
AE 459/770 — Classical Dynamics, Spring 2008
Question Bank

Constraints

1. A simple pendulum of length l is is attached at a point that moves along the horizontal
x-axis with a displacement x0(t) = A sin ωt. Write down the constraint equation in
terms of the Cartesian coordinates of the particle. Using the angle θ of the pendulum
(measured counterclockwise from the negative y-axis) as a generalized coordinate, write
down the transformation relating θ and the Cartesian coordinates.

2. i) A disk of radius r is constrained to remain vertical at all times. What is the configu-
ration space of the disk? Is the constraint holonomic or nonholonomic? Suggest suitable
independent generalized coordinates for the disk.
ii) Repeat i) above in the case where the disk is also constrained to remain on the hor-
izontal XY plane.
iii) The disk in ii) above is further constrained to rotate without slipping on the XY
plane. Express the constraints in terms of the generalized coordinates you suggested
in ii) above. If there are any velocity constraints, do they restrict the configurations
that the disk can possibly attain? Support your answer with appropriate analysis of the
forms representing the constraints. If your answer is no, can you suggest how one might
take the disk from a given initial configuration to a final desired one?
iv) Repeat ii) above if the disk is further constrained to roll without slipping along the
X axis only.

3. Two wheels of radius r are joined by an axle of length l. The wheels rotate independently
of each other and move without slipping on a horizontal plane. Write down a set of
independent generalized coordinates for this system. Write down position and velocity
constraints if any. Do the velocity constraints restrict attainable configurations? Support
your answers with arguments and/or analysis.

4. A dumbbell consists of two particles of mass m connected by a massless rod of length
l. The dumbbell moves without friction on a horizontal plane. A knife-edge constraint
at one (and only one) of the particles restricts the velocity of the particle to make an
angle of 45◦ with the connecting rod. What is the configuration space of the system?
Suggest generalized coordinates for the system. Write down the constraints acting on
the system in terms of the generalized coordinates you have chosen, and state whether
the constraints constrain the configurations of the system. If you assert that the velocity
constraints, if any, do not constrain positions, then describe how one may take the system
from any arbitrary initial configuration to an arbitrary final one. If you assert that the
velocity constraints do constrain the positions, then support your answers with analysis
or examples.

5. Two particles, each of mass m, can slide on the horizontal xy-plane. Particle 1 is attached
to a rigid rod, and carries a knife edge parallel to the rod which constrains the velocity
of particle 1 to lie along the rod. Particle 2 slides without friction on the rod and is
connected to particle 1 by a spring of stiffness k and unstretched length l0. What is the
configuration space of the system (1 mark)? Suggest suitable generalized coordinates
for this system (1 mark). Write down all the position and velocity constraints that are
present (1.5 mark). Do the velocity constraints, if any, restrict attainable configurations?
Explain briefly



6. Two particles A and B are connected by a massless rod of length l. Particle A is
constrained to move along the horizontal axis, while particle B is constrained to move
along the vertical axis. A and B have masses 2m and m, respectively. Derive the
equation of motion of the system using Newton’s laws and eliminating the constraint
forces.

Principle of Virtual Work and d’Alembert’s Principle

7. Two particles A and B having masses mA and mB, respectively, are connected by an ax-
ially stiff and massless cord of length L. The particles (as well as the cord) slide without
friction on a ramp that has a circular segment and a straight inclined segment tangen-
tial to the circular segment as shown in the figure below. Find the angle θ at equilibrium.
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8. A uniform rod of weight mg is placed in a uniform gravitational field. Show that the
virtual work done by gravitational forces along any virtual displacement of the system is
given by −mgδzcm, where zcm denotes the z-component (+ve upwards) of the position of
the center of mass of the rod. (Hint: Express the virtual displacement of every particle
on the rod in terms of any two particles on it. Calculate the virtual displacement of
each mass particle on the rod and integrate to obtain the total virtual work.)

9. Two thin uniform rods of mass m and length l are pinned together at their upper ends.
The lower ends slide without friction on a horizontal surface. A particle of mass m
is suspended by two massless strings, each of length l/4 and each connected to the
midpoints of the rods as shown in the figure below. Assuming planar motion, find the
equilibrium values of θ in the interval 0 ≤ θ < π/6. (Use the conclusion of the previous
problem.)

