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Introduction

Space engineering

I Supports astronomy, astrophysics, space sciences, telecommunications,
military, meteorology

Through spacecraft such as

I Interplanetary spacecraft

I Earth satellites

F Unmanned satellites

F Manned space stations

I Reusable space vehicles

This course — earth satellites
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Where to put them?

Orbit dictated by mission

Orbit described in terms of shape, size and orientation

Orbit depends on position and velocity at the start of orbital motion

Orbital mechanics

I Description and prediction of orbital motion
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Aristotle 384BC-322BC

Prof. S. P. Bhat (IITB) Spaceflight Dynamics April 21, 2006 5 / 97



Ptolemy 85AD-165AD
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Copernicus 1473-1543
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Galileo 1564-1642
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Kepler 1571-1630
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Newton 1643-1727
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What do they do up there?

Attitude dynamics (rotational motion)

I Description

F Variables

F Equations of motion

F Solutions

Attitude control
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How to put them there?

Satellites injected by launch vehicles

Initial conditions for orbital motion decided by burnout position and velocity

Rocket performance

I Limited by structural mass

I Leads to staging

Rocket trajectories

I Predict burnout conditions
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Two-Body Problem

Motion of two bodies moving under mutual gravitational acceleration

r

r

Primary

 1

r1

Secondary

 2

 C.M.

2

c

m

m

m1r̈1 = − Gm1m2

|r1 − r2|3
(r1 − r2)

m2r̈2 = − Gm1m2

|r1 − r2|3
(r2 − r1)
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Translation of Center of Mass

Six degrees of freedom

I Three for motion of center of mass

I Three for relative motion

(m1 +m2)r̈c = m1r̈1 +m2r̈2 = 0

Center of mass moves along a straight line with uniform velocity
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Relative Motion

In terms of displacement vector r = r2 − r1 of secondary relative to primary

m1 × second equation −m2 × first equation =⇒

r̈ = − µr

|r3| , µ = G(m1 +m2)

Central force motion with inverse square attraction

Cannot be derived by using Newton’s law directly
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Energy Integral

ṙ · r̈ = − µ

r3
(r · ṙ), r = |r| =

√
r · r

LHS =
d

dt

(
1

2
(ṙ · ṙ)

)
=

d

dt

(
1

2
v2

)

RHS = − µ

r3
d

dt

(
1

2
(r · r)

)
= −1

2

µ

r3
d

dt
(r2) = − µ

r3
rṙ =

d

dt

(µ
r

)

∴

d

dt

(
1

2
v2 − µ

r

)

︸ ︷︷ ︸
E

= 0

Specific energy E = 1
2v

2 − µr−1 = constant

Note: E 6= total mechanical energy of the two-body system
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Conclusions from the Energy Integral

v =

√
2E + 2

µ

r

If E < 0, then v = 0 at r = −µ−1E
I Satellite falls back, orbit is bounded

If E ≥ 0, satellite can be in motion at any distance

I Satellite escapes ??

Escape speed at distance r

vesc
def
=

√
2µ

r

Note: Escape verified as possible but not guaranteed
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Angular Momentum

Specific angular momentum H = r × ṙ

Ḣ = ṙ × ṙ + r × r̈ = 0

H = Constant along the orbit

r and ṙ lie in a fixed plane perpendicular to the constant H

Orbit lies in a plane

I Only uses the fact that H has a constant direction

Prof. S. P. Bhat (IITB) Spaceflight Dynamics April 21, 2006 18 / 97



Areal Rate

Area swept out by the radius vector in a small time increment ∆t

∆A =
1

2
|r(t) × r(t+ ∆t)|

=
1

2
∆t |r(t) × ṙ(t)| =

1

2
∆t |H|

dA

dt
=

1

2
|H| =

1

2
H = constant
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Areal Rate

Kepler’s law of areas: Radius vector sweeps out equal areas in equal interval
of time

So far: Speed as function of radius

Planar nature of orbit

Motion along the orbit

Next: Shape
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Eccentricity Vector

Define eccentricity vector

e
def
= µ−1(ṙ × H) − r−1r

I Lies in the plane of motion

I ė = 0 along motion

Define true anomaly ν to be angle between r and e

Eccentricity e
def
=

√
e · e

µre cos ν = µr · e = r · (ṙ × H)µr

= H2 − µr

∴ r =
H2/µ

1 + e cos ν

r

eν
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Nature of the Orbit

r =
H2/µ

1 + e cos ν

Polar equation of the orbit with

I e as the positive x-axis

I Primary body as the origin

Orbit bounded if and only if e < 1

Also the polar equation of a conic section of eccentricity e with origin at its
focus

Kepler’s law of orbits: Orbit is a conic section with focus at its primary

Conic section: curve of intersection between a right circular cone and a plane
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Conic Sections

