AE 415/713: Spaceflight Mechanics

- Course Outline
- Two-body problem
* Kepler's laws of planetary motion
* Conic sections
* Orbit determination from initial conditions
* Three-body problem
- Orbital maneuvers
- Rocket performance
* Rocket equation
* Multistaging
* Optimal multistaging
* Rocket trajectories
- Attitude Motion
* Rotational kinematics
* Euler's equations
* Motion of a torque-free rigid body
- Attitude Control
- Text: W. E. Wiesel, Spaceflight Dynamics, McGraw-Hill International Edition, 1997, on reserve in the study section.
- References:
- J. W. Cornelisse et al Rocket Propulsion and Spaceflight Dynamics, 1979, on reserve.
- B. Wie, Space Vehicle Dynamics and Control 1992.
- M. J. Sidi, Spacecraft Dynamics and Control, 1997.
- M. H. Kaplan, Modern Spacecraft Dynamics and Control, 1976, on reserve.
- J. B. Kuipers, Quaternions and Rotation Sequences, 1999, on reserve.
- P. C. Hughes, Spacecraft Attitude Dynamics, 1986.
- W. T. Thomson, Introduction to Space Dynamics, 1961, on reserve.
- R. R. Bate et al, Fundamentals of Astrodynamics, 1971.
- Evaluation

$$
\begin{array}{rr}
\text { Quizzes } & 25 \% \\
\text { Midsem } & 30 \% \\
\text { Endsem } & 40 \% \\
\text { Class participation } & 5 \%
\end{array}
$$

- Some exams/tests/quizzes may be open notes. For such exams, only notes written in one's own handwriting will be allowed. Photocopies will not be allowed.

