Spaceflight Dynamics

Prof. S. P. Bhat
Department of Aerospace Engineering
Indian Institute of Technology, Bombay

April 21, 2006

Outline

(1) Orbital Mechanics
(2) Attitude Dynamics

Introduction

- Space engineering
- Supports astronomy, astrophysics, space sciences, telecommunications, military, meteorology
- Through spacecraft such as
- Interplanetary spacecraft
- Earth satellites
* Unmanned satellites
* Manned space stations
- Reusable space vehicles
- This course - earth satellites

Where to put them?

- Orbit dictated by mission
- Orbit described in terms of shape, size and orientation
- Orbit depends on position and velocity at the start of orbital motion
- Orbital mechanics
- Description and prediction of orbital motion

Aristotle 384BC-322BC

Ptolemy 85AD-165AD

Copernicus 1473-1543

Galileo 1564-1642

Kepler 1571-1630

Newton 1643-1727

What do they do up there?

- Attitude dynamics (rotational motion)
- Description
* Variables
\star Equations of motion
* Solutions
- Attitude control

How to put them there?

- Satellites injected by launch vehicles
- Initial conditions for orbital motion decided by burnout position and velocity
- Rocket performance
- Limited by structural mass
- Leads to staging
- Rocket trajectories
- Predict burnout conditions

Two-Body Problem

- Motion of two bodies moving under mutual gravitational acceleration

$$
\begin{aligned}
& m_{1} \ddot{\mathbf{r}}_{1}=-\frac{G m_{1} m_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{3}}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \\
& m_{2} \ddot{\mathbf{r}}_{2}=-\frac{G m_{1} m_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{3}}\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right)
\end{aligned}
$$

Translation of Center of Mass

- Six degrees of freedom
- Three for motion of center of mass
- Three for relative motion

$$
\left(m_{1}+m_{2}\right) \ddot{\mathbf{r}}_{\mathrm{c}}=m_{1} \ddot{\mathbf{r}}_{1}+m_{2} \ddot{\mathbf{r}}_{2}=0
$$

- Center of mass moves along a straight line with uniform velocity

Relative Motion

- In terms of displacement vector $\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}$ of secondary relative to primary

$$
\begin{gathered}
m_{1} \times \text { second equation }-m_{2} \times \text { first equation } \Longrightarrow \\
\ddot{\mathbf{r}}=-\frac{\mu \mathbf{r}}{\left|\mathbf{r}^{3}\right|}, \quad \mu=G\left(m_{1}+m_{2}\right)
\end{gathered}
$$

- Central force motion with inverse square attraction
- Cannot be derived by using Newton's law directly

Energy Integral

$$
\begin{gathered}
\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}}=-\frac{\mu}{r^{3}}(\mathbf{r} \cdot \dot{\mathbf{r}}), \quad r=|\mathbf{r}|=\sqrt{\mathbf{r} \cdot \mathbf{r}} \\
\mathrm{LHS}=\frac{d}{d t}\left(\frac{1}{2}(\dot{\mathbf{r}} \cdot \dot{\mathbf{r}})\right)=\frac{d}{d t}\left(\frac{1}{2} v^{2}\right) \\
\text { RHS }=-\frac{\mu}{r^{3}} \frac{d}{d t}\left(\frac{1}{2}(\mathbf{r} \cdot \mathbf{r})\right)=-\frac{1}{2} \frac{\mu}{r^{3}} \frac{d}{d t}\left(r^{2}\right)=-\frac{\mu}{r^{3}} r \dot{r}=\frac{d}{d t}\left(\frac{\mu}{r}\right) \\
\therefore \frac{d}{d t} \underbrace{\left(\frac{1}{2} v^{2}-\frac{\mu}{r}\right)}_{\mathcal{E}}=0
\end{gathered}
$$

- Specific energy $\mathcal{E}=\frac{1}{2} v^{2}-\mu r^{-1}=$ constant

Note: $\mathcal{E} \neq$ total mechanical energy of the two-body system

Conclusions from the Energy Integral

$$
v=\sqrt{2 \mathcal{E}+2 \frac{\mu}{r}}
$$

- If $\mathcal{E}<0$, then $v=0$ at $r=-\mu^{-1} \mathcal{E}$
- Satellite falls back, orbit is bounded
- If $\mathcal{E} \geq 0$, satellite can be in motion at any distance
- Satellite escapes ??
- Escape speed at distance r

$$
v_{\mathrm{esc}} \stackrel{\text { def }}{=} \sqrt{\frac{2 \mu}{r}}
$$

Note: Escape verified as possible but not guaranteed

Angular Momentum

- Specific angular momentum $\mathbf{H}=\mathbf{r} \times \dot{\mathbf{r}}$

$$
\begin{aligned}
\dot{\mathbf{H}} & =\dot{\mathbf{r}} \times \dot{\mathbf{r}}+\mathbf{r} \times \ddot{\mathbf{r}}=0 \\
\mathbf{H} & =\text { Constant along the orbit }
\end{aligned}
$$

- \mathbf{r} and $\dot{\mathbf{r}}$ lie in a fixed plane perpendicular to the constant \mathbf{H}
- Orbit lies in a plane
- Only uses the fact that \mathbf{H} has a constant direction

Areal Rate

- Area swept out by the radius vector in a small time increment Δt

$$
\begin{aligned}
\Delta A & =\frac{1}{2}|\mathbf{r}(t) \times \mathbf{r}(t+\Delta t)| \\
& =\frac{1}{2} \Delta t|\mathbf{r}(t) \times \dot{\mathbf{r}}(t)|=\frac{1}{2} \Delta t|\mathbf{H}| \\
\frac{d A}{d t} & =\frac{1}{2}|\mathbf{H}|=\frac{1}{2} H=\text { constant }
\end{aligned}
$$

Areal Rate

- Kepler's law of areas: Radius vector sweeps out equal areas in equal interval of time
- So far: Speed as function of radius

Planar nature of orbit
Motion along the orbit

- Next: Shape

Areal Rate

- Kepler's law of areas: Radius vector sweeps out equal areas in equal interval of time
- So far: Speed as function of radius

Planar nature of orbit
Motion along the orbit

- Next: Shape

Eccentricity Vector

- Define eccentricity vector

$$
\mathbf{e} \stackrel{\text { def }}{=} \mu^{-1}(\dot{\mathbf{r}} \times \mathbf{H})-r^{-1} \mathbf{r}
$$

- Lies in the plane of motion
- $\dot{\mathbf{e}}=0$ along motion
- Define true anomaly ν to be angle between \mathbf{r} and \mathbf{e}
- Eccentricity $e \xlongequal{\text { def }} \sqrt{\mathbf{e} \cdot \mathbf{e}}$

$$
\begin{aligned}
\mu r e \cos \nu & =\mu \mathbf{r} \cdot \mathbf{e}=\mathbf{r} \cdot(\dot{\mathbf{r}} \times \mathbf{H}) \mu r \\
& =H^{2}-\mu r \\
\therefore r & =\frac{H^{2} / \mu}{1+e \cos \nu}
\end{aligned}
$$

Nature of the Orbit

$$
r=\frac{H^{2} / \mu}{1+e \cos \nu}
$$

- Polar equation of the orbit with
- \mathbf{e} as the positive x-axis
- Primary body as the origin
- Orbit bounded if and only if $e<1$
- Also the polar equation of a conic section of eccentricity e with origin at its focus
- Kepler's law of orbits: Orbit is a conic section with focus at its primary
- Conic section: curve of intersection between a right circular cone and a plane

Conic Sections

Circle

Parabola

Ellipse

Hyperbola

Shape and Size of the Orbit

- Shape determined by the eccentricity e

$$
e=\sqrt{\frac{2 H^{2} \mathcal{E}}{\mu^{2}}+1}
$$

- $e=0 \Rightarrow$ circular orbit
- $0<e<1 \Rightarrow$ elliptic orbit
- $e=1 \Rightarrow$ parabolic orbit
- $e>1 \Rightarrow$ hyperbolic orbit
- Size determined by the semilatus rectum H^{2} / μ