Circle
Ellipse

Parabola Hyperbola
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Shape and Size of the Orbit

Shape determined by the eccentricity e

e =

√
2H2E
µ2

+ 1

I e = 0 ⇒ circular orbit

I 0 < e < 1 ⇒ elliptic orbit

I e = 1 ⇒ parabolic orbit

I e > 1 ⇒ hyperbolic orbit

Size determined by the semilatus rectum H2/µ
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Circular Orbits

Zero eccentricity ⇒ r = H2/µ = constant

For a circular orbit, H = rv

=⇒ orbital speed at radius r v =

√
µ

r

E =
1

2
v2 − µ

r
= −1

2

µ

r
< 0
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Elliptic Orbits
0 < e < 1, orbit is elliptical with one focus at the primary

Periapsis (perigee/perihelion) point of closest approach at ν = 0

rp =
H2/µ

1 + e

Apoapsis (apogee/aphelion) farthest point from the primary at ν = π

ra =
H2/µ

1 − e

Semimajor axis a =
rp + ra

2
=
H2/µ

1 − e2

H =
√
µa(1 − e2)

Speed at periapsis vp =
H

rp
=

√
µ

a

(1 + e)

(1 − e)

Total specific energy E =
1

2
v2

p − µ

rp
= − µ

2a
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Geometrical and Mechanical Description

H =
√
µa(1 − e2) a = − µ

2E

E = − µ
2a

e =
√

2H2E
µ2 + 1

rp = a(1 − e) ra = a(1 + e)

vp =
√

µ
a

1+e
1−e

va =
√

µ
a

(1−e)
(1+e)

Semiminor axis b = a
√

1 − e2
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Parabolic Orbits

e = 1, r =
H2/µ

1 + cos ν

Periapsis distance rp =
H2

2µ
, vp =

H

rp
=

2µ

H

E =
1

2
v2

p − µ

rp
= 0

∴ v =

√
2µ

r
→ 0 as r → ∞

I Just enough energy to reach ∞ at rest

vesc =

√
2µ

r
is sufficient for escape. v ≥ vesc guarantees escape
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Hyperbolic Orbits

e > 1, orbit is one branch of a hyperbola with its focus at the primary

r → ∞ as v → v∞
def
= π − cos−1 1/e

speed v =

√
2(E +

µ

r
) → hyperbolic excess velocity v∞

def
=

√
2E as r → ∞

Periapsis distance

rp =
H2/µ

1 + e
vp =

H

rp
=
µ(1 + e)

H

E =
µ2(e2 − 1)

2H2
v∞ =

µ

H

√
e2 − 1
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Hyperbolic Orbits

e > 1, orbit is one branch of a hyperbola with its focus at the primary

r → ∞ as v → v∞
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= π − cos−1 1/e

speed v =

√
2(E +

µ

r
) → hyperbolic excess velocity v∞

def
=

√
2E as r → ∞
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rp =
H2/µ

1 + e
vp =

H

rp
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µ(1 + e)

H

E =
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2H2
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µ

H

√
e2 − 1
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Geometric Description of Hyperbolic Orbits

rp

ν 8

c
a

ν
r

H = v∞c sin ν∞ = c
µ

H

√
e2 − 1

(√
e2 − 1

e

)

c =
H2

µ

e

e2 − 1

Semimajor axis a = c− rp =
H2

µ(e2 − 1)
=
c

e
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Geometric versus Mechanical Description

H =
√
µa(e2 − 1) a =

µ

2E

E =
µ

2a
e =

√
2H2E
µ2

+ 1

rp = a(e− 1)

vp =

√
µ

a

(e+ 1)

(e− 1)

v∞ =

√
µ

a
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Motion Along an Elliptic Orbit: Orbital Period

Total area of orbit = πab = πa2
√

1 − e2

Areal rate
dA

dt
=
H

2
=

1

2

√
µa(1 − e2)

I Orbital period T = 2π

√
a3

µ

Kepler’s law of periods

(period)2 ∝ (semimajor axis)3
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Motion along an Elliptic Orbit: Kepler’s Equation
Need position along the orbit as function of time

Use Kepler’s law of areas — need area of a sector of an ellipse

A"O’

A’Auxiliary
circle

a
ae

ν
r

E
B

A

O

Area(OAB) =
b

a
Area(OA′B) =

b

a
[Area(O′A′B) − Area(O′A′O)]

Area(O′A′B) = 1
2a

2E, Area(O′A′O) = 1
2 (ae)a sinE = 1

2a
2e sinE

Area(OAB) =
1

2
ab(E − e sinE)

Prof. S. P. Bhat (IITB) Spaceflight Dynamics April 21, 2006 33 / 97



Kepler’s Equation

Let tp be the instant of periapsis passage

Area(OAB)

t− tp
=

1

2
H

}
Law of areas

E − e sinE =
H(t− tp)

ab
=

√
µ

a3
(t− tp)

