac{\partial}{\partial q_j} \left(\frac{1}{2} \dot{x}_i^2 \right)$$
$$\sum_{i=1}^{3n} m_i \ddot{x}_i \frac{\partial x_i}{\partial q_j} = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_j} \sum_{i=1}^{3n} \frac{1}{2} m_i \dot{x}_i^2 \right) - \frac{\partial}{\partial q_j} \left(\sum_{i=1}^{3n} \frac{1}{2} m_i \dot{x}_i^2 \right)$$

· · .

イロト イヨト イヨト イヨト

Lagrange's Equations

• Total kinetic energy
$$T(q,\dot{q},t) = \sum_{i=1}^{3n} \frac{1}{2} m_i \dot{x}_i^2(q,\dot{q},t)$$

$$\sum_{i=1}^{3n} m_i \ddot{x}_i \frac{\partial x_i}{\partial q_j} = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j}$$

• d'Alembert's principle implies

$$\sum_{j=1}^{r} \left[Q_j - \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} \right\} \right] \delta q_j = 0$$

• For a holonomic system described by independent generalized coordinates

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_j}\right) - \frac{\partial T}{\partial q_j} = Q_j, \ j = 1, \dots, r$$

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}}\right) - \frac{\partial T}{\partial q} = Q$$

Joseph-Louis Lagrange

Joseph-Louis Lagrange 1736-1813

- Vibrations
- Calculus of variations
- Linear ODE's
- Three-body problem
- Number theory
- Lagrange interpolation

・ロン ・回 と ・ ヨン・

Mechanics

Lagrange's Equations: An Example

$$\begin{aligned} x_1 &= l\cos\theta\\ y_2 &= l\sin\theta \end{aligned}$$

Prof. S. P. Bhat (IITB)

February 7, 2006 57 / 87

・ロト ・回ト ・ヨト

Lagrange's Equations for Conservative Systems

$$Q = -\frac{\partial V}{\partial q}, V = V(q)$$
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}}\right) - \frac{\partial T}{\partial q} + \frac{\partial V}{\partial q} = 0$$

OT 1

• Define Lagrangian $L(q, \dot{q}, t) = T(q, \dot{q}, t) - V(q)$ $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0$

• In general, $Q = -\frac{\partial V}{\partial q} + Q_{\rm nc}$ $\boxed{\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = Q_{\rm nc}}$

Examples

$$\begin{aligned} x_1 &= a\cos(\theta + \alpha) \\ y_1 &= -a\sin(\theta + \alpha) \\ x_2 &= -a\cos(\theta - \alpha) \\ y_2 &= a\sin(\theta - \alpha) \end{aligned}$$

 $\begin{aligned} x &= r \sin \theta \cos \omega t \\ y &= r \sin \theta \sin \omega t \\ z &= -r \cos \theta \end{aligned}$

イロン イロン イヨン イヨン

Form of the Kinetic Energy

$$\begin{aligned} x &= x(q,t) \\ \dot{x} &= \frac{\partial x}{\partial q}(q,t)\dot{q} + \frac{\partial x}{\partial t}(q,t) \end{aligned}$$

$$T(q, \dot{q}, t) = \sum_{i=1}^{1} \frac{1}{2} m_i \dot{x}_i^2 = \frac{1}{2} \dot{x}^{\mathrm{T}} J \dot{x}, \ J = \mathrm{diag}\{m_1, \dots, m_{3n}\}$$

$$T(q, \dot{q}, t) = \frac{1}{2} \dot{q}^{\mathrm{T}} \underbrace{\left[\frac{\partial x}{\partial q}^{\mathrm{T}} J \frac{\partial x}{\partial q}\right]}_{M(q, t)} \dot{q} + \underbrace{\left[\frac{\partial x}{\partial q}^{\mathrm{T}} J \frac{\partial x}{\partial q}\right]}_{a^{\mathrm{T}}(q, t)} \dot{q} + \frac{1}{2} \frac{\partial x}{\partial t}^{\mathrm{T}} J \frac{\partial x}{\partial t}$$
$$= T_{2} + T_{1} + T_{0}$$