Circular Orbits

- Zero eccentricity $\Rightarrow r=H^{2} / \mu=$ constant
- For a circular orbit, $H=r v$
\Longrightarrow orbital speed at radius $r \quad v=\sqrt{\frac{\mu}{r}}$

$$
\mathcal{E}=\frac{1}{2} v^{2}-\frac{\mu}{r}=-\frac{1}{2} \frac{\mu}{r}<0
$$

Elliptic Orbits

- $0<e<1$, orbit is elliptical with one focus at the primary
- Periapsis (perigee/perihelion) point of closest approach at $\nu=0$

$$
r_{p}=\frac{H^{2} / \mu}{1+e}
$$

- Apoapsis (apogee/aphelion) farthest point from the primary at $\nu=\pi$

$$
\begin{gathered}
r_{a}=\frac{H^{2} / \mu}{1-e} \\
a=\frac{r_{p}+r_{a}}{2}=\frac{H^{2} / \mu}{1-e^{2}} \\
H=\sqrt{\mu a\left(1-e^{2}\right)} \\
v_{p}=\frac{H}{r_{p}}=\sqrt{\frac{\mu}{a} \frac{(1+e)}{(1-e)}} \\
\mathcal{E}=\frac{1}{2} v_{p}^{2}-\frac{\mu}{r_{p}}=-\frac{\mu}{2 a}
\end{gathered}
$$

- Semimajor axis
- Total specific energy

Geometrical and Mechanical Description

$$
\begin{aligned}
H & =\sqrt{\mu a\left(1-e^{2}\right)} & a & =-\frac{\mu}{2 \mathcal{E}} \\
\mathcal{E} & =-\frac{\mu}{2 a} & e & =\sqrt{\frac{2 H^{2} \mathcal{E}}{\mu^{2}}+1} \\
r_{p} & =a(1-e) & r_{a} & =a(1+e) \\
v_{p} & =\sqrt{\frac{\mu}{a} \frac{1+e}{1-e}} & v_{a} & =\sqrt{\frac{\mu}{a} \frac{(1-e)}{(1+e)}}
\end{aligned}
$$

Semiminor axis $\quad b=a \sqrt{1-e^{2}}$

Parabolic Orbits

- $e=1, r=\frac{H^{2} / \mu}{1+\cos \nu}$
- Periapsis distance $r_{p}=\frac{H^{2}}{2 \mu}, v_{p}=\frac{H}{r_{p}}=\frac{2 \mu}{H}$

$$
\mathcal{E}=\frac{1}{2} v_{p}^{2}-\frac{\mu}{r_{p}}=0
$$

$\therefore v=\sqrt{\frac{2 \mu}{r}} \rightarrow 0$ as $r \rightarrow \infty$

- Just enough energy to reach ∞ at rest
- $v_{\text {esc }}=\sqrt{\frac{2 \mu}{r}}$ is sufficient for escape. $v \geq v_{\text {esc }}$ guarantees escape

Hyperbolic Orbits

- $e>1$, orbit is one branch of a hyperbola with its focus at the primary

$$
r \rightarrow \infty \text { as } v \rightarrow v_{\infty} \stackrel{\text { def }}{=} \pi-\cos ^{-1} 1 / e
$$

speed $v=\sqrt{2\left(\mathcal{E}+\frac{\mu}{r}\right)} \rightarrow$ hyperbolic excess velocity $v_{\infty} \stackrel{\text { def }}{=} \sqrt{2 \mathcal{E}}$ as $r \rightarrow \infty$

- Periapsis distance

$$
r_{p}=\frac{H^{2} / \mu}{1+e} \quad v_{p}=\frac{H}{r_{p}}=\frac{\mu(1+e)}{H}
$$

Hyperbolic Orbits

- $e>1$, orbit is one branch of a hyperbola with its focus at the primary

$$
r \rightarrow \infty \text { as } v \rightarrow v_{\infty} \stackrel{\text { def }}{=} \pi-\cos ^{-1} 1 / e
$$

speed $v=\sqrt{2\left(\mathcal{E}+\frac{\mu}{r}\right)} \rightarrow$ hyperbolic excess velocity $v_{\infty} \stackrel{\text { def }}{=} \sqrt{2 \mathcal{E}}$ as $r \rightarrow \infty$

- Periapsis distance

$$
r_{p}=\frac{H^{2} / \mu}{1+e}
$$

$$
v_{p}=\frac{H}{r_{p}}=\frac{\mu(1+e)}{H}
$$

Hyperbolic Orbits

- $e>1$, orbit is one branch of a hyperbola with its focus at the primary

$$
r \rightarrow \infty \text { as } v \rightarrow v_{\infty} \stackrel{\text { def }}{=} \pi-\cos ^{-1} 1 / e
$$

speed $v=\sqrt{2\left(\mathcal{E}+\frac{\mu}{r}\right)} \rightarrow$ hyperbolic excess velocity $v_{\infty} \stackrel{\text { def }}{=} \sqrt{2 \mathcal{E}}$ as $r \rightarrow \infty$

- Periapsis distance

$$
r_{p}=\frac{H^{2} / \mu}{1+e} \quad v_{p}=\frac{H}{r_{p}}=\frac{\mu(1+e)}{H}
$$

Hyperbolic Orbits

- $e>1$, orbit is one branch of a hyperbola with its focus at the primary

$$
r \rightarrow \infty \text { as } v \rightarrow v_{\infty} \stackrel{\text { def }}{=} \pi-\cos ^{-1} 1 / e
$$

speed $v=\sqrt{2\left(\mathcal{E}+\frac{\mu}{r}\right)} \rightarrow$ hyperbolic excess velocity $v_{\infty} \stackrel{\text { def }}{=} \sqrt{2 \mathcal{E}}$ as $r \rightarrow \infty$

- Periapsis distance

$$
\begin{aligned}
r_{p} & =\frac{H^{2} / \mu}{1+e} & v_{p}=\frac{H}{r_{p}}=\frac{\mu(1+e)}{H} \\
\mathcal{E} & =\frac{\mu^{2}\left(e^{2}-1\right)}{2 H^{2}} & v_{\infty}=\frac{\mu}{H} \sqrt{e^{2}-1}
\end{aligned}
$$

Hyperbolic Orbits

- $e>1$, orbit is one branch of a hyperbola with its focus at the primary

$$
r \rightarrow \infty \text { as } v \rightarrow v_{\infty} \stackrel{\text { def }}{=} \pi-\cos ^{-1} 1 / e
$$

speed $v=\sqrt{2\left(\mathcal{E}+\frac{\mu}{r}\right)} \rightarrow$ hyperbolic excess velocity $v_{\infty} \stackrel{\text { def }}{=} \sqrt{2 \mathcal{E}}$ as $r \rightarrow \infty$

- Periapsis distance

$$
\begin{aligned}
r_{p} & =\frac{H^{2} / \mu}{1+e} & v_{p}=\frac{H}{r_{p}}=\frac{\mu(1+e)}{H} \\
\mathcal{E} & =\frac{\mu^{2}\left(e^{2}-1\right)}{2 H^{2}} & v_{\infty}=\frac{\mu}{H} \sqrt{e^{2}-1}
\end{aligned}
$$

Geometric Description of Hyperbolic Orbits

$$
\begin{aligned}
H & =v_{\infty} c \sin \nu_{\infty}=c \frac{\mu}{H} \sqrt{e^{2}-1}\left(\frac{\sqrt{e^{2}-1}}{e}\right) \\
c & =\frac{H^{2}}{\mu} \frac{e}{e^{2}-1}
\end{aligned}
$$

Semimajor axis $a=c-r_{p}=\frac{H^{2}}{\mu\left(e^{2}-1\right)}=\frac{c}{e}$

Geometric versus Mechanical Description

$$
\begin{aligned}
H & =\sqrt{\mu a\left(e^{2}-1\right)} \quad a=\frac{\mu}{2 \mathcal{E}} \\
\mathcal{E} & =\frac{\mu}{2 a}
\end{aligned}
$$

$$
\begin{aligned}
r_{p} & =a(e-1) \\
v_{p} & =\sqrt{\frac{\mu}{a} \frac{(e+1)}{(e-1)}} \\
v_{\infty} & =\sqrt{\frac{\mu}{a}}
\end{aligned}
$$