Define mean motion

n
def
=

2π

T
=

√
µ

a3

Kepler’s equation:

E − e sinE = n(t− tp)︸ ︷︷ ︸
Mean anomaly M
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True and Eccentric Anomalies

Need to relate E and ν

O′A′′ = OO′ + OA′′

a cosE = ae+ r cos ν

Use polar equation of the orbit

cosE =
(e+ cos ν)

(1 + e cos ν)

2 sin2 (E/2) = 1 − cosE =
(1 − e)2 sin2 (ν/2)

(1 + e cos ν)

2 cos2 (E/2) = 1 + cosE =
(1 + e)2 cos2 (ν/2)

(1 + e cos ν)

tan (E/2) =

√
(1 − e)

(1 + e)
tan (ν/2)

Use along with Kepler’s equation to find ν as function of time
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Geocentric Frame
Need to describe orientation of the orbit or position of the satellite

I With respect to an earth/inertial frame

I Using quantities that help to visualize the orbit

Define a non-rotating geocentric frame with

I Origin at earth’s center

I Axes directions fixed with respect to solar system

Z axis along earth’s axis of rotation pointing north

I Precesses with a period of 25, 800 years

I Nutates with an amplitude 9′′ and period 18.6 years

X axis along the line of intersection of earth’s orbital plane (ecliptic) and
earth’s equatorial plane

I Along line joining the equinoxes, pointing along the vernal equinox

I Along the first point of Aries
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The Ecliptic
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The Ecliptic: View from Earth
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First Point of Aries
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Orientation of the Orbit: Right Ascension

Line of Nodes

Y

Z
H

e

ω
Ω i

Node

Ascending

Orbit

X Node

Descending

Ascending node — point where the orbit crosses equatorial plane from S to N

Right ascension of ascending node Ω

I Eastward from the X axis to the ascending node

0 ≤ Ω < 2π
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Orientation of the Orbit: Inclination

Inclination of the orbit i

I Measured at the ascending node between east and direction of motion

0 ≤ i < π

F i < 90
◦ — prograde orbit, orbital motion in the same direction as earth’s

rotation

F i > 90
◦ — retrograde orbit

F i ' 90
◦ — polar orbit

F i = 0
◦ — equatorial orbit

F Inclination determines north and south limits of visibility
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Orientation of the Orbit: Argument of Perigee

Line of Nodes

Y

Z
H

e

ω
Ω i

Node

Ascending

Orbit

X Node

Descending

Argument of perigee ω — measured in the orbital plane from the ascending
node along the motion 0 ≤ ω < 2π

Ω, i, ω describe the orientation of the orbit with respect to the geocentric
frame

In addition, a determines the size, e the shape

Six classical orbital elements a, e, i, ω, Ω, tp
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Determination of Classical Elements from Initial Conditions

Given r and v = ṙ

I Compute E , H, H, e, e

Line of nodes is perpendicular to H and k

I Unit vector along the line of nodes (pointing to the ascending node)

n = |k × H|−1(k × H)

I Ω ∈ [0, 2π) from n = cos(Ω)i + sin(Ω)j

Compute i ∈ [0, π] from cos i =
k · H
H

Compute ω ∈ [0, 2π), the angle between n and e, by cosω =
n · e
e

ω = cos−1 n · e
e
, e · k ≥ 0

= 2π − cos−1 n · e
e
, e · k < 0
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Determination of Classical Elements (continued)

To find tp, first find initial anomaly ν from cos ν =
e · r
er

ν = cos−1 e · r
er

, v · e ≤ 0 (satellite traveling from perigee to apogee)

= 2π − cos−1 e · r
er

, v · e > 0 (satellite traveling from apogee to perigee)

Compute initial eccentric anomaly

tan(E/2) =

√
(1 − e)

(1 + e)
tan(ν/2)

Compute tp from Kepler’s equation

√
µ

a3
(t0 − tp) = E − e sinE
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Determination of Position and Velocity

Given t, a, e, i, Ω, ω, tp

Compute eccentric anomaly at t

E − e sinE =

√
µ

a3
(t− tp)

Compute true anomaly at t

√
(1 − e)

(1 + e)
tan(ν/2) = tan(E/2)

Compute geocentric distance at t

r =
a(1 − e2)

1 + e cos ν

I Position in the orbital plane determined

I Need to transform to geocentric coordinates
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Position in Perifocal Frame

Introduce a perifocal coordinate system, origin at earth’s center and unit
vectors

I p pointing to the perigee

I q along the position ν = 90◦

I w orthogonal to the orbital frame such that p × q = w

Y

Z

ω
Ω i

X

p
q

w

r = r cos ν p + r sin ν q
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Velocity in Perifocal Frame