- M— symmetric inertia matrix, positive-definite at every q, t
- For a scleronomic system, $T = T_2$

Prof. S. P. Bhat (IITB)

イロト イヨト イヨト イヨト

Form of the Equations

• Generalized momentum along q_j is

$$p_j = \frac{\partial T}{\partial \dot{q}_j}, \quad j = 1, \dots, r$$
$$p = \frac{\partial T}{\partial q} = M(q, t)\dot{q} + a(q, t)$$

Lagrange's equations

$$\dot{p} - \frac{\partial T}{\partial q} + \frac{\partial V}{\partial q} = Q$$

- ► Linear in *q*
- Coefficient matrix of \ddot{q} is M(q, t), invertible
- Can be solved for accelerations to yield

$$\ddot{q} + f(q, \dot{q}, t) = 0$$

Prof. S. P. Bhat (IITB)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

d'Alembert's Principle with Velocity Constraints

• An n- particle system subject to m velocity constraints

$$a_i^{\mathrm{T}} \dot{q} + a_{it} = 0, \ i = 1, \dots, m$$

$$A\dot{q} + b = 0, \ A = \begin{bmatrix} a_1 & \cdots & a_m \end{bmatrix}^{\mathrm{T}}, \ b = \begin{bmatrix} a_{1t} & \cdots & a_{mt} \end{bmatrix}^{\mathrm{T}}$$

Virtual displacements satisfy

$$A\delta q = 0$$

• d'Alembert's principle

$$\left(Q - \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) + \frac{\partial L}{\partial q}\right)^{\mathrm{T}}\delta q = 0$$

for every δq satisfying $A\delta q=0$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Lagrange's Equations with Velocity Constraints

$$\begin{aligned} & \mathsf{rank} A = \mathsf{rank} \left[Q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \frac{\partial L}{\partial q} \right] \\ & Q - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \frac{\partial L}{\partial q} \in \mathsf{span of rows of } A \end{aligned}$$

• For every t, there exist scalars $\lambda_1(t),\ldots,\lambda_m(t)$ such that

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} - Q = \lambda_1 a_1 + \dots + \lambda_m a_m \quad (r \text{ equations})$$
$$A\dot{q} + b = 0 \quad (m \text{ equations})$$

• $C = \lambda_1 a_1 + \dots + \lambda_m a_m$ is the constraint force

• Check: $C^{\mathrm{T}} \delta q = 0$ for every virtual displacement

Prof. S. P. Bhat (IITB)

Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Constants of Motion and Integration

• Example: a simple pendulum

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$
$$E(\theta, \dot{\theta}) = \frac{1}{2}\dot{\theta}^2 + \frac{g}{l}(1 - \cos\theta) = c$$
$$\dot{\theta} = \sqrt{c - \frac{2g}{l}(1 - \cos\theta)}$$

- θ can be obtained by direct integration (in terms of Jacobi elliptic integrals)
- E is a first integral, an integral of motion, a constant of motion
- A first integral is a function $f(q,\dot{q},t)$ such that along any motion, $f(q(t),\dot{q}(t),t){=}{\rm constant}$

$$\frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial \dot{q}}\ddot{q} + \frac{\partial f}{\partial t} = 0$$

- For a 1-d-o-f system, a first integral reduces the problem to an integration (quadrature)
- A *n*-d-o-f system, having *n* first integrals can be solved by quadratures Examples: two-body problem, free rigid body

Prof. S. P. Bhat (IITB)

Classical Dynamics

February 7, 2006 65 / 87

Cyclic Coordinates

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0, \ j = 1, \dots, r$$

• If
$$\frac{\partial L}{\partial q_j} = 0$$
, that is, L is independent of q_j , then
 $p_j = \frac{\partial L}{\partial q_j} = \text{constant}$

• If
$$\frac{\partial L}{\partial q_j} = 0$$
, q_j is an *ignorable* or *cyclic* coordinate

• Fact: The generalized momentum corresponding to an ignorable coordinate is a first integral