Motion Along an Elliptic Orbit: Orbital Period

- Total area of orbit $=\pi a b=\pi a^{2} \sqrt{1-e^{2}}$
- Areal rate $\frac{d A}{d t}=\frac{H}{2}=\frac{1}{2} \sqrt{\mu a\left(1-e^{2}\right)}$
- Orbital period $T=2 \pi \sqrt{\frac{a^{3}}{\mu}}$
- Kepler's law of periods

$$
(\text { period })^{2} \propto(\text { semimajor axis })^{3}
$$

Motion along an Elliptic Orbit: Kepler's Equation

- Need position along the orbit as function of time
- Use Kepler's law of areas - need area of a sector of an ellipse

$$
\operatorname{Area}(\mathrm{OAB})=\frac{b}{a} \operatorname{Area}\left(\mathrm{OA}^{\prime} \mathrm{B}\right)=\frac{b}{a}\left[\operatorname{Area}\left(\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{B}\right)-\operatorname{Area}\left(\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{O}\right)\right]
$$

$$
\operatorname{Area}\left(\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{B}\right)=\frac{1}{2} a^{2} E, \operatorname{Area}\left(\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{O}\right)=\frac{1}{2}(a e) a \sin E=\frac{1}{2} a^{2} e \sin E
$$

$$
\operatorname{Area}(\mathrm{OAB})=\frac{1}{2} a b(E-e \sin E)
$$

Kepler's Equation

- Let t_{p} be the instant of periapsis passage

$$
\begin{gathered}
\frac{\operatorname{Area}(\mathrm{OAB})}{t-t_{p}}=\frac{1}{2} H \\
E-e \sin E=\frac{H\left(t-t_{p}\right)}{a b}=\sqrt{\frac{\mu}{a^{3}}}\left(t-t_{p}\right)
\end{gathered}
$$

- Define mean motion

$$
n \stackrel{\text { def }}{=} \frac{2 \pi}{T}=\sqrt{\frac{\mu}{a^{3}}}
$$

- Kepler's equation:

$$
E-e \sin E=\underbrace{n\left(t-t_{p}\right)}_{\text {Mean anomaly } M}
$$

True and Eccentric Anomalies

- Need to relate E and ν

$$
\begin{aligned}
\mathrm{O}^{\prime} \mathrm{A}^{\prime \prime} & =\mathrm{OO}^{\prime}+\mathrm{OA}^{\prime \prime} \\
a \cos E & =a e+r \cos \nu
\end{aligned}
$$

- Use polar equation of the orbit

$$
\begin{gathered}
\cos E=\frac{(e+\cos \nu)}{(1+e \cos \nu)} \\
2 \sin ^{2}(E / 2)=1-\cos E=\frac{(1-e) 2 \sin ^{2}(\nu / 2)}{(1+e \cos \nu)} \\
2 \cos ^{2}(E / 2)=1+\cos E=\frac{(1+e) 2 \cos ^{2}(\nu / 2)}{(1+e \cos \nu)} \\
\tan (E / 2)=\sqrt{\frac{(1-e)}{(1+e)}} \tan (\nu / 2)
\end{gathered}
$$

- Use along with Kepler's equation to find ν as function of time

Geocentric Frame

- Need to describe orientation of the orbit or position of the satellite
- With respect to an earth/inertial frame
- Using quantities that help to visualize the orbit
- Define a non-rotating geocentric frame with
- Origin at earth's center
- Axes directions fixed with respect to solar system
- Z axis along earth's axis of rotation pointing north
- Precesses with a period of 25,800 years
- Nutates with an amplitude $9^{\prime \prime}$ and period 18.6 years
- X axis along the line of intersection of earth's orbital plane (ecliptic) and earth's equatorial plane
- Along line joining the equinoxes, pointing along the vernal equinox
- Along the first point of Aries

The Ecliptic

The Ecliptic: View from Earth

First Point of Aries

Sagittarius

Orientation of the Orbit: Right Ascension

- Ascending node - point where the orbit crosses equatorial plane from S to N
- Right ascension of ascending node Ω
- Eastward from the X axis to the ascending node

$$
0 \leq \Omega<2 \pi
$$

Orientation of the Orbit: Inclination

- Inclination of the orbit i
- Measured at the ascending node between east and direction of motion

$$
0 \leq i<\pi
$$

* $i<90^{\circ}$ - prograde orbit, orbital motion in the same direction as earth's rotation
* $i>90^{\circ}$ - retrograde orbit
* $i \simeq 90^{\circ}$ - polar orbit
* $i=0^{\circ}$ - equatorial orbit
« Inclination determines north and south limits of visibility

Orientation of the Orbit: Argument of Perigee

- Argument of perigee ω - measured in the orbital plane from the ascending node along the motion $0 \leq \omega<2 \pi$
- Ω, i, ω describe the orientation of the orbit with respect to the geocentric frame
- In addition, a determines the size, e the shape
- Six classical orbital elements $a, e, i, \omega, \Omega, t_{\mathrm{p}}$

Determination of Classical Elements from Initial Conditions

- Given \mathbf{r} and $\mathbf{v}=\dot{\mathbf{r}}$
- Compute $\mathcal{E}, \mathbf{H}, H, \mathbf{e}, e$
- Line of nodes is perpendicular to \mathbf{H} and \mathbf{k}
- Unit vector along the line of nodes (pointing to the ascending node)

$$
\mathbf{n}=|\mathbf{k} \times \mathbf{H}|^{-1}(\mathbf{k} \times \mathbf{H})
$$

- $\Omega \in[0,2 \pi)$ from $\quad \mathbf{n}=\cos (\Omega) \mathbf{i}+\sin (\Omega) \mathbf{j}$
- Compute $i \in[0, \pi]$ from $\quad \cos i=\frac{\mathbf{k} \cdot \mathbf{H}}{H}$
- Compute $\omega \in[0,2 \pi)$, the angle between \mathbf{n} and \mathbf{e}, by $\cos \omega=\frac{\mathbf{n} \cdot \mathbf{e}}{e}$

$$
\begin{aligned}
\omega & =\cos ^{-1} \frac{\mathbf{n} \cdot \mathbf{e}}{e}, & & \mathbf{e} \cdot \mathbf{k} \geq 0 \\
& =2 \pi-\cos ^{-1} \frac{\mathbf{n} \cdot \mathbf{e}}{e}, & & \mathbf{e} \cdot \mathbf{k}<0
\end{aligned}
$$

Determination of Classical Elements (continued)

- To find $t_{\mathbf{p}}$, first find initial anomaly ν from $\cos \nu=\frac{\mathbf{e} \cdot \mathbf{r}}{e r}$
$\nu=\cos ^{-1} \frac{\mathbf{e} \cdot \mathbf{r}}{e r}, \mathbf{v} \cdot \mathbf{e} \leq 0$ (satellite traveling from perigee to apogee)
$=2 \pi-\cos ^{-1} \frac{\mathbf{e} \cdot \mathbf{r}}{e r}, \quad \mathbf{v} \cdot \mathbf{e}>0$ (satellite traveling from apogee to perigee)
- Compute initial eccentric anomaly

$$
\tan (E / 2)=\sqrt{\frac{(1-e)}{(1+e)}} \tan (\nu / 2)
$$

- Compute t_{p} from Kepler's equation

$$
\sqrt{\frac{\mu}{a^{3}}}\left(t_{0}-t_{\mathrm{p}}\right)=E-e \sin E
$$

Determination of Position and Velocity

- Given $t, a, e, i, \Omega, \omega, t_{\mathrm{p}}$
- Compute eccentric anomaly at t

$$
E-e \sin E=\sqrt{\frac{\mu}{a^{3}}}\left(t-t_{\mathrm{p}}\right)
$$

- Compute true anomaly at t

$$
\sqrt{\frac{(1-e)}{(1+e)}} \tan (\nu / 2)=\tan (E / 2)
$$

- Compute geocentric distance at t

$$
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \nu}
$$

- Position in the orbital plane determined
- Need to transform to geocentric coordinates

Position in Perifocal Frame

- Introduce a perifocal coordinate system, origin at earth's center and unit vectors
- p pointing to the perigee
- \mathbf{q} along the position $\nu=90^{\circ}$
- w orthogonal to the orbital frame such that $\mathbf{p} \times \mathbf{q}=\mathbf{w}$

Velocity in Perifocal Frame

$$
\dot{\mathbf{r}}=(\dot{r} \cos \nu-r \dot{\nu} \sin \nu) \mathbf{p}+(\dot{r} \sin \nu+r \dot{\nu} \cos \nu) \mathbf{q}
$$

