AE 695 - State Space Methods
 Quiz 1, Thursday, 31/08/06, 4:15pm-5pm, Open Notes, 10 marks

1. Which of the following sets form a field? Explain briefly.
(a) Set of $n \times n$ matrices under matrix multiplication and addition.
(b) Set of $n \times n$ invertible matrices under matrix multiplication and addition.
(c) The set of irrational numbers.
(d) The set $\{0\}$.
2. Which of the following sets are examples of vector spaces over \mathbb{R} ? Explain briefly.
(a) The set $\left\{A \in \mathbb{R}^{n \times n}: A+A^{\mathrm{T}}=0\right\}$ of skew symmetric matrices.
(b) The set $\left\{X \in \mathbb{R}^{n \times n}: A^{\mathrm{T}} X+X A=0\right\}$ for a fixed matrix $A \in \mathbb{R}^{n \times n}$.
(c) The set $\left\{X \in \mathbb{R}^{n \times n}: A^{\mathrm{T}} X+X A=Q\right\}$ for fixed matrices $A, Q \in \mathbb{R}^{n \times n}$.
3. Let $v \in \mathbb{R}^{3}$ be a fixed vector. Define an operator $L: \mathbb{R}^{3} \times \mathbb{R}^{3}$ by $L(x)=v \times x$, where " \times " denotes the familiar cross product operation on vectors in ordinary 3D space. Write down the matrix representation of L in the standard basis for \mathbb{R}^{3}.

AE 695 - State Space Methods
 Quiz 1, Thursday, 31/08/06, 4:15pm-5pm, Open Notes, 10 marks

1. Which of the following sets form a field? Explain briefly.
(a) Set of $n \times n$ matrices under matrix multiplication and addition.
(b) Set of $n \times n$ invertible matrices under matrix multiplication and addition.
(c) The set of irrational numbers.
(d) The set $\{0\}$.
2. Which of the following sets are examples of vector spaces over \mathbb{R} ? Explain briefly.
(a) The set $\left\{A \in \mathbb{R}^{n \times n}: A+A^{\mathrm{T}}=0\right\}$ of skew symmetric matrices.
(b) The set $\left\{X \in \mathbb{R}^{n \times n}: A^{\mathrm{T}} X+X A=0\right\}$ for a fixed matrix $A \in \mathbb{R}^{n \times n}$.
(c) The set $\left\{X \in \mathbb{R}^{n \times n}: A^{\mathrm{T}} X+X A=Q\right\}$ for fixed matrices $A, Q \in \mathbb{R}^{n \times n}$.
3. Let $v \in \mathbb{R}^{3}$ be a fixed vector. Define an operator $L: \mathbb{R}^{3} \times \mathbb{R}^{3}$ by $L(x)=v \times x$, where " \times " denotes the familiar cross product operation on vectors in ordinary 3D space. Write down the matrix representation of L in the standard basis for \mathbb{R}^{3}.