θ θ
g

10. A rod of length l and mass m is fixed to the origin by a frictionless ball–and–socket
joint. The rod is free to rest on the inner edge of the ellipse described by the equations
a−2x2 + b−2y2 = 1, z = c, where a > b > 0 and a2 + c2 < l2. Assuming no friction, find
all equilibrium positions of the rod. (Use the conclusion of Problem 7.)

11. Two particles having masses 2m and m slide under gravity without friction on two rigid
rods inclined at 45◦ with the horizontal as shown in the figure below. The two particles
are connected by a linear spring of stiffness k. Use the principle of virtual work to solve



for the spring force F and the inclination θ of the spring in the equilibrium configuration.
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12. A string of length 2L is attached at fixed points A and B that are seperated by a distance
L. A particle of mass m slides without friction on the string which remains taut. Write
down all the constraints on the particle. Use the Principle of Virtual Work to locate all
equilibrium points of the particle.

13. A double pendulum consists of two simple pendula of masses m1 and m2, and lengths l1
and l2 connected end to end. The connecting links are massless. Motion takes place in
a vertical plane. A horizontal force of magnitude +P acts on the outboard mass. Using
any of the methods discussed in class, find the equilibrium configurations of the system.

14. Show that, for a scleronomic system of n particles, the instantaneous rate at which ex-
ternal forces do work on the system is given by QTq̇, where Q is the vector of generalised
forces and q̇ is the vector of generalised velocities for some set of generalised coordinates.
Does the same statement hold for a rheonomic system? (Hint: The statement is known
to be true in Cartesian coordinates.)

15. A particle moving in 3D space is subject to the workless velocity constraint (y − z)ẋ +
(z − x)ẏ + (x − y)ż = 0. Is this constraint exact, integrable, or neither? The particle is
also subjected to a force field given by F = 2i− j− k. Use the principle of virtual work
to find all possible equilibrium positions of the particle.

16. A particle of mass m is suspended from a point by an inextensible string, and moves
under uniform gravity acting along the negative z-axis. Assuming that the string remains
taut, use d’Alembert’s principle to show that the motion of the particle satisfies zÿ−yz̈ =
yg and zẍ−xz̈ = xg, (where the origin of the coordinate frame is chosen to be the point
of suspension).

Lagrange’s Equations: Independent Generalized Coordinates

17. Use Lagrange’s equations to show that a particle constrained to move on a circular
cylinder without friction traces out a helix, a circle or a straight line in the absence of
gravity (and other applied forces).

18. Use Lagrange’s equations to show that every motion of a particle that is constrained to
move along a two-dimensional sphere without friction and without any external forces
traces out a great circle on the sphere.

19. A mass m restricted to move in a vertical plane is suspended in a uniform gravitational
field from a fixed support by a spring of stiffness k. Use the Lagrangian method to write
down the equations of motion of the mass in terms of suitably chosen polar coordinates.



20. Derive the equations of motion of a double pendulum consisting of two simple pendula
connected end to end. Assume that the connecting links are rigid and massless and
motion takes place in a vertical plane under gravity.

21. A particle of mass m is connected by a massless spring of stiffness k and unstretched
length r0 to a point that is moving along a circular path of radius a at a uniform angular
rate of ω. Find the equations of motion assuming that the particle moves without friction
on an horizontal plane (that also contains the circlular path mentioned above).

22. A particle of mass m moves in a straight slot cut in a horizontal turntable that rotates
at a constant angular speed of ω. The slot is at a distance R from the axis of rotation
and symmetric about the diameter perpendicular to the slot. The particle is acted upon
by a linear spring placed along the slot. The spring is unstretched when the particle is
closest to the axis of rotation. Find the equation of motion of the particle.

23. Recall that a cycloid is the curve traced by a point on the circumference of a circle
that rotates without slipping on a straight line. Consider the case where the straight
line is horizontal and the circle lies below the line. Show that a particle constrained to
move along such a cycloid without friction and under uniform gravity is an isochronous
pendulum, that is, a pendulum whose period is independent of the amplitude. This
property is related to the fact (discovered by Huygens) that the cycloid is a tautochrone.
(Hint: Use the arc length along the cycloid measured from the lowest point as the
generalised coordinate. How is the arc length related to the angle of rotation of the
circle tracing out the cycloid?)