- To find $r \dot{\nu}$, note $\mathbf{H}=\mathbf{r} \times \dot{\mathbf{r}}=r^{2} \dot{\nu} \mathbf{w}$

$$
r \dot{\nu}=\frac{H}{r}=\sqrt{\frac{\mu}{a\left(1-e^{2}\right)}}(1+e \cos \nu)
$$

- To find \dot{r}, differentiate polar equation

$$
\dot{r}=\sqrt{\frac{\mu}{a\left(1-e^{2}\right)}} e \sin \nu
$$

- Perifocal components of velocity

$$
\dot{\mathbf{r}}=\sqrt{\frac{\mu}{a\left(1-e^{2}\right)}}[-\sin \nu \mathbf{p}+(e+\cos \nu) \mathbf{q}]
$$

- Need to transform to geocentric frame

Transformation to Geocentric Frame

- To obtain the transformation, perform a sequence of 3 rotations on G to get P
- Rotate G about Z through Ω to get G_{1}
- Rotate G_{1} about X through i to get G_{2}
- Rotate G_{2} about Z through ω to get P
- For any vector \mathbf{r}

$$
\begin{gathered}
\mathbf{r}_{G}=R_{1}(\Omega)\left(\mathbf{r}_{G_{1}}\right) \\
\mathbf{r}_{G_{1}}=R_{2}(i)\left(\mathbf{r}_{G_{2}}\right) \\
\mathbf{r}_{G_{2}}=R_{3}(\omega)\left(\mathbf{r}_{P}\right) \\
\mathbf{r}_{G}=R_{1}(\Omega) R_{2}(i) R_{3}(\omega) \mathbf{r}_{P}
\end{gathered}
$$

Transformation Matrices

$$
R_{1}(\Omega)=\left[\begin{array}{ccc}
\cos \Omega & -\sin \Omega & 0 \\
\sin \Omega & \cos \Omega & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
R_{1}(i)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos i & -\sin i \\
0 & \sin i & \cos i
\end{array}\right]
$$

$$
R_{1}(\omega)=\left[\begin{array}{ccc}
\cos \omega & -\sin \omega & 0 \\
\sin \omega & \cos \omega & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Geocentric Components of Position and Velocity

$$
\begin{gathered}
\mathbf{r}_{G}=R_{1}(\Omega) R_{2}(i) R_{3}(\omega)\left[\begin{array}{c}
r \cos \nu \\
r \sin \nu \\
0
\end{array}\right] \\
\dot{\mathbf{r}}_{G}=\sqrt{\frac{\mu}{a\left(1-e^{2}\right)}} R_{1}(\Omega) R_{2}(i) R_{3}(\omega)\left[\begin{array}{c}
-\sin \nu \\
e+\cos \nu \\
0
\end{array}\right]
\end{gathered}
$$

Complete Solution of the Two-Body Problem

$$
\begin{aligned}
\mathbf{r}_{2}-\mathbf{r}_{\mathrm{c}} & =\frac{m_{1}}{m_{1}+m_{2}} \mathbf{r} \\
\mathbf{r}_{1}-\mathbf{r}_{\mathrm{c}} & =-\frac{m_{2}}{m_{1}+m_{2}} \mathbf{r}
\end{aligned}
$$

- Each body moves along a conic section with focus at the center of mass

Satellite Tracking and Orbit Determination

- Predicting orbit from measured position and velocity data
- Position and velocity known only at injection point from launch vehicle INS
- Optical tracking
- Each observation yields right ascension and declination, no range information
- Three observations required to determine orbit
- Observations made from rotating, translating earth
- Approximate method by Laplace, exact method by Gauss
- Radar tracking for low-earth satellites
- Azimuth, elevation, range in each observation
- Some method interpolate between closely spaced observations, differentiate to get velocity
- Other use two position measurement with elapsed time
- Range-range-rate tracking for deep space craft
- Range-rate measured by using Doppler shift
- No angular information available

Errors in Orbit Determination

- Measurement errors lead to errors in estimated orbital parameters
- Errors between actual position and estimated position grows with time
- Example: error in period
- Need for improving accuracy by making new observations and updating the orbit
- Need for correcting the orbit
- Body of observations increases with time
- Use all data rather than the minimum amount required
- Best fit — method of least squares

Carl Friedrich Gauss

- Number theory
- Astronomy
- Statistics
- Analysis
- Differential geometry
- Geodesy
- Geomagnetism

Carl Friedrich Gauss 1777-1855

Orbital Maneuvers

- Needed to transfer a geostationary satellite from its low earth parking orbit to its final high altitude geostationary orbit
- Needed to correct changes in orbital elements due to perturbing forces
- Impulsive thrust maneuvers
- Velocity changes instantaneously without change in position
- Thrust duration (burn times) small compared to orbital period (coast time)
- Hohmann transfer between two coplanar circular orbits

Orbital Maneuvers

- Needed to transfer a geostationary satellite from its low earth parking orbit to its final high altitude geostationary orbit
- Needed to correct changes in orbital elements due to perturbing forces
- Impulsive thrust maneuvers
- Velocity changes instantaneously without change in position
- Thrust duration (burn times) small compared to orbital period (coast time)
- Hohmann transfer between two coplanar circular orbits

Hohmann Transfer

- Two impulsive maneuvers
- Apogee boost: increase speed from $v_{c_{1}}$ to v_{1} so that the satellite enters an elliptical transfer orbit with apogee on the final orbit
- Circularization: increase speed at the apogee of the transfer orbit to enter the final circular orbit

Hohmann Transfer (cont'd)

- Circular orbits

$$
v_{c_{1}}=\sqrt{\frac{\mu}{a_{1}}}, \quad v_{c_{2}}=\sqrt{\frac{\mu}{a_{2}}}
$$

- Transfer orbit

$$
a=\frac{a_{1}+a_{2}}{2}, \quad v_{1}=\sqrt{2\left(\frac{\mu}{a_{1}}-\frac{\mu}{a_{1}+a_{2}}\right)}, \quad v_{2}=\sqrt{2\left(\frac{\mu}{a_{2}}-\frac{\mu}{a_{1}+a_{2}}\right)}
$$

- Impulse magnitudes

$$
\begin{aligned}
\Delta v_{1} & =v_{1}-v_{c_{1}} \\
\Delta v_{2} & =v_{c_{2}}-v_{2}
\end{aligned}
$$

- Minimum duration between maneuvers

$$
=\frac{T}{2}=\pi \sqrt{\frac{a^{3}}{\mu}}
$$

Inclination Change Maneuver

- Needed if geostationary satellite is not launched from the equator
- Combined with one of the maneuvers (usually second) of the Hohmann transfer
- To calculate magnitude and direction of the impulse required

Coordinate Transformation

- View classical elements as new coordinates

$$
x \stackrel{\text { def }}{=}\left[\begin{array}{llllll}
r_{x} & r_{y} & r_{z} & v_{x} & v_{y} & v_{z}
\end{array}\right]^{\mathrm{T}}=\Phi(a, e, i, \Omega, w, M)
$$

- Inverse transformation known

$$
\left[\begin{array}{llllll}
a & e & i & \Omega & w & M
\end{array}\right]^{\mathrm{T}}=\Phi^{-1}(x)
$$

- Equations of motion in the two-body problem

$$
\dot{x}=\left[\begin{array}{cccccc}
\dot{r_{x}} & \dot{r_{y}} & \dot{r_{z}} & \dot{v_{x}} & \dot{v_{y}} & \dot{v}_{z}
\end{array}\right]^{\mathrm{T}}=f\left(r_{x}, r_{y}, r_{z}, v_{x}, v_{y}, v_{z}\right)=f(x)
$$

- Use transformation to write equation of motion in terms of classical elements

$$
\left[\begin{array}{llllll}
\dot{a} & \dot{e} & \dot{i} & \dot{\Omega} & \dot{w} & \dot{M}
\end{array}\right]^{\mathrm{T}}=\frac{\partial \Phi}{\partial x}^{-1} f(\Phi(a, e, i, \Omega, w, M))
$$

- In the two-body problem

$$
\left[\begin{array}{llllll}
\dot{a} & \dot{e} & \dot{i} & \dot{\Omega} & \dot{w} & \dot{M}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & n
\end{array}\right]^{\mathrm{T}}
$$