ṙ = (ṙ cos ν − rν̇ sin ν)p + (ṙ sin ν + rν̇ cos ν)q

To find rν̇, note H = r × ṙ = r2ν̇w

rν̇ =
H

r
=

√
µ

a(1 − e2)
(1 + e cos ν)

To find ṙ, differentiate polar equation

ṙ =

√
µ

a(1 − e2)
e sin ν

Perifocal components of velocity

ṙ =

√
µ

a(1 − e2)
[− sin ν p + (e+ cos ν) q]

Need to transform to geocentric frame
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Transformation to Geocentric Frame

To obtain the transformation, perform a sequence of 3 rotations on G to get
P

I Rotate G about Z through Ω to get G1

I Rotate G1 about X through i to get G2

I Rotate G2 about Z through ω to get P

For any vector r

rG = R1(Ω)(rG1
)

rG1
= R2(i)(rG2

)

rG2
= R3(ω)(rP )

rG = R1(Ω)R2(i)R3(ω)rP
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Transformation Matrices

G1
G

X

YΩ

R1(Ω) =




cos Ω − sin Ω 0
sinΩ cos Ω 0

0 0 1




G1

2G

Y

Z

i
R1(i) =




1 0 0
0 cos i − sin i
0 sin i cos i




2G

X

Yω

P

R1(ω) =




cosω − sinω 0
sinω cosω 0

0 0 1



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Geocentric Components of Position and Velocity

rG = R1(Ω)R2(i)R3(ω)



r cos ν
r sin ν

0




ṙG =

√
µ

a(1 − e2)
R1(Ω)R2(i)R3(ω)




− sin ν
e+ cos ν

0



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Complete Solution of the Two-Body Problem

r

r

Primary

 1

r1

Secondary

 2

 C.M.

2

c

m

m

r2 − rc =
m1

m1 +m2
r

r1 − rc = − m2

m1 +m2
r

Each body moves along a conic section with focus at the center of mass

Prof. S. P. Bhat (IITB) Spaceflight Dynamics April 21, 2006 51 / 97



Satellite Tracking and Orbit Determination

Predicting orbit from measured position and velocity data

Position and velocity known only at injection point from launch vehicle INS

Optical tracking
I Each observation yields right ascension and declination, no range information
I Three observations required to determine orbit
I Observations made from rotating, translating earth
I Approximate method by Laplace, exact method by Gauss

Radar tracking for low-earth satellites
I Azimuth, elevation, range in each observation
I Some method interpolate between closely spaced observations, differentiate to

get velocity
I Other use two position measurement with elapsed time

Range–range-rate tracking for deep space craft
I Range-rate measured by using Doppler shift
I No angular information available
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Errors in Orbit Determination

Measurement errors lead to errors in estimated orbital parameters

Errors between actual position and estimated position grows with time

I Example: error in period

I Need for improving accuracy by making new observations and updating the
orbit

I Need for correcting the orbit

Body of observations increases with time

I Use all data rather than the minimum amount required

I Best fit — method of least squares
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Carl Friedrich Gauss

Carl Friedrich Gauss

1777-1855

Number theory

Astronomy

Statistics

Analysis

Differential geometry

Geodesy

Geomagnetism
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Orbital Maneuvers

Needed to transfer a geostationary satellite from its low earth parking orbit to
its final high altitude geostationary orbit

Needed to correct changes in orbital elements due to perturbing forces

Impulsive thrust maneuvers

I Velocity changes instantaneously without change in position

I Thrust duration (burn times) small compared to orbital period (coast time)

Hohmann transfer between two coplanar circular orbits
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Hohmann Transfer

Two impulsive maneuvers

I Apogee boost: increase speed from vc1 to v1 so that the satellite enters an
elliptical transfer orbit with apogee on the final orbit

I Circularization: increase speed at the apogee of the transfer orbit to enter the
final circular orbit
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Hohmann Transfer (cont’d)

Circular orbits

vc1
=

√
µ

a1
, vc2

=

√
µ

a2

Transfer orbit

a =
a1 + a2

2
, v1 =

√
2

(
µ

a1
− µ

a1 + a2

)
, v2 =

√
2

(
µ

a2
− µ

a1 + a2

)

Impulse magnitudes

∆v1 = v1 − vc1

∆v2 = vc2
− v2

Minimum duration between maneuvers

=
T

2
= π

√
a3

µ
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Inclination Change Maneuver

Needed if geostationary satellite is not launched from the equator

Combined with one of the maneuvers (usually second) of the Hohmann
transfer

I To calculate magnitude and direction of the impulse required

|∆v2|2 = vc2

2 + v2
2 − 2vc2

v2 cos i
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Coordinate Transformation

View classical elements as new coordinates

x
def
=
[
rx ry rz vx vy vz

]T
= Φ(a, e, i, Ω, w, M)