24. A governor is a mechanical device that provides a speed feedback mechanism for regulat-
ing the speed of rotating machinery. The figure below shows a schematic of a governor.
Two particles of mass m are located on arms that pivot at the top and the bottom. The
ring mass M slides up and down on the shaft without friction. The equilibrium value θeq

of the angle θ serves as a measurement of the speed ω of the shaft. Find the equation of
the callibration curve (θeq as a function of ω) of the governor. (Hint: Find the equation
of motion.)
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25. A rod OP of length r rotates in the horizontal x-y plane at a constant rate ω. A
pendulum of mass m and length l is attached to the end P of the rod. The orientation
of the pendulum relative to the rod is given by the angle θ measured from the downward
vertical, and the angle φ between the vertical plane through the pendulum and the
direction of the rod as shown in the figure below. Using (θ, φ) as generalized coordinates,



write down Lagrange’s equations for the system. Write down an integral of motion of
the system.
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26. A cart having mass M slides without friction on a horizontal track. The cart carries a
frictionless hinge joint from which a particle of mass m is suspended using a massless
rod of length l. Write down the equations of motion for this “pendulum on a cart”.
Include the effect of gravity.

Lagrange’s Equations for Constrained Systems

27. A uniform rod of mass m and length l moves on the horizontal xy plane without friction.
One end of the rod has a knife-edge constraint which prevents that end from having a
velocity component perpendicular to the rod. Using the coordinates of the center of
mass and the angular orientation as generalized coordinates, obtain the equations of
motion of the rod.

28. A particle of mass m is acted upon by a conservative force field having the potential
function V = 1

2
(x2 + y2 + z2) and a constraint described by 2ẋ + 3ẏ + 4ż + 5 = 0. Find

the equations of motion of the particle.

29. A particle of mass m slides on a smooth rigid wire having the shape y = 3x2 with gravity
acting in the negative y direction. Assuming the initial conditions y(0) = y0, use the
Lagrangian method to find the maximum constraint force during the resulting motion.

30. A particle of mass m slides without friction on a circular hoop under the action of gravity.
The plane of the hoop is vertical and the hoop rotates about its vertical diameter with
a constant angular velocity ω. Find the torque that needs to be applied to the hoop
about the vertical axis in order to maintain its angular velocity.

31. A knife edge having mass m and moment of inertia J about the vertical axis slides
without friction under gravity on a plane that is inclined at an angle α from the hori-
zontal. What is the configuration space of the knife edge? Choose suitable generalised
coordinates and use these to write down any contraints that may be present. If there
are velocity constraints, are they integrable (that is, arise from position constraints) or
not? Use the Lagrangian method to write down the equations of motion of the knife
edge.



32. Two particles of mass m are connected by an inextensible string of length l. One particle
slides without friction on a horizontal table. The other particle hangs from the string
through a hole in the table, and is constrained to move only vertically. What is the
configuration space of this system? Use the method of Lagrange multipliers to find an
expression for the tension in the string as well as equations of motion of the first particle
in polar coordinates.

Gibbs-Appell Equations

33. Obtain Gibbs-Appell equations for the system described in Problem 27.

34. Obtain Gibbs-Appell equations for the system described in Problem 28.

35. Obtain Gibbs-Appell equations for the system described in Problem 4.

36. A circular disc of mass m has moment of inertia I about the vertical axis passing through
its center of mass. The disc is constrained to move and rotate only in the horizontal
plane.

(a) If x, y and φ denote the Cartesian coordinates of the center of mass and the
orientation of the disc, respectively, then show that the Gibbs-Appell function for
the disc is 1

2
m(ẍ2 + ÿ2) + 1

2
Iφ̈2 + 1

2
Iφ̇4.

(b) A knife edge at the center of mass of the disc constrains the velocity of the center
of mass to lie along the knife edge. Use Gibbs-Appell equations to write down the
complete set of equations of motion of the disc in terms of the speed v of the center
of mass and the angular rate ω = φ̇ about the vertical axis. Use the equations to
show that the center of mass will either describe straight lines or circles.

(c) Write down Lagrange’s equations for the disc by using x, y and φ as generalized
coordinates and eliminating constraint forces.

37. Two particles A and B of mass m are joined by a rigid, massless rod of length l. Particle
A is subject to a knife-edge constraint that constrains the velocity of A to remain
orthogonal to the rod at all times. The system of two particles thus formed moves in
a horizontal two-dimensional plane. Write down Gibbs-Appell equations for the system
using the Cartesian coordinates of A and the orientation of the rod AB as generalized
coordinates.