Perturbation Forces

- Inhomogeneity and oblateness of earth
- Third body gravitational influence, eg. sun, moon
- Solar wind
- Solar radiation pressure
- Atmospheric drag in low earth orbit

$$
\dot{x}=f(x)+\underbrace{p(x, t)}_{\text {perturbation }}
$$

$$
\left[\begin{array}{llllll}
\dot{a} & \dot{e} & \dot{i} & \dot{\Omega} & \dot{w} & \dot{M}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & n
\end{array}\right]^{\mathrm{T}}+\text { perturbation }
$$

- Trajectory no longer a conic section
- Can be thought of as path traced by a point on an ellipse that is osculating, that is, changing shape, size and orientation

$$
x(t)=\Phi(a(t), e(t), i(t), \Omega(t), w(t), M(t))
$$

Gauss's Planetary Equation

- Resolve perturbation force along perifocal frame

$$
\text { Perturbation force }=P \mathbf{p}+Q \mathbf{q}+W \mathbf{w}
$$

$$
\begin{aligned}
\dot{a} & =\frac{2}{n \sqrt{1-e^{2}}}[e P \sin \nu+(1+e \cos \nu) Q] \\
\dot{e} & =\frac{\sqrt{1-e^{2}}}{n a}[P \sin \nu+(\cos E+\cos \nu) Q] \\
\dot{i} & =\frac{1}{n a \sqrt{1-e^{2}}} \frac{r W}{a} \cos (\nu+\omega) \\
\dot{\Omega} & =\frac{1}{n a \sqrt{1-e^{2}}} \frac{r W}{a} \frac{\sin (\nu+\omega)}{\sin i} \\
\dot{\omega} & = \\
\dot{M} & =
\end{aligned}
$$

Earth Inhomogeneity and Oblateness

- Gravitational potential due to earth in spherical coordinates

$$
U(r, \lambda, \phi)=-\frac{\mu}{r}+\underbrace{B(r, \lambda, \phi)}_{\text {perturbation }}
$$

$B(r, \lambda, \phi)=\frac{\mu}{r}\{\sum_{n=2}^{\infty}[\underbrace{\left(\frac{R_{\mathrm{e}}}{r}\right)^{n} J_{n} P_{n}(\sin \lambda)}_{\text {oblateness }}+$

$$
\sum_{m=1}^{n} J_{m n}\left(\frac{R_{\mathrm{e}}}{r}\right)^{n} \underbrace{\left(C_{n m} \cos m \phi+S_{n m} \sin m \phi\right)}_{\text {asymmetry }} P_{n m}(\sin \lambda)]\}
$$

- $R_{e}=$ mean equatorial radius
- $P_{n}=$ Legendre polynomials
- $P_{n m}=$ Legendre functions of the first kind
- $J_{n}, C_{n m}, S_{n m}=$ coefficients

Effect of J_{2} Perturbation

- J_{2} is two orders of magnitude larger than others
- Arises from the first-order deviation of the oblate earth from a sphere
- Small periodic changes in a, e, i with

$$
\dot{a} \simeq 0, \dot{e} \simeq 0, \dot{i} \simeq 0
$$

- Secular changes in Ω, w, M
- Regression of nodes: $\frac{d \Omega}{d t}=-\frac{3}{2} n \frac{J_{2} \cos i}{\left(1-e^{2}\right)^{2}}\left(\frac{R_{\mathrm{e}}}{a}\right)^{2}$
- Advance of perigee: $\frac{d w}{d t}=-\frac{3}{4} n J_{2} \frac{\left(1-5 \cos ^{2} i\right)}{\left(1-e^{2}\right)^{2}}\left(\frac{R_{\mathrm{e}}}{a}\right)^{2}$
- Change in mean anomaly: $\frac{d M}{d t}=n+\frac{3 n J_{2}\left(3 \cos ^{2} i-1\right)}{4\left(1-e^{2}\right)^{3 / 2}}\left(\frac{R_{\mathrm{e}}}{a}\right)^{2}$
- Superimposed periodic variations + secular and periodic variations due to higher order terms

Application: Sun Synchronous Orbits

- Orbits that have a nodal regression rate of 360° per year
- Orbital plane makes a constant angle with respect to sun

- Satellite revisits any point at the same local time
- Useful for earth observation satellites
- Solar illumination the same in pictures takes at different times

Launch to Rendezvous

- Launch a spacecraft to rendezvous with a space station already in the orbit
- Problem: Find time of launch so that both orbits are coplanar
- Orbital plane changes after injection is expensive
- Turning the launch vehicle into the required plane is also expensive

Launch to Rendezvous

- Launch a spacecraft to rendezvous with a space station already in the orbit
- Problem: Find time of launch so that both orbits are coplanar
- Orbital plane changes after injection is expensive
- Turning the launch vehicle into the required plane is also expensive
- Solution: Launch when launch site lies in the space station orbital plane
- For a given latitude, this occurs at most twice in every sidereal day

Projection of the Orbit

Ground Trace

Orbital Projection

Geometry of Coplanar Launch to Rendezvous

Launch Times for Rendezvous

$$
\sin \delta=\tan \lambda \cot i
$$

- Two solutions which add up to 180°
- Right ascension of launch site

$$
=\alpha+\phi=\Omega+\delta
$$

- Right ascension of Greenwich meridian

$$
\alpha=\alpha_{0}+\frac{2 \pi}{T_{\text {sidereal }}}\left(t-t_{0}\right)
$$

- Launch time

$$
t=t_{0}+\frac{T_{\text {sidereal }}}{2 \pi}\left(\Omega+\delta-\phi-\alpha_{0}\right)
$$

- Two solutions
- Launch azimuth

$$
\sin A=\frac{\cos i}{\cos \lambda}
$$

Rotational Motion of Satellites

- Orbital dynamics: satellites treated as point masses
- Rotational motion as extended bodies has to be considered
- Attitude maneuvering
- Pointing requirements of optical, communications, imaging payload
- Solar panel orientation
- Thruster orientation for orbital maneuvers and station keeping
- Treat satellite as a rigid body
- Collection of particles such that the distance between any two remains fixed
- Six degrees of freedom, 3 translational +3 rotational

Translational Dynamics of a Rigid Body

- Consider a rigid arrangement of a finite number of particles
- For the $i^{\text {th }}$ particle

$$
\begin{gathered}
\mathbf{F}_{i} \mathrm{ext}+\sum_{j \neq i}^{N} \mathbf{F}_{i j}=m_{i} \mathbf{a}_{i} \\
\mathbf{F}_{\mathrm{ext}} \stackrel{\text { def }}{=} \sum_{i=1}^{N} \mathbf{F}_{i \text { ext }}+\underbrace{\sum_{i=1}^{N} \sum_{j \neq i}^{N} \mathbf{F}_{i j}}_{=0}=\sum_{i=1}^{N} m_{i} \mathbf{a}_{i} \\
\mathbf{F}_{\mathrm{ext}}=M \mathbf{a}_{\mathrm{cm}}, \mathbf{a}_{\mathrm{cm}}=\frac{\sum m_{i} \mathbf{a}_{i}}{\sum m_{i}}
\end{gathered}
$$

- Translates as a point particle of mass M located at center of mass under $F_{\text {ext }}$
- Rotational and translational motions decoupled?