Inverse transformation known

[
a e i Ω w M

]T
= Φ−1(x)

Equations of motion in the two-body problem

ẋ =
[
ṙx ṙy ṙz v̇x v̇y v̇z

]T
= f (rx, ry, rz, vx, vy, vz) = f(x)

Use transformation to write equation of motion in terms of classical elements

[
ȧ ė i̇ Ω̇ ẇ Ṁ

]T
=
∂Φ

∂x

−1

f (Φ (a, e, i, Ω, w, M))

In the two-body problem

[
ȧ ė i̇ Ω̇ ẇ Ṁ

]T
=
[
0 0 0 0 0 n

]T
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Perturbation Forces

Inhomogeneity and oblateness of earth

Third body gravitational influence, eg. sun, moon

Solar wind

Solar radiation pressure

Atmospheric drag in low earth orbit

ẋ = f(x) + p(x, t)︸ ︷︷ ︸
perturbation

[
ȧ ė i̇ Ω̇ ẇ Ṁ

]T
=
[
0 0 0 0 0 n

]T
+ perturbation

Trajectory no longer a conic section
I Can be thought of as path traced by a point on an ellipse that is osculating,

that is, changing shape, size and orientation

x(t) = Φ (a(t), e(t), i(t), Ω(t), w(t), M(t))
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Gauss’s Planetary Equation

Resolve perturbation force along perifocal frame

Perturbation force = Pp +Qq +Ww

ȧ =
2

n
√

1 − e2
[eP sin ν + (1 + e cos ν)Q]

ė =

√
1 − e2

na
[P sin ν + (cosE + cos ν)Q]

i̇ =
1

na
√

1 − e2
rW

a
cos (ν + ω)

Ω̇ =
1

na
√

1 − e2
rW

a

sin(ν + ω)

sin i

ω̇ =

Ṁ =
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Earth Inhomogeneity and Oblateness
Gravitational potential due to earth in spherical coordinates

U(r, λ, φ) = −µ
r

+B(r, λ, φ)︸ ︷︷ ︸
perturbation

B(r, λ, φ) =
µ

r





∞∑

n=2




(
Re

r

)n

JnPn(sinλ)

︸ ︷︷ ︸
oblateness

+

n∑

m=1

Jmn

(
Re

r

)n

(Cnm cosmφ+ Snm sinmφ)︸ ︷︷ ︸
asymmetry

Pnm(sinλ)








I Re = mean equatorial radius
I Pn = Legendre polynomials
I Pnm = Legendre functions of the first kind
I Jn, Cnm, Snm = coefficients
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Effect of J2 Perturbation

J2 is two orders of magnitude larger than others

I Arises from the first-order deviation of the oblate earth from a sphere

Small periodic changes in a, e, i with

ȧ ' 0, ė ' 0, i̇ ' 0

Secular changes in Ω, w, M

I Regression of nodes:
dΩ

dt
= −

3

2
n

J2 cos i

(1 − e2)2

(
Re

a

)2

I Advance of perigee:
dw

dt
= −

3

4
n J2

(1 − 5 cos2 i)

(1 − e2)2

(
Re

a

)2

I Change in mean anomaly:
dM

dt
= n+

3nJ2(3 cos2 i− 1)

4(1 − e2)3/2

(
Re

a

)2

Superimposed periodic variations + secular and periodic variations due to
higher order terms
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Application: Sun Synchronous Orbits

Orbits that have a nodal regression rate of 360◦ per year

Orbital plane makes a constant angle with respect to sun

Sun

Satellite revisits any point at the same local time

I Useful for earth observation satellites

I Solar illumination the same in pictures takes at different times
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Launch to Rendezvous

Launch a spacecraft to rendezvous with a space station already in the orbit

Problem: Find time of launch so that both orbits are coplanar

I Orbital plane changes after injection is expensive

I Turning the launch vehicle into the required plane is also expensive

I
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Launch to Rendezvous

Launch a spacecraft to rendezvous with a space station already in the orbit

Problem: Find time of launch so that both orbits are coplanar

I Orbital plane changes after injection is expensive

I Turning the launch vehicle into the required plane is also expensive

Solution: Launch when launch site lies in the space station orbital plane

I For a given latitude, this occurs at most twice in every sidereal day
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Projection of the Orbit
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Geometry of Coplanar Launch to Rendezvous
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Launch Times for Rendezvous

sin δ = tanλ cot i

Two solutions which add up to 180◦

Right ascension of launch site

= α+ φ = Ω + δ

Right ascension of Greenwich meridian

α = α0 +
2π

Tsidereal
(t− t0)

Launch time

t = t0 +
Tsidereal

2π
(Ω + δ − φ− α0)

I Two solutions

Launch azimuth

sinA =
cos i

cosλ
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Rotational Motion of Satellites