Calculus of Variations

38. Show that if a curve renders the functional I[q] =
∫

t1

t0
L(q(t), q̇(t), q̈(t), t)dt stationary

with respect to varied curves satisfying fixed boundary conditions on q and q̇, then the
curve satisfies
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39. Find the equation of a curve in the x−y plane such that the area of the surface generated
by rotating the curve about the y axis is a minimum from among all curves satisfying
the same boundary conditions.

40. The refractive index n at a point in a certain liquid is a function of the depth y. As
a result, any path traversed by light remains in a vertical plane (can you show this?).
Fermat’s principle states that the path followed by light between two locations (say
x = 0 and x = x1) in the vertical plane minimizes the time taken between the two



points. Use this principle to obtain an equation describing the path followed by light in
the vertical x − y plane.

41. The displacement of a simple harmonic oscillator is periodic and hence given by a Fourier
series of the form q(t) =

∑

∞

n=1 cos nωt for appropriate initial conditions. Compute the
action integral over the interval [0, 2π/ω] with the Lagrangian L = mq̇2/2−kq2/2. Show
that the the action integral is an extremum for a nontrivial q only if an = 0 for every
n > 1 and ω2 = k/m.

42. Geodesics on a surface are curves that render arclength (considered as a functional of
curves defined on the surface) stationary. Show that every geodesic on a right circular
cylinder is either a circle, a helix, or a straight line. Show that geodesics on a sphere are
great circles.

43. Consider a circular cone having semi-vertex angle α and whose axis is vertical. Show
that geodesics on the cone satisfy

r
d2r

dθ2
cosec2α − 2

(

dr

dθ

)2

cosec2α − r2 = 0,

where r and θ are the polar coordinates of the horizontal projection of a point on the
cone. Recall that geodesics are curves that render the arclength functional stationary.

44. Obtain equations describing a curve x(t) = (q(t), p(t)) that renders the functional I[x] =
∫

t1

t0
F (q(τ), q̇(τ), p(τ), τ)dτ stationary among all curves defined on [t0, t1] and satisfying

q(t0) = qi and q(t1) = qf . What do these equations yield when the function F is of the
form F (q, q̇, p, t) = pTq̇ − H(q, p, t)?

45. The kinematic equations describing the motion of a particle moving in a two-dimensional
plane with an acceleration that is constant in magnitude but varying in direction are
given by v̇ = m cos θ, φ̇ = (m/v) sin θ, where v is the speed (magnitude of velocity),
m is the constant magnitude of the acceleration, heading angle φ is the angle between
the velocity vector and a fixed reference axis in the plane, and θ is the angle between
the acceleration vector and the velocity vector. This problem concerns the trajectory of
shortest arc length that achieves a specified heading change from among all trajecto-
ries that achieve the same heading change. Show that the motion of the particle along
such a length-optimal trajectory is such that v2 sin θ remains constant. Use this fact
to show that the angle bisector between the acceleration and velocity vectors makes a
constant angle with the reference axis. (Hint: Use the heading angle as the independent
variable.)

46. The kinematic equations describing the motion of a particle moving in a two-dimensional
plane with an acceleration that is constant in magnitude but varying in direction are
given by v̇ = m cos θ, φ̇ = (m/v) sin θ, where v is the speed (magnitude of velocity),
m is the constant magnitude of the acceleration, heading angle φ is the angle between
the velocity vector and a fixed reference axis in the plane, and θ is the angle between
the acceleration vector and the velocity vector. This problem concerns the trajectory
that achieves a specified heading change in the least time from among all trajectories
that achieve the same heading change. Show that the motion of the particle along
such a time-optimal trajectory is such that the velocity component perpendicular to the
acceleration vector remains constant. Use this fact to show that the acceleration vector
makes a constant angle with the reference axis. (Hint: Use the heading angle as the
independent variable.)



47. The figure below shows the planform of a cantilever slab supported on one of its straight
sides, which has a given length l. The slab is required to have a specified area A1. For
structural reasons, it is desired that the centroid of the slab should be as close to the sup-
port line as possible. Use calculus of variations to find the shape of the slab (that is, find

the curve y = y(x)).
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48. A simple closed planar curve is to be such that average distance of its points from the
origin is R. Show that if the curve is to enclose minimum area, then it must be a circle
of radius R centered at the origin. (Hint: Use polar coordinates.)