Rotational Dynamics of a Rigid Body

- Take moments of Newton's law about some convenient point

$$
\begin{gathered}
d \boldsymbol{F}=d m \ddot{\boldsymbol{r}}=d m(\ddot{\boldsymbol{R}}+\ddot{\boldsymbol{d}}+\ddot{\boldsymbol{\rho}}) \\
d \boldsymbol{M}_{O}=(\boldsymbol{d}+\boldsymbol{\rho}) \times d \boldsymbol{F}=(\boldsymbol{d}+\boldsymbol{\rho}) \times(\ddot{\boldsymbol{R}}+\ddot{\boldsymbol{d}}+\ddot{\boldsymbol{\rho}}) d m
\end{gathered}
$$

Rotational Dynamics of a Rigid Body (cont'd)

$$
\begin{aligned}
\boldsymbol{M}_{O}= & \int[(\boldsymbol{d}+\boldsymbol{\rho}) \times(\ddot{\boldsymbol{d}}+\ddot{\boldsymbol{\rho}})] d m+\int(\boldsymbol{d} \times \ddot{\boldsymbol{R}}) d m+\int(\boldsymbol{\rho} \times \ddot{\boldsymbol{R}}) d m \\
= & \int \frac{d}{d t} \underbrace{[(\boldsymbol{d}+\boldsymbol{\rho}) \times(\dot{\boldsymbol{d}}+\dot{\boldsymbol{\rho}})] d m}_{d \boldsymbol{H} O}+(\boldsymbol{d} \times \ddot{\boldsymbol{R}}) \underbrace{\int d m}_{\boldsymbol{M}} \\
& \quad+\underbrace{\left(\int \boldsymbol{\rho} d m\right)}_{=0} \times \ddot{\boldsymbol{R}} \\
= & \frac{d}{d t} \boldsymbol{H}_{O}+m(\boldsymbol{d} \times \ddot{\boldsymbol{R}})
\end{aligned}
$$

- If O is inertially fixed $(\ddot{\mathbf{R}}=0)$ or the center of mass $(\mathbf{d}=0)$ then

$$
\mathbf{M}_{O}=\frac{d}{d t} \mathbf{H}_{O} \text { Attitude dynamics equation }
$$

- $\mathbf{H}_{O}=$ moment about O of linear momentum relative to O

Attitude Representation

- Consider two right handed orthonormal frames
- I with unit vectors $\mathbf{l}, \mathbf{m}, \mathbf{n}, \mathrm{B}$ with unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$
- Components of any vector \mathbf{v} along I and B

$$
\begin{aligned}
& \left(\begin{array}{lll}
\mathbf{v}
\end{array}\right)_{\mathrm{I}}=\left[\begin{array}{lll}
\mathbf{v} . \mathbf{l} & \mathbf{v . m} & \mathbf{v . n}
\end{array}\right]^{\mathrm{T}},\left(\begin{array}{lll}
\mathbf{v}
\end{array}\right)_{\mathrm{B}}=\left[\begin{array}{lll}
\mathbf{v . i} & \mathbf{v} . \mathbf{j} & \mathbf{v . k}
\end{array}\right]^{\mathrm{T}} \\
& (v)_{I}=\left[\begin{array}{c}
v_{B}^{1} \text { i.l }+v_{B}^{2} \text { j.l }+v_{B}^{3} \text { k.l } \\
v_{B}^{1} \text { i.m }+v_{B}^{2} \text { j.m }+v_{B}^{3} \text { k.m } \\
\mathbf{v}_{B}^{1} \text { i.n }+v_{B}^{2} \text { j.n }+v_{B}^{3} \text { k.n }
\end{array}\right]=\left[\begin{array}{ccc}
\text { i.l } & \text { j.l } & \text { k.l } \\
\text { i.m } & \text { j.m } & \text { k.m } \\
\text { i.n } & \text { j.n } & \text { k.n }
\end{array}\right]\left[\begin{array}{c}
v_{B}^{1} \\
v_{B}^{2} \\
v_{B}^{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
(\mathbf{i})_{\mathrm{I}} & (\mathbf{j})_{\mathrm{I}} & (\mathbf{k})_{\mathrm{I}}
\end{array}\right](\mathbf{v})_{\mathrm{B}}
\end{aligned}
$$

- There exists a unique matrix R such that $R(\mathbf{v})_{\mathrm{B}}=(\mathbf{v})_{\mathrm{I}}$ for every \mathbf{v}
- R determined solely by orientation of B relative to I
- R - special orthogonal matrix, rotation matrix, direction cosine matrix

$$
\begin{aligned}
& R^{\mathrm{T}} R=I \\
& \operatorname{det} R=1
\end{aligned}
$$

An Alternative Situation

- Rotate a frame to go from I to B
- What are the new I-components of a vector fixed to the moving frame?

An Alternative Situation

- Rotate a frame to go from I to B
- What are the new I-components of a vector fixed to the moving frame?

An Alternative Situation

- Rotate a frame to go from I to B
- What are the new I-components of a vector fixed to the moving frame?

$$
\begin{aligned}
\text { old I components } & =\text { new } \mathrm{B} \text { components } \\
\text { new I components } & =R \cdot(\text { new } \mathrm{B} \text { components }) \\
& =R \cdot(\text { old } \mathrm{I} \text { components })
\end{aligned}
$$

- R relates
- Components of a given vector in two frames
- Components of a rotated vector to its original components in the same frame

Rotation Matrix for an Elementary Rotation

- Rotate I about a unit vector \mathbf{v} through an angle θ to obtain B

$$
(\mathbf{v})_{\mathrm{I}}=(\mathbf{v})_{\mathrm{B}} \stackrel{\text { def }}{=} v \in \mathbb{R}^{3}
$$

- Transformation matrix

$$
\begin{array}{r}
R(v, \theta)=I+(1-\cos \theta)(v \times)^{2}+\sin \theta(v \times) \\
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],(v \times)=\left[\begin{array}{ccc}
0 & -v_{3} & v_{2} \\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right]
\end{array}
$$

- If $(\mathbf{u})_{\mathrm{B}}=u \in \mathbb{R}^{3}$, then

$$
(\mathbf{v} \times \mathbf{u})_{\mathrm{B}}=(v \times) u
$$

Elementary Rotation (cont'd)

- Check:
- $R v=v$
- Let $\mathbf{u} \perp \mathbf{v}, \mathbf{u} \cdot \mathbf{u}=1$. Let \mathbf{w} be obtained from \mathbf{u} by rotation about \mathbf{v}

$$
\begin{aligned}
&(\mathbf{w})_{\mathrm{B}}=(\mathbf{u})_{\mathrm{I}} \stackrel{\text { def }}{=} u \\
& \mathbf{w}= \cos \theta \mathbf{u}+\sin \theta(\mathbf{v} \times \mathbf{u}) \\
&= \mathbf{u}+(1-\cos \theta)(\mathbf{v} \times(\mathbf{v} \times \mathbf{u}))+\sin \theta(\mathbf{v} \times \mathbf{u}) \\
&(\mathbf{w})_{\mathrm{I}}= {\left[I+(1-\cos \theta)(v \times)^{2}+\sin \theta(v \times)\right] u } \\
&= R(\mathbf{w})_{\mathrm{B}}
\end{aligned}
$$

Composite Rotations

$$
\begin{aligned}
& \alpha \xrightarrow{\psi / u} \mathrm{C} \xrightarrow{\theta / v} \mathrm{~A} \xrightarrow{\phi / w} \mathrm{~B}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {composite }}=R_{1}(u, \psi) R_{2}(v, \theta) R_{3}(w, \phi)
\end{aligned}
$$

- Composition of rotations \sim matrix multiplication on the right
- Noncommutativity of matrix multiplication \sim non commutativity of rotations

Relative Motion Between Frames

- Frame B rotates relative to I (not necessarily about a fixed axis)
- $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}$ vectors fixed in B, $\mathbf{r}_{1}, \mathbf{r}_{2}$ linearly independent
- $\dot{\mathbf{r}}_{1}, \dot{\mathbf{r}}_{2}, \dot{\mathbf{r}}_{3}$ instantaneous derivatives with respect to I
- $\mathbf{r}_{1} \cdot \mathbf{r}_{1}=$ constant $\Rightarrow \dot{\mathbf{r}}_{1} \cdot \mathbf{r}_{1}=0$
${ }^{-} \mathbf{r}_{1} \cdot \mathbf{r}_{2}=$ constant $\Rightarrow \dot{\mathbf{r}}_{1} \cdot \mathbf{r}_{2}+\mathbf{r}_{1} \cdot \dot{\mathbf{r}}_{2}=0$

$$
\begin{gathered}
\mathbf{r}_{3}=\alpha_{1} \mathbf{r}_{1}+\alpha_{2} \mathbf{r}_{2}+\alpha_{3}\left(\mathbf{r}_{1} \times \mathbf{r}_{2}\right) \\
\dot{\mathbf{r}}_{3}=\alpha_{1} \dot{\mathbf{r}}_{1}+\alpha_{2} \dot{\mathbf{r}}_{2}+\alpha_{3}\left(\dot{\mathbf{r}}_{1} \times \mathbf{r}_{2}+\mathbf{r}_{1} \times \dot{\mathbf{r}}_{2}\right) \\
\Longrightarrow\left(\dot{\mathbf{r}}_{1} \times \dot{\mathbf{r}}_{2}\right) \cdot \dot{\mathbf{r}}_{3}=0
\end{gathered}
$$