Orbital dynamics: satellites treated as point masses

Rotational motion as extended bodies has to be considered

Attitude maneuvering

I Pointing requirements of optical, communications, imaging payload

I Solar panel orientation

I Thruster orientation for orbital maneuvers and station keeping

Treat satellite as a rigid body

I Collection of particles such that the distance between any two remains fixed

I Six degrees of freedom, 3 translational + 3 rotational
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Translational Dynamics of a Rigid Body
Consider a rigid arrangement of a finite number of particles

For the ith particle

Fi ext +
N∑

j 6=i

Fij = miai

Fext
def
=

N∑

i=1

Fi ext +

N∑

i=1

N∑

j 6=i

Fij

︸ ︷︷ ︸
=0

=

N∑

i=1

miai

Fext = Macm, acm =

∑
miai∑
mi

Translates as a point particle of mass M located at center of mass under
Fext

Rotational and translational motions decoupled?
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Rotational Dynamics of a Rigid Body

Take moments of Newton’s law about some convenient point

R ρ

CM

Inertial Frame

dm

r

d
O

dF = dm r̈ = dm (R̈ + d̈ + ρ̈)

dMO = (d + ρ) × dF = (d + ρ) × (R̈ + d̈ + ρ̈)dm

Prof. S. P. Bhat (IITB) Spaceflight Dynamics April 21, 2006 73 / 97



Rotational Dynamics of a Rigid Body (cont’d)

MO =

∫ [
(d + ρ) × (d̈ + ρ̈)

]
dm+

∫
(d × R̈)dm+

∫
(ρ × R̈)dm

=

∫
d

dt

[
(d + ρ) × (ḋ + ρ̇)

]
dm

︸ ︷︷ ︸
dHO

+(d × R̈)

∫
dm

︸ ︷︷ ︸
M

+

(∫
ρdm

)

︸ ︷︷ ︸
=0

×R̈

=
d

dt
HO +m(d × R̈)

If O is inertially fixed (R̈ = 0) or the center of mass (d = 0) then

MO =
d

dt
HO Attitude dynamics equation

I HO = moment about O of linear momentum relative to O
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Attitude Representation

Consider two right handed orthonormal frames

I I with unit vectors l,m,n, B with unit vectors i, j,k

Components of any vector v along I and B

(v)I =
[
v.l v.m v.n

]T
, (v)B =

[
v.i v.j v.k

]T

(v)I =




v1
B i.l + v2

B j.l + v3
B k.l

v1
B i.m + v2

B j.m + v3
B k.m

v1
B i.n + v2

B j.n + v3
B k.n


 =




i.l j.l k.l
i.m j.m k.m
i.n j.n k.n





v1

B

v2
B

v3
B




=
[
(i)I (j)I (k)I

]
(v)B

There exists a unique matrix R such that R(v)B = (v)I for every v

R determined solely by orientation of B relative to I

R— special orthogonal matrix, rotation matrix, direction cosine matrix

RTR = I

detR = 1
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An Alternative Situation

Rotate a frame to go from I to B

What are the new I-components of a vector fixed to the moving frame?

I B
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An Alternative Situation

Rotate a frame to go from I to B

What are the new I-components of a vector fixed to the moving frame?

I B

old I components = new B components
new I components = R · (new B components)

= R · (old I components)

R relates
I Components of a given vector in two frames
I Components of a rotated vector to its original components in the same frame
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Rotation Matrix for an Elementary Rotation

Rotate I about a unit vector v through an angle θ to obtain B

(v)I = (v)B
def
= v ∈ R

3

Transformation matrix

R(v, θ) = I + (1 − cos θ)(v×)2 + sin θ(v×)

I =




1 0 0
0 1 0
0 0 1


 , (v×) =




0 −v3 v2
v3 0 −v1
−v2 v1 0




I If (u)B = u ∈ R
3, then

(v × u)B = (v×)u
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Elementary Rotation (cont’d)
Check:

I Rv = v

I Let u ⊥ v, u · u = 1. Let w be obtained from u by rotation about v

u v
w

u

v

θ

(w)B = (u)I
def
= u

w = cos θu + sin θ(v × u)

= u + (1 − cos θ) (v × (v × u)) + sin θ(v × u)

(w)I = [I + (1 − cos θ)(v×)2 + sin θ(v×)]u

= R(w)B
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Composite Rotations

(x)
I

(x) C (x)A (x)
B

BC A
ψ/ θ/ φ/

α
u v w

R R R321(   ψ) (   θ) (   φ)u, v, w,

Rcomposite = R1(u, ψ)R2(v, θ)R3(w, φ)

