AE 415/713: Spaceflight Mechanics

- Course Outline
 - Two-body problem
 - * Kepler's laws of planetary motion
 - * Conic sections
 - * Orbit determination from initial conditions
 - * Three-body problem
 - Orbital maneuvers
 - Rocket performance
 - * Rocket equation
 - * Multistaging
 - * Optimal multistaging
 - * Rocket trajectories
 - Attitude Motion
 - * Rotational kinematics
 - * Euler's equations
 - * Motion of a torque-free rigid body
 - Attitude Control
- Text: W. E. Wiesel, *Spaceflight Dynamics*, McGraw-Hill International Edition, 1997, on reserve in the study section.
- References:
 - J. W. Cornelisse et al Rocket Propulsion and Spaceflight Dynamics, 1979, on reserve.
 - B. Wie, Space Vehicle Dynamics and Control 1992.
 - M. J. Sidi, Spacecraft Dynamics and Control, 1997.
 - M. H. Kaplan, Modern Spacecraft Dynamics and Control, 1976, on reserve.
 - J. B. Kuipers, Quaternions and Rotation Sequences, 1999, on reserve.
 - P. C. Hughes, Spacecraft Attitude Dynamics, 1986.
 - W. T. Thomson, Introduction to Space Dynamics, 1961, on reserve.
 - R. R. Bate et al, Fundamentals of Astrodynamics, 1971.
- Evaluation

Quizzes25 %Midsem30 %Endsem40 %Class participation5 %

• Some exams/tests/quizzes may be open notes. For such exams, only notes written in one's own handwriting will be allowed. Photocopies will not be allowed.