- Instantaneous derivative of every vector fixed in B lies in the plane perpendicular to ($\dot{\mathbf{r}}_{1} \times \dot{\mathbf{r}}_{2}$)

$$
\dot{\mathbf{r}}=\alpha(\mathbf{r})(\mathbf{e} \times \mathbf{r})
$$

- $\mathbf{e}=$ unit vector along $\left(\dot{\mathbf{r}}_{1} \times \dot{\mathbf{r}}_{2}\right)$

Relative Motion (cont'd)

- $\mathbf{r}_{1}, \mathbf{r}_{2}$ vectors fixed in B, linearly independent from \mathbf{e}

$$
\begin{gathered}
\dot{\mathbf{r}}_{1}=\alpha\left(\mathbf{r}_{1}\right)\left(\mathbf{e} \times \mathbf{r}_{1}\right) \\
\dot{\mathbf{r}}_{2}=\alpha\left(\mathbf{r}_{2}\right)\left(\mathbf{e} \times \mathbf{r}_{2}\right) \\
\mathbf{r}_{2} \cdot \dot{\mathbf{r}}_{1}+\dot{\mathbf{r}}_{2} \cdot \mathbf{r}_{1}=0 \Longrightarrow \alpha\left(\mathbf{r}_{1}\right)=\alpha\left(\mathbf{r}_{2}\right)=\mathrm{constant}
\end{gathered}
$$

- There exists a vector $\boldsymbol{\omega}$ such that instantaneous derivatives of vectors in B are given by

$$
\dot{r}=\omega \times r
$$

$\omega=$ instantaneous angular velocity of B relative to I

Attitude Kinematics

- B rotates relative to I
- Instantaneous relative orientation described by rotation matrix $R(t)$
- How does R vary?
- For any vector fixed in B,

$$
\begin{gathered}
(\dot{\mathbf{r}})_{\mathrm{I}}=\frac{d}{d t}(\mathbf{r})_{\mathrm{I}}=\frac{d}{d t} R(\mathbf{r})_{\mathrm{B}}=\dot{R}(\mathbf{r})_{\mathrm{B}}+R \underbrace{\frac{d}{d t}(\mathbf{r})_{\mathrm{B}}}_{=0} \\
(\dot{\boldsymbol{r}})_{\mathrm{I}}=(\boldsymbol{\omega} \times \boldsymbol{r})_{\mathrm{I}}=R(\boldsymbol{\omega} \times \boldsymbol{r})_{\mathrm{B}}=R(\omega \times)(\boldsymbol{r})_{\mathrm{B}} \\
\\
\dot{R}=R(\omega \times) \text { Attitude kinematics equation } \\
(\omega \times)=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
\end{gathered}
$$

- $\omega=$ column vector of B components of instantaneous angular velocity of B relative to I

Attitude Kinematics Equation

- Used for
- Navigation
- Control design
- Simulation
- Solution involves integrating 9 differential equations
- R contains 9 elements subject to 6 constraints, only 3 free parameters
- Question: Is it possible to parametrize rotation matrices with fewer parameters?
- If yes, rewrite attitude kinematics in terms of fewer parameters

Euler Angles

- Fact: Given a sequence of unit vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ fixed in I such that no two consecutive vectors are linearly dependent, I can be rotated to any desired orientation by a sequence of three rotations, one each about $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$
- For every rotation matrix R, there exist ψ, θ, ϕ such that

$$
R=R_{1}\left(v_{1}, \psi\right) R_{2}\left(v_{2}, \theta\right) R_{3}\left(v_{3}, \phi\right)
$$

- Examples:
- 3-2-1 Euler angles used in aircraft; $\mathbf{v}_{1}=\mathbf{n}, \mathbf{v}_{2}=\mathbf{m}, \mathbf{v}_{3}=\mathbf{l}$
- 3-1-3 Euler angles; $\mathbf{v}_{1}=\mathbf{n}, \mathbf{v}_{2}=\mathbf{l}, \mathbf{v}_{3}=\mathbf{n}$
- Problem: Euler angles do not combine well for successive rotations

Axis-Angle Variables

- Euler's Theorem: Given two frames I and B, there exists an axis-angle pair (\mathbf{v}, θ) such that I coincides with B when rotated about \mathbf{v} through θ
- For every rotation matrix R, there exist $v \in \mathbb{R}^{3}, \theta \in[0,2 \pi)$ such that

$$
R=R(v, \theta)=I+(1-\cos \theta)(v \times)^{2}+\sin \theta(v \times)
$$

Axis-Angle Variables

- Euler's Theorem: Given two frames I and B, there exists an axis-angle pair (\mathbf{v}, θ) such that I coincides with B when rotated about \mathbf{v} through θ
- For every rotation matrix R, there exist $v \in \mathbb{R}^{3}, \theta \in[0,2 \pi)$ such that

$$
R=R(v, \theta)=I+(1-\cos \theta)(v \times)^{2}+\sin \theta(v \times)
$$

Axis-Angle Variables

- Euler's Theorem: Given two frames I and B, there exists an axis-angle pair (\mathbf{v}, θ) such that I coincides with B when rotated about \mathbf{v} through θ
- For every rotation matrix R, there exist $v \in \mathbb{R}^{3}, \theta \in[0,2 \pi)$ such that

$$
R=R(v, \theta)=I+(1-\cos \theta)(v \times)^{2}+\sin \theta(v \times)
$$

Axis-Angle Variables

- Euler's Theorem: Given two frames I and B, there exists an axis-angle pair (\mathbf{v}, θ) such that I coincides with B when rotated about \mathbf{v} through θ
- For every rotation matrix R, there exist $v \in \mathbb{R}^{3}, \theta \in[0,2 \pi)$ such that

$$
R=R(v, \theta)=I+(1-\cos \theta)(v \times)^{2}+\sin \theta(v \times)
$$

- Problem: Axis angle variables do not combine well for successive rotations

Leonhard Euler

Leonhard Euler
1707-1783

- Rigid body motion
- Fluid mechanics
- Solid mechanics
- Number theory
- Real and complex analysis
- Calculus of variations
- Differential geometry and topology
- Differential equations
- Mathematical notation

Attitude Kinematics with Euler Angle

- To obtain attitude kinematics in terms of ψ, θ, ϕ, substitute

$$
R=R_{1}\left(v_{1}, \psi\right) R_{2}\left(v_{2}, \theta\right) R_{3}\left(v_{3}, \phi\right) \quad \text { in } \quad \dot{R}=R(w \times)
$$

- Solve for $\dot{\psi}, \dot{\theta}, \dot{\phi}$
- Example: 3-2-1 Euler angles

$$
\left[\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
1 & 0 & -\sin \theta \\
0 & \cos \phi & \sin \phi \cos \theta \\
0 & -\sin \phi & \cos \phi \cos \theta
\end{array}\right]^{-1}}_{\text {singular at } \theta= \pm 90^{\circ}}\left[\begin{array}{l}
\omega_{3} \\
\omega_{2} \\
\omega_{1}
\end{array}\right]
$$

- Fact: Every three-parameter representation of attitude possesses a kinematic singularity
- Euler angles suitable only for simulating limited angular motion

Quaternions

$$
q=\underbrace{q_{0}}_{\text {Real part }}+\underbrace{q_{1} \mathrm{i}+q_{2} \mathrm{j}+q_{3} \mathrm{k}}_{\text {Imaginary part }}
$$

- To multiply quaternions, use

$$
\mathrm{ii}=\mathrm{jj}=\mathrm{kk}=-1, \mathrm{ij}=-\mathrm{ji}=\mathrm{k}, \mathrm{jk}=-\mathrm{kj}=\mathrm{i}, \mathrm{ki}=-\mathrm{ik}=\mathrm{j}
$$

- Multiplication noncommutative
- Conjugate

$$
\bar{q}=q_{0}-q_{1} \mathrm{i}-q_{2} \mathrm{j}-q_{3} \mathrm{k}
$$

- Magnitude $=\sqrt{q \bar{q}}=\sqrt{q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}}$
- If $v=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]^{\mathrm{T}}$, then define $\widehat{v}=v_{1} \mathrm{i}+v_{2} \mathrm{j}+v_{3} \mathrm{k}$