・ロト ・回ト ・ヨト・

Example: Kepler Problem

• Motion under inverse-square attraction to a fixed center

$$\begin{split} T &= \frac{1}{2}m(r^2\dot{\theta}^2 + \dot{r}^2), \, v = -\frac{\mu}{r}, \, L = \frac{1}{2}m(r^2\dot{\theta}^2 + \dot{r}^2) + \frac{\mu}{r}\\ \frac{\partial L}{\partial \theta} &\equiv 0, \, p_\theta = \frac{\partial L}{\partial \dot{\theta}} = mr^2\dot{\theta} = m\beta = \text{constant}\\ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{r}}\right) - \frac{\partial L}{\partial r} = 0 \Longrightarrow \ddot{r} - r\dot{\theta}^2 + \frac{\mu}{r^2} = 0 \end{split}$$

• Substitute for $\dot{\theta}$

$$\ddot{r} - \frac{\beta^2}{r^3} + \frac{\mu}{r^2} = 0$$

• Solve for r independent of θ , then integrate $\dot{\theta} = \frac{\beta}{r^2}$

- Reduce the order to solve for r, perform a quadrature for heta
- Question: Can we do this as a general procedure?

Prof. S. P. Bhat (IITB)

0

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Routhian Reduction

$$L = L(q_{k+1}, \dots, q_r, \dot{q}_1, \dots, \dot{q}_r, t)$$
$$= L(q_n, \dot{q}_i, \dot{q}_n, t)$$
$$p = \begin{bmatrix} p_i \\ p_n \end{bmatrix} = \begin{bmatrix} M_1 & M_{12} \\ M_{12}^{\mathrm{T}} & M_2 \end{bmatrix} \begin{bmatrix} \dot{q}_i \\ \dot{q}_n \end{bmatrix} + \begin{bmatrix} a_i \\ a_n \end{bmatrix}$$

- M positive definite $\implies M_1$ positive definite (hence invertible)
- $\bullet~{\rm Solve}~{\rm for}~\dot{q}_{\rm i}$ in terms of $p_{\rm i},\dot{q}_{\rm n},q_{\rm n},t$

$$\dot{q}_{\rm i} = M_1^{-1} p_{\rm i} - M_1^{-1} M_{12} \dot{q}_{\rm n} - M_1^{-1} a_{\rm i}$$

• Define Routhian

$$R(q_{n}, \dot{q}_{n}, p_{i}, t) = \underbrace{L(q_{n}, \dot{q}_{i}, \dot{q}_{n}, t) - p_{i}^{\mathrm{T}} \dot{q}_{i}}_{\text{substitute for } \dot{q}_{i}}$$

Routhian Reduction (cont'd)

$$\frac{\partial R}{\partial q_j} = \frac{\partial L}{\partial q_j} + \underbrace{\left(\frac{\partial L}{\partial \dot{q_i}} - p_i\right)^{\mathrm{T}}}_{=0 \text{ along motion}} \frac{\partial \dot{q_i}}{\partial q_j}$$

Along every motion with generalized momentum p_i

$$\frac{\partial R}{\partial q_{\mathsf{n}}} = \frac{\partial L}{\partial q_{\mathsf{n}}}, \ \frac{\partial R}{\partial \dot{q}_{\mathsf{n}}} = \frac{\partial L}{\partial \dot{q}_{\mathsf{n}}}, \ \frac{\partial R}{\partial t} = \frac{\partial L}{\partial t}, \ \frac{\partial R}{\partial p_{\mathsf{i}}} = -\dot{q}_{\mathsf{i}}$$

Reduced equations for nonignorable coordinates

$$\frac{d}{dt}\left(\frac{\partial R}{\partial \dot{q}_{\mathsf{n}}}\right) - \frac{\partial R}{\partial q_{\mathsf{n}}} = 0$$

• Quadrature for ignorable coordinates

$$\dot{q}_{\rm i} = -\frac{\partial R}{\partial p_{\rm i}}$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Edward Routh