Conserved Quantities, Routhian Reduction and Noether’s Theorem

49. A particle of mass m slides without friction on the surface of a circular cone under the
action of gravity. The cone opens upwards, has its axis vertical and has an angle 2α
at its apex. Write down the Lagrangian and the Jacobi integral using the distance r
from the apex and the angular location φ about the axis of symmetry as generalized
coordinates. Use the Routhian method to eliminate any ignorable coordinates. What is
the Jacobi integral for the reduced system?

50. Two particles of mass m are connected by a rigid massless rod of length l. The dumbbell
thus formed moves in a plane. Each particle is attracted towards the origin under the
influence of a force that is proportional to the inverse square of its distance to the origin.

(a) The Lagrangian of the system is invariant under the action of a group of transfor-
mations on the configuration space. Which group? Is it a one-parameter group?

(b) Using the polar coordinates of one of the particles and the inclination of the dumb-
bell as generalized coordinates, obtain the Lagrangian of the system.

(c) Describe the action of the transformation group you picked in a) above in terms of
the generalized coordinates chosen in b). Verify that the Lagrangian is invariant
under the action of the group.

(d) Use Noether’s theorem to obtain an integral of motion of the system.

(e) What physical quantity do you think the integral of motion represents?

51. A particle is constrained to slide without friction under uniform gravity on the surface
of revolution obtained by rotating the curve z = x2, y = 0, about the z axis. Write down
the Lagrangian for the particle using cylindrical coordinates, and identify ignorable
coordinates. Apply the Routhian procedure to obtain a reduced set of equations for the
non-ignorable cooordinates.

52. Two particles of mass m are connected by spring of unstretched length l, axial stiffness
k, and negligible bending stiffness. One particle slides without friction on a horizontal
table. The other particle hangs from the spring through a hole in the table and is
constrained to move only vertically. Obtain the Lagrangian of the system using polar
coordinates of the first particle and the vertical location of the second as generalised
coordinates. Identify ignorable coordinates and use the Routhian method to obtain a
reduced system of equations for the non-ignorable coordinates. Use the reduced system
to suggest initial conditions for which the first particle performs circular motion.



53. A block of mass M with an inclined surface of inclination α slides without friction on
a horizontal floor. A second block of mass m slides under gravity without friction on
the inclined surface, and is attached to the top of the inclined surface with a spring of
stiffness k and unstretched length l. Write down as many conserved quantities for the
system as you can. Write down Hamilton’s equations for the system. Use the horizontal
location q1 of M and the location q2 of m along the inclined surface as generalized
coordinates.

54. A dumbbell consists of two particles of mass m connected by a massless rod of length l.
The dumbbell moves without friction on a horizontal plane. A knife-edge constraint at
one (and only one) of the particles restricts the velocity of the particle to remain parallel
to the connecting rod. List the ignorable coordinates of the system and corresponding
conserved quantities if any. Is this system conservative? If so, then find the Jacobi
integral and show that it is an integral of motion.

55. Two particles of mass m are connected by an inextensible string of length l. One particle
slides without friction on a horizontal table. The other particle hangs from the string
through a hole in the table and moves freely under gravity. Obtain the Lagrangian
of the system using polar coordinates of the first particle and spherical coordinates of
the second as generalised coordinates. Write down as many conserved quantities for this
system as you can with justification. Identify ignorable coordinates and use the Routhian
method to obtain a reduced system of equations for the non-ignorable coordinates.

Hamilton’s Equations

56. Derive Hamilton’s canonical equations for the system described in the previous question.

57. Derive Hamilton’s canonical equations for a spherical pendulum consisting of a particle
of mass m suspended from a point support by a rigid massless rod of length l.

58. A cylinder rotates freely about its axis of symmetry which is vertical. A particle of mass
m slides freely under gravity on a helical track that is rigidly fixed to the outer surface of
the cylinder. Obtain Hamilton’s equations for the system using cylindrical coordinates
of the particle as generalized coordinates.

59. A particle of mass m moves under the action of gravity inside a smooth circular tube
whose plane remains vertical. The tube is free to rotate about a vertical axis passing
through its center, and has inertia I about the axis of rotation and radius r. Write down
Hamilton’s equations for the system using suitable independent generalized coordinates.

60. Write down Hamilton’s canonical equations for the system described in Problem 51
above.

61. The figures below show the trajectories of two systems in a two-dimensional phase space.
Which of the two systems is likely to be described by Hamilton’s canonical equations,
and which is not? Explain briefly.