Quaternion Representation of Rotations

- If I is rotated through θ about unit vector v to obtain B , set

$$
q=\cos \frac{\theta}{2}+\sin \frac{\theta}{2} \widehat{v}
$$

- Unit quaternion
- If $x_{\mathrm{B}}=(\mathbf{x})_{\mathrm{B}}$ and $x_{\mathrm{I}}=(\mathbf{x})_{\mathrm{I}}$ then

$$
\widehat{x}_{1}=q \widehat{x}_{\mathrm{B}} \bar{q}
$$

- No trigonometric formulae

$$
\begin{aligned}
& q_{\mathrm{B} \rightarrow \mathrm{I}}^{-1}=\bar{q}_{\mathrm{B} \rightarrow \mathrm{I}}=q_{\mathrm{I} \rightarrow \mathrm{~B}} \\
& q_{\mathrm{B} \rightarrow \mathrm{I}}=q_{\mathrm{C} \rightarrow \mathrm{I}} q_{\mathrm{B} \rightarrow \mathrm{C}}
\end{aligned}
$$

William Rowan Hamilton

- Algebra
- Optics
- Mechanics

William Rowan Hamilton 1805-1865

Attitude Dynamics Revisited

$$
\mathbf{M}=\dot{\mathbf{H}}
$$

- $\mathbf{M}=$ moment of external forces about center of mass
- $\mathbf{H}=$ angular momentum of body about center of mass
- Derivative with respect to inertial frame
- Let B be a body fixed frame with unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$

$$
\begin{aligned}
& \mathbf{H}=H_{1} \mathbf{i}+H_{2} \mathbf{j}+H_{3} \mathbf{k}, \quad H_{\mathrm{B}}=\left[\begin{array}{lll}
H_{1} & H_{2} & H_{3}
\end{array}\right]^{T} \\
& \boldsymbol{\omega}=\omega_{1} \widehat{i}+\omega_{2} \widehat{j}+\omega_{3} \widehat{k}, \quad \omega_{\mathrm{B}}=\left[\begin{array}{lll}
\omega_{1} & \omega_{2} & \omega_{3}
\end{array}\right]^{T} \\
& \mathbf{M}=M_{1} \widehat{i}+M_{2} \widehat{j}+M_{3} \widehat{k}, \quad M_{\mathrm{B}}=\left[\begin{array}{lll}
M_{1} & M_{2} & M_{3}
\end{array}\right]^{T} \\
& \dot{\mathbf{H}}=\dot{H}_{1} \widehat{i}+\dot{H}_{2} \widehat{j}+\dot{H}_{3} \widehat{k}+(\boldsymbol{\omega} \times \mathbf{H}) \\
& (\mathbf{M})_{\mathrm{B}}=(\dot{\mathbf{H}})_{\mathrm{B}}=\frac{d}{d t} H_{\mathrm{B}}+(\boldsymbol{\omega} \times \mathbf{H})_{\mathrm{B}}=\frac{d}{d t} H_{\mathrm{B}}+\left(\omega_{\mathrm{B}} \times\right) H_{\mathrm{B}} \\
& \frac{d}{d t} H_{\mathrm{B}}=-\left(\omega_{\mathrm{B}} \times\right) H_{\mathrm{B}}+M_{\mathrm{B}}
\end{aligned}
$$

- Attitude dynamics equation in terms of body components

Body Component of Angular Momentum

$$
\int(\boldsymbol{\rho} \times \dot{\boldsymbol{\rho}}) d m=\int \boldsymbol{\rho} \times(\boldsymbol{\omega} \times \boldsymbol{\rho}) d m=-\int(\boldsymbol{\rho} \times(\boldsymbol{\rho} \times \boldsymbol{\omega})) d m
$$

Let

$$
\begin{gathered}
\boldsymbol{\rho}=x \widehat{i}+y \widehat{j}+z \widehat{k}, \rho_{\mathrm{B}}=\left[\begin{array}{ll}
x & y \\
z
\end{array}\right]^{\mathrm{T}},\left(\rho_{\mathrm{B}} \times\right)=\left[\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right] \\
H_{\mathrm{B}}=-\int(\boldsymbol{\rho} \times(\boldsymbol{\rho} \times \boldsymbol{\omega}))_{\mathrm{B}} d m=\int\left(\rho_{\mathrm{B}} \times\right)(\boldsymbol{\rho} \times \boldsymbol{\omega})_{\mathrm{B}} d m=-\int\left(\left(\rho_{\mathrm{B}} \times\right)^{2} \omega_{\mathrm{B}}\right) d m \\
I_{\mathrm{B}}=-\int\left(\rho_{\mathrm{B}} \times\right)^{2} d m=\left[\begin{array}{ccc}
\int\left(y^{2}+z^{2}\right) d m & -\int x y d m & -\int x z d m \\
-\int x y d m & \int\left(x^{2}+z^{2}\right) d m & -\int y z d m \\
-\int x z d m & -\int y z d m & \int\left(x^{2}+y^{2}\right) d m
\end{array}\right] \\
H_{\mathrm{B}}=I_{\mathrm{B}} \omega_{\mathrm{B}}
\end{gathered}
$$

- $I_{\mathrm{B}}=$ moment-of-inertia matrix about body axes

Principal Axes of Inertia

- Moment-of-inertia matrix about inertial axes

$$
H_{\mathrm{I}}=R H_{\mathrm{B}}=R I_{\mathrm{B}} \omega_{\mathrm{B}}=R I_{\mathrm{B}} R^{T} \omega_{\mathrm{I}}=I_{\mathrm{I}}=R I_{\mathrm{B}} R^{T}
$$

- I_{I} varies as body rotates
- Two body frames, B amd B^{\prime}, related by rotation matix R

$$
\begin{gathered}
H_{\mathrm{B}}=I_{\mathrm{B}} \omega_{\mathrm{B}}, \quad H_{\mathrm{B}^{\prime}}=I_{\mathrm{B}^{\prime}} \omega_{\mathrm{B}^{\prime}} \\
H_{\mathrm{B}}=R H_{\mathrm{B}}=R I_{\mathrm{B}} \omega_{\mathrm{B}}=R I_{\mathrm{B}} R^{T} \omega_{\mathrm{B}^{\prime}}, \quad I_{\mathrm{B}^{\prime}}=R I_{\mathrm{B}} R^{T}
\end{gathered}
$$

- Fact: There exsists a rotation matrix R such that $R I_{\mathrm{B}} R^{T}=\left[\begin{array}{ccc}I_{1} & 0 & 0 \\ 0 & I_{2} & 0 \\ 0 & 0 & I_{3}\end{array}\right]$
- There exists a body frame B^{\prime} such that $I_{\mathrm{B}^{\prime}}=$ digonal
- Corresponding axes are principal axes of inertia, I_{1}, I_{2}, I_{3} are principal moment of inertia
- Principal axes are along eigenvectors of I_{B}
- Principal moments of inertia are eigenvalues of I_{B}

Euler's Equation for Rotational Dynamics

$$
\frac{d}{d t} H_{\mathrm{B}}=-\left(\omega_{\mathrm{B}} \times\right) H_{\mathrm{B}}+M_{\mathrm{B}}
$$

- Put $H_{\mathrm{B}}=I_{\mathrm{B}} \omega_{\mathrm{B}}, I_{\mathrm{B}}$ constant

$$
I_{\mathrm{B}} \dot{\omega}_{\mathrm{B}}=-\left(\omega_{\mathrm{B}} \times\right) I_{\mathrm{B}} \omega_{\mathrm{B}}+M_{\mathrm{B}}
$$

- Determine evolution of angular velocity component
- Determine rotational motion together with attitude kinematics equation
- Euler's equation written for principal axes of inertia

$$
\begin{aligned}
& \dot{\omega}_{1}=-\frac{\left(I_{3}-I_{2}\right)}{I_{1}} \omega_{2} \omega_{3}+\frac{1}{I_{1}} M_{1} \\
& \dot{\omega}_{2}=-\frac{\left(I_{1}-I_{3}\right)}{I_{1}} \omega_{1} \omega_{3}+\frac{1}{I_{2}} M_{2} \\
& \dot{\omega}_{3}=-\frac{\left(I_{2}-I_{1}\right)}{I_{3}} \omega_{1} \omega_{2}+\frac{1}{I_{3}} M_{3}
\end{aligned}
$$