- Dynamics
- Stability

Edward Routh 1831-1907

イロト イヨト イヨト イヨト

Kepler's Problem Again

$$L = \frac{1}{2}(r^2\dot{\theta}^2 + \dot{r}^2) + \frac{\mu}{r}$$
$$p_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = r^2\dot{\theta}$$
$$R = -\frac{1}{2}\frac{p_{\theta}^2}{r^2} + \frac{1}{2}\dot{r}^2 + \frac{\mu}{r}$$

$$\begin{split} \ddot{r} &- \frac{p_{\theta}^2}{r^3} + \frac{\mu}{r^2} = 0 \\ \dot{\theta} &= - \frac{\partial R}{\partial p_{\theta}} = \frac{p_{\theta}}{r^2} \end{split}$$

• Note:
$$R = T' - V', \ T' = \frac{1}{2}\dot{r}^2, \ V' = \frac{p_{\theta}^2}{2r^2} - \frac{\mu}{r}$$

- For a given $p_{\theta},\,\dot{\theta}$ is a function of r
- V'=potential due to centrifugal force + gravity

Prof. S. P. Bhat (IITB)

Example: Spherical Pendulum

$$L = \frac{1}{2}ml^{2}(\dot{\theta}^{2} + \dot{\phi}^{2}\sin^{2}\theta) - mgl(1 - \cos\theta)$$

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = ml^{2}\dot{\phi}\sin^{2}\theta \text{ (angular momentum about vertical)}$$

$$R = \frac{1}{2}ml^{2}\dot{\theta}^{2} - \frac{1}{2}\frac{p_{\phi}^{2}}{ml^{2}\sin^{2}\theta} - mgl(1 - \cos\theta)$$

$$ml^{2}\ddot{\theta} - \underbrace{\frac{p_{\phi}^{2}\cos\theta}{ml^{2}\sin^{3}\theta}}_{\text{centrifugal}} + \underbrace{mgl\sin\theta}_{\text{gravity}} = 0$$

・ロト ・ 日 ト ・ 日 ト ・ 日

Energy Integral

• Assume the system is *conservative*, that is

- All applied forces are conservative
- Lagrangian is independent of time
- Velocity constraints are of the form $a_i^{\mathrm{T}}(q,t)\dot{q}=0$
 - $\star\,$ Implies position constraints on q are constant

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = \lambda_1 a_1 + \dots + \lambda_m a_m$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}^{\mathrm{T}} \dot{q} - L \right) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}^{\mathrm{T}} \right) \dot{q} + \frac{\partial L}{\partial \dot{q}}^{\mathrm{T}} \ddot{q} - \frac{\partial L}{\partial \dot{q}}^{\mathrm{T}} \ddot{q} - \frac{\partial L}{\partial q}^{\mathrm{T}} \dot{q} - \frac{\partial L}{\partial t}$$

$$= [\lambda_1 a_1 + \dots + \lambda_m a_m]^{\mathrm{T}} \dot{q} - \frac{\partial L}{\partial t}$$
$$= 0$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}^{\mathrm{T}} \dot{q} - L \right) = -\frac{\partial L}{\partial t} = 0$$

• $h(q,\dot{q}) = \frac{\partial L}{\partial \dot{q}}^{\mathrm{T}} \dot{q} - L$, Jacobi integral, energy integral

Form of the Jacobi Integral

$$L = T_2 + T_1 + T_0 - V$$

$$T_2 = \frac{1}{2} \dot{q}^{\mathrm{T}} M \dot{q}, \ T_1 = \left[\frac{\partial x}{\partial t}^{\mathrm{T}} J \frac{\partial x}{\partial q} \right] \dot{q}, \ T_0 = \frac{1}{2} \frac{\partial x}{\partial t}^{\mathrm{T}} J \frac{\partial x}{\partial t}$$

$$\frac{\partial L}{\partial \dot{q}}^{\mathrm{T}} \dot{q} = \left[\dot{q}^{\mathrm{T}} M + \frac{\partial x}{\partial t}^{\mathrm{T}} J \frac{\partial x}{\partial q} \right]^{\mathrm{T}} \dot{q} = 2T_2 + T_1$$

$$h = 2T_2 + T_1 - L$$

$$= T_2 + (V - T_0)$$

$$= T' + V'$$

 $T' = T_2$ = Kinetic energy when all moving constraints/forces are held stationary