Composition of rotations ∼ matrix multiplication on the right

Noncommutativity of matrix multiplication ∼ non commutativity of rotations
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Relative Motion Between Frames
Frame B rotates relative to I (not necessarily about a fixed axis)

r1, r2, r3 vectors fixed in B, r1, r2 linearly independent

ṙ1, ṙ2, ṙ3 instantaneous derivatives with respect to I

I r1 · r1 = constant ⇒ ṙ1 · r1 = 0

I r1 · r2 = constant ⇒ ṙ1 · r2 + r1 · ṙ2 = 0

r3 = α1r1 + α2r2 + α3(r1 × r2)

ṙ3 = α1ṙ1 + α2ṙ2 + α3(ṙ1 × r2 + r1 × ṙ2)

=⇒ (ṙ1 × ṙ2) · ṙ3 = 0

Instantaneous derivative of every vector fixed in B lies in the plane
perpendicular to (ṙ1 × ṙ2)

ṙ = α(r)(e × r)

I e = unit vector along (ṙ1 × ṙ2)
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Relative Motion (cont’d)

r1, r2 vectors fixed in B, linearly independent from e

ṙ1 = α(r1)(e × r1)

ṙ2 = α(r2)(e × r2)

r2 · ṙ1 + ṙ2 · r1 = 0 =⇒ α(r1) = α(r2) = constant

There exists a vector ω such that instantaneous derivatives of vectors in B
are given by

ṙ = ω × r

ω = instantaneous angular velocity of B relative to I
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Attitude Kinematics

B rotates relative to I

Instantaneous relative orientation described by rotation matrix R(t)
I How does R vary?

For any vector fixed in B,

(ṙ)I =
d

dt
(r)I =

d

dt
R(r)B = Ṙ(r)B +R

d

dt
(r)B

︸ ︷︷ ︸
=0

(ṙ)I = (ω × r)I = R(ω × r)B = R(ω×)(r)B

Ṙ = R(ω×) Attitude kinematics equation

(ω×) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




ω =column vector of B components of instantaneous angular velocity of B
relative to I
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Attitude Kinematics Equation

Used for

I Navigation

I Control design

I Simulation

Solution involves integrating 9 differential equations

I R contains 9 elements subject to 6 constraints, only 3 free parameters

Question: Is it possible to parametrize rotation matrices with fewer
parameters?

I If yes, rewrite attitude kinematics in terms of fewer parameters
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Euler Angles

Fact: Given a sequence of unit vectors v1,v2,v3 fixed in I such that no two
consecutive vectors are linearly dependent, I can be rotated to any desired
orientation by a sequence of three rotations, one each about v1,v2,v3

I For every rotation matrix R, there exist ψ, θ, φ such that

R = R1(v1, ψ)R2(v2, θ)R3(v3, φ)

Examples:
I 3-2-1 Euler angles used in aircraft; v1 = n,v2 = m,v3 = l

I 3-1-3 Euler angles; v1 = n,v2 = l,v3 = n

Problem: Euler angles do not combine well for successive rotations

ψ
1 θ1

φ 1 ψ
2 θ 2

φ
2

I B

C

???
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Axis-Angle Variables

Euler’s Theorem: Given two frames I and B, there exists an axis-angle pair
(v, θ) such that I coincides with B when rotated about v through θ

I For every rotation matrix R, there exist v ∈ R
3, θ ∈ [0, 2π) such that

R = R(v, θ) = I + (1 − cos θ)(v×)2 + sin θ(v×)

q1

q 2

1

2

3
3’’

3’

2’
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Axis-Angle Variables

Euler’s Theorem: Given two frames I and B, there exists an axis-angle pair
(v, θ) such that I coincides with B when rotated about v through θ

I For every rotation matrix R, there exist v ∈ R
3, θ ∈ [0, 2π) such that

R = R(v, θ) = I + (1 − cos θ)(v×)2 + sin θ(v×)

q 2

θ1

1

2

3
3’’

2’

3’
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Axis-Angle Variables

Euler’s Theorem: Given two frames I and B, there exists an axis-angle pair
(v, θ) such that I coincides with B when rotated about v through θ

I For every rotation matrix R, there exist v ∈ R
3, θ ∈ [0, 2π) such that

R = R(v, θ) = I + (1 − cos θ)(v×)2 + sin θ(v×)

θ1

θ2

1

2

3
3’’

2’

3’

1θ /2

θ2/2

1θ

θ2

a

b

1
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Axis-Angle Variables

Euler’s Theorem: Given two frames I and B, there exists an axis-angle pair
(v, θ) such that I coincides with B when rotated about v through θ

I For every rotation matrix R, there exist v ∈ R
3, θ ∈ [0, 2π) such that

R = R(v, θ) = I + (1 − cos θ)(v×)2 + sin θ(v×)

Problem: Axis angle variables do not combine well for successive rotations

v2 θ 2v1 θ1

I B

C

???
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Leonhard Euler

Leonhard Euler

1707-1783

Rigid body motion

Fluid mechanics

Solid mechanics

Number theory

Real and complex analysis

Calculus of variations

Differential geometry and
topology

Differential equations

Mathematical notation
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Attitude Kinematics with Euler Angle