 $V' = V - T_0$ = Potential energy that includes effect of inertia forces due to moving constraints

・ロト ・ 日 ト ・ 日 ト ・ 日

Jacobi Integral and Total Energy

• Energy integral equals real energy if T' = T, V' = V, that is, $T_1 = T_0 = 0$

•
$$T_0 = 0 \Longrightarrow \frac{\partial x}{\partial t} = 0$$
, transformation does not depend on time

- A system is called *natural* if $T = T_2$
- Fact: Total energy of a natural system is conserved if the Lagrangian is independent of time

メロト メポト メヨト メヨ

Example: Particle on a Rotating Hoop

$$L = \frac{1}{2}m\left(r^{2}\dot{\theta}^{2} + r^{2}\omega^{2}\sin^{2}\theta + 2gr\cos\theta\right)$$
$$h = \frac{1}{2}mr^{2}\dot{\theta}^{2} - \frac{1}{2}mr^{2}\omega^{2}\sin^{2}\theta - mgr\cos\theta$$
$$V' = -mgr\cos\theta - \frac{1}{2}mr^{2}\omega^{2}\sin2\theta$$
$$-\frac{\partial V'}{\partial \theta} = \underbrace{-mgr\sin\theta}_{\text{gravity torque}} + \underbrace{mr^{2}\omega^{2}\sin\theta\cos\theta}_{\text{centrifugal torque}}$$

・ロト ・ 日 ト ・ ヨ ト ・

Example: Reduced Kepler's Problem

$$\begin{split} R &= \frac{1}{2}\dot{r}^2 - \frac{1}{2}\frac{p_\theta^2}{r^2} + \frac{\mu}{r} \\ h &= \frac{\partial R}{\partial \dot{r}}\dot{r} - R = \frac{1}{2}\dot{r}^2 + \frac{1}{2}\frac{p_\theta^2}{r^2} - \frac{\mu}{r} \\ V' &= \frac{1}{2}\frac{p_\theta^2}{r^2} - \frac{\mu}{r} = \text{potential due to centrifugal + gravity} \end{split}$$

• Can solve reduced problem by quadratures

$$\dot{r} = \sqrt{2h - \frac{p_{\theta}^2}{r^2} + \frac{\mu}{r}}$$

Reduction by using ignorable coordinates, solutions by using energy integral

• • • • • • • • • • • •

Ignorable Coordinates Revisited

- If one set of coordinates has an ignorable coordinates, would every other set have one too?
- Spherical pendulum: ϕ ignorable if, for every $heta, \dot{\phi}, \dot{\theta}$ and ϕ_1, ϕ_2 ,

 $L(\phi_1, \theta, \dot{\phi}, \dot{\theta}) = L(\phi_2, \theta, \dot{\phi}, \dot{\theta}))$

- Lagrangian is invariant under rotations of position and velocity about the vertical axis
- Not invariant under rotations about any other axis
- Any other set of spherical coordinates will not have an ignorable coordinates
- System should continue to have an integral of motion in any coordinates!
- How to find integrals of motion when ignorable coordinates are not obvious?

Prof. S. P. Bhat (IITB)

Transformations

- $\bullet\,$ Existence of ignorable coordinates related to invariance of L under some transformation of q,\dot{q}
- A transformation on the configuration space is an invertible function $h:\mathcal{Q}\to\mathcal{Q}$
 - Rotation about a given axis for a spherical pendulum
 - Rotation about symmetry axis for a particle on a cylinder
 - Rotation about center of attraction in Kepler's problem
 - Rotation about center of mass of a rigid body
 - \blacktriangleright Translation of the center of mass by a given vector v
- \bullet The set of all transformations on ${\cal Q}$ is a group ${\cal G}$
 - If h_1, h_2 aare transformations, then so are $h_1 \circ h_2$, h_1^{-1}
 - ▶ The identity map $id : Q \to Q$ given by id(q) = q is a transformation

イロン 不良と 不良と 不良と

One-Parameter Group of Transformations

• A one-parameter group of transformations on ${\mathcal Q}$ is a map

 $h: \mathbb{R} \to \mathcal{G}$

such that $h_{s1} \circ h_{s2} = h_{s1+s2}$, $h_0 = \mathrm{id}$

• Example: Rotation about z-axis through angle s

Cartesian coordinates: q = (x, y, z),

$$h_s(q) = \begin{bmatrix} \cos s & -\sin s & 0\\ \sin s & \cos s & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}$$

Spherical coordinates: $q = (r, \theta, \phi)$, $h_s(r, \theta, \phi) = (r, \theta, \phi + s)$

• Example: Translation along a vector w by amount s

$$h_s(q) = q + sw$$

イロト イポト イヨト イヨト

Transformation of Velocities

• A velocity v at q_0 transforms to

$$\left. \frac{d}{dt} \right|_{t=0} h_s(q(t)) = \frac{\partial h_s}{\partial q}(q_0) v$$

where q(t) is any curve satisfying $\dot{q}(0)=v,q(0)=q_0$

Translation:
$$h_s(q) = q + sw$$
, $h_s(q(t)) = q(t) + sw$, $\frac{\partial h_s}{\partial q}\dot{q}(0) = \dot{q}(0)$

Rotation: $\frac{d}{dt}\Big|_{t=0} h_s(r(t), \theta(t), \phi(t)) = \left. \frac{d}{dt} \right|_{t=0} (r(t), \theta(t), \phi(t) + s) = (\dot{r}(0), \dot{\theta}(0), \dot{\phi}(0))$

Prof. S. P. Bhat (IITB)

Invariance Under a One-Parameter Group

• A Lagrangian L is *invariant* under the one-parameter group of transformations h_s if

$$L(q, v, t) = L\left(h_s(q), \frac{\partial h_s}{\partial q}(q)v, t\right)$$

for every s, q, v, t

 $\blacktriangleright~L$ has same value at all (q,\dot{q}) obtained by transforming the original (q,\dot{q})

- h_s is a one-parameter group of symmetries
- Example: Spherical pendulum

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - mgz$$
$$h_s(q) = \begin{bmatrix} \cos s & -\sin s & 0\\ \sin s & \cos s & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}, \ \frac{\partial h_s}{\partial q}(q)\dot{q} = \begin{bmatrix} \cos s & -\sin s & 0\\ \sin s & \cos s & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x}\\ \dot{y}\\ \dot{z} \end{bmatrix}$$

- Check: L is invariant under h_s
- Example: Particle on a sphere, no gravity. L invariant under all rotations

Consequences of Invariance

- Fact: If q(t) is a motion of the system, then so is $h_s(q(t))$ for every s
 - ▶ $h_s(q(t))$ satisfies Lagrange's equation if q(t) does
 - Assuming no non-conservative forces, holonomic constraints
 - A transformed motion is also a motion
- Noether's Theorem: If L is invariant under the one-parameter group of transformations h_s , then $p(q, \dot{q}, t) = \frac{\partial L}{\partial \dot{q}}(q, \dot{q}, t)^{\mathrm{T}} \frac{d}{ds} \Big|_{s=0} h_s(q)$ is a first integral
 - $\blacktriangleright \ p(q,\dot{q},t){=}$ generalized momentum along the direction in which h_s tends to change the configuration