To obtain attitude kinematics in terms of ψ, θ, φ, substitute

R = R1(v1, ψ)R2(v2, θ)R3(v3, φ) in Ṙ = R(w×)

I Solve for ψ̇, θ̇, φ̇

Example: 3-2-1 Euler angles



φ̇

θ̇

ψ̇


 =




1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ



−1

︸ ︷︷ ︸
singular at θ=±90◦



ω3

ω2

ω1




Fact: Every three-parameter representation of attitude possesses a kinematic
singularity

I Euler angles suitable only for simulating limited angular motion
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Quaternions

q = q0︸︷︷︸
Real part

+ q1i + q2j + q3k︸ ︷︷ ︸
Imaginary part

To multiply quaternions, use

ii = jj = kk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

I Multiplication noncommutative

Conjugate
q = q0 − q1i − q2j − q3k

Magnitude =
√
qq =

√
q21 + q22 + q23 + q24

If v = [v1 v2 v3]
T, then define v̂ = v1i + v2j + v3k
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Quaternion Representation of Rotations

If I is rotated through θ about unit vector v to obtain B, set

q = cos
θ

2
+ sin

θ

2
v̂

I Unit quaternion

If xB = (x)B and xI = (x)I then

x̂I = qx̂Bq

I No trigonometric formulae

q−1
B→I = qB→I = qI→B

qB→I = qC→IqB→C
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William Rowan Hamilton

William Rowan Hamilton

1805-1865

Algebra

Optics

Mechanics
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Attitude Dynamics Revisited

M = Ḣ

I M = moment of external forces about center of mass
I H = angular momentum of body about center of mass
I Derivative with respect to inertial frame

Let B be a body fixed frame with unit vectors i, j,k

H = H1i +H2j +H3k, HB = [H1 H2 H3]
T

ω = ω1î+ ω2ĵ + ω3k̂, ωB = [ω1 ω2 ω3]
T

M = M1î+M2ĵ +M3k̂, MB = [M1 M2 M3]
T

Ḣ = Ḣ1î+ Ḣ2ĵ + Ḣ3k̂ + (ω × H)

(M)B = (Ḣ)B =
d

dt
HB + (ω × H)B =

d

dt
HB + (ωB×)HB

d

dt
HB = −(ωB×)HB +MB

Attitude dynamics equation in terms of body components
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Body Component of Angular Momentum

R ρ

CM

Inertial Frame

dm

r

d
O

∫
(ρ×ρ̇)dm =

∫
ρ×(ω×ρ)dm = −

∫
(ρ×(ρ×ω))dm

Let

ρ= x̂i+ yĵ + zk̂, ρB = [x y z ]T, (ρB×) =




0 −z y
z 0 −x
−y x 0




HB = −
∫

(ρ×(ρ×ω))Bdm =
∫

(ρB×)(ρ×ω)Bdm = −
∫

((ρB×)2ωB)dm

IB = −
∫

(ρB×)
2
dm =



∫

(y2 + z2)dm −
∫
xydm −

∫
xzdm

−
∫
xydm

∫
(x2 + z2)dm −

∫
yzdm

−
∫
xzdm −

∫
yzdm

∫
(x2 + y2)dm




HB = IBωB

IB = moment-of-inertia matrix about body axes
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Principal Axes of Inertia

Moment-of-inertia matrix about inertial axes

HI = RHB = RIBωB = RIBR
TωI = II = RIBR

T

I II varies as body rotates

Two body frames, B amd B′, related by rotation matix R

HB = IBωB, HB′ = IB′ωB′

HB = RHB = RIBωB = RIBR
TωB′ , IB′ = RIBR

T

Fact: There exsists a rotation matrix R such that RIBR
T =



I1 0 0
0 I2 0
0 0 I3




There exists a body frame B′ such that IB′ = digonal
I Corresponding axes are principal axes of inertia, I1, I2, I3 are principal moment

of inertia
I Principal axes are along eigenvectors of IB
I Principal moments of inertia are eigenvalues of IB
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Euler’s Equation for Rotational Dynamics

d

dt
HB = −(ωB×)HB + MB

Put HB = IBωB, IB constant

IBω̇B = −(ωB×)IBωB +MB

I Determine evolution of angular velocity component
I Determine rotational motion together with attitude kinematics equation

Euler’s equation written for principal axes of inertia

ω̇1 = − (I3 − I2)

I1
ω2ω3 +

1

I1
M1

ω̇2 = − (I1 − I3)

I1
ω1ω3 +

1

I2
M2

ω̇3 = − (I2 − I1)

I3
ω1ω2 +

1

I3
M3
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