イロト イヨト イヨト イヨト

Proof of Noether's Theorem

 $\bullet\,$ Let L be invariant under $h_s\text{, and }q(t)$ be a motion. For all s,t

$$L(h_s(q(t)), \frac{\partial}{\partial t}h_s(q(t)), t) = L(q(t), \dot{q}(t), t)$$

$$\frac{\partial L}{\partial q} \left(h_s(q(t)), \frac{\partial}{\partial t} h_s(q(t)), t \right)^{\mathrm{T}} \frac{\partial}{\partial s} h_s(q(t)) \\ + \frac{\partial L}{\partial \dot{q}} \left(h_s(q(t)), \frac{\partial}{\partial t} h_s(q(t)), t \right)^{\mathrm{T}} \frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} h_s(q(t)) \right) = 0$$

$$\begin{split} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{q}} \left(h_s(q(t)), \frac{\partial}{\partial t} h_s(q(t)), t \right) \right)^{\mathrm{T}} \frac{\partial}{\partial s} h_s(q(t)) \\ &+ \frac{\partial L}{\partial \dot{q}} \left(h_s(q(t)), \frac{\partial}{\partial t} h_s(q(t)), t \right)^{\mathrm{T}} \frac{\partial}{\partial s} \left(\frac{\partial}{\partial t} h_s(q(t)) \right) = 0 \\ &\frac{\partial}{\partial t} \left[\frac{\partial L}{\partial \dot{q}} \left(h_s(q(t)), \frac{\partial}{\partial t} h_s(q(t)), t \right)^{\mathrm{T}} \frac{\partial}{\partial s} h_s(q(t)) \right] = 0 \end{split}$$

$$\bullet \operatorname{Put} s = 0 \quad \frac{d}{dt} \left[\frac{\partial L}{\partial \dot{q}} \left(q(t), \dot{q}(t), t \right)^{\mathrm{T}} \frac{\partial}{\partial s} \Big|_{s=0} h_s(q(t)) \right] = 0 \quad \text{and} \quad t \in \mathbb{R}$$

Emmy Noether

• Algebra

Theory of Rings

・ロト ・四ト ・ヨト ・ヨ

Emmy Noether 1882-1935

Noether's Theorem: An Example

- L is invariant under translations along x $h_s(x, y, l, \theta) = \begin{bmatrix} x + s & y & l & \theta \end{bmatrix}^{\mathrm{T}}$ $\frac{d}{ds}\Big|_{s=0} h_s(x, y, l, \theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$ $p_1 = \begin{bmatrix} \frac{\partial L}{\partial \dot{x}} & \frac{\partial L}{\partial \dot{y}} & \frac{\partial L}{\partial \dot{l}} & \frac{\partial L}{\partial \dot{\theta}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}}$ $= \frac{\partial L}{\partial \dot{x}} = 2m\dot{x} + m\dot{l}\cos\theta - ml\dot{\theta}\sin\theta = m\dot{x} + m\dot{x}_1 = x$ linear momentum
- L is invariant under transformation along $y \Rightarrow y$ linear momentum is conserved

Prof. S. P. Bhat (IITB)

Example (cont'd)

• Rotation about the origin

$$h_s(x, y, l, \theta) = \begin{bmatrix} x \cos s - y \sin s & x \sin s + y \cos s & \theta + s & l \end{bmatrix}^{\mathrm{T}}$$

$$\frac{\partial}{\partial t}h_s(x(t), y(t), l(t), \theta(t)) = \begin{bmatrix} \dot{x}\cos s - \dot{y}\sin s & \dot{x}\sin s + \dot{y}\cos s & \dot{\theta} & \dot{l} \end{bmatrix}^{\mathrm{T}}$$

• L is invariant under rotations (check)

$$\frac{d}{ds}\Big|_{s=0} h_s(q) = \begin{bmatrix} -y & x & 1 & 0 \end{bmatrix}$$
$$= \left(\frac{\partial L}{\partial t}\right)^{\mathrm{T}} \left.\frac{d}{ds}\Big|_{s=0} h_s(q) = m(x+l\cos\theta)(\dot{y}+\dot{l}\sin\theta+l\dot{\theta}\cos\theta) -m(y+l\sin\theta)(\dot{x}+\dot{l}\cos\theta-l\dot{\theta}\sin\theta) +m(x\dot{y}-y\dot{x})$$
$$= \mathbf{k} \cdot [m(\mathbf{r}_1 \times \dot{\mathbf{r}}_1) + m(\mathbf{r}_2 \times \dot{\mathbf{r}}_2)]$$

イロト イヨト イヨト イヨト

 p_3