AE 695 – State Space Methods Quiz 1, Thursday, 31/08/06, 4:15pm-5pm, Open Notes, 10 marks

1. Which of the following sets form a field? Explain briefly.

- (4)
- (a) Set of $n \times n$ matrices under matrix multiplication and addition.
- (b) Set of $n \times n$ invertible matrices under matrix multiplication and addition.
- (c) The set of irrational numbers.
- (d) The set $\{0\}$.
- 2. Which of the following sets are examples of vector spaces over \mathbb{R} ? Explain briefly. (3)
 - (a) The set $\{A \in \mathbb{R}^{n \times n} : A + A^{\mathrm{T}} = 0\}$ of skew symmetric matrices.
 - (b) The set $\{X \in \mathbb{R}^{n \times n} : A^{\mathrm{T}}X + XA = 0\}$ for a fixed matrix $A \in \mathbb{R}^{n \times n}$.
 - (c) The set $\{X \in \mathbb{R}^{n \times n} : A^{\mathrm{T}}X + XA = Q\}$ for fixed matrices $A, Q \in \mathbb{R}^{n \times n}$.
- 3. Let $v \in \mathbb{R}^3$ be a fixed vector. Define an operator $L : \mathbb{R}^3 \times \mathbb{R}^3$ by $L(x) = v \times x$, where " \times " denotes the familiar cross product operation on vectors in ordinary 3D space. Write down the matrix representation of L in the standard basis for \mathbb{R}^3 . (3)

AE 695 – State Space Methods Quiz 1, Thursday, 31/08/06, 4:15pm-5pm, Open Notes, 10 marks

1. Which of the following sets form a field? Explain briefly.

(4)

- (a) Set of $n \times n$ matrices under matrix multiplication and addition.
- (b) Set of $n \times n$ invertible matrices under matrix multiplication and addition.
- (c) The set of irrational numbers.
- (d) The set $\{0\}$.
- 2. Which of the following sets are examples of vector spaces over \mathbb{R} ? Explain briefly. (3)
 - (a) The set $\{A \in \mathbb{R}^{n \times n} : A + A^{\mathrm{T}} = 0\}$ of skew symmetric matrices.
 - (b) The set $\{X \in \mathbb{R}^{n \times n} : A^{\mathrm{T}}X + XA = 0\}$ for a fixed matrix $A \in \mathbb{R}^{n \times n}$.
 - (c) The set $\{X \in \mathbb{R}^{n \times n} : A^{\mathrm{T}}X + XA = Q\}$ for fixed matrices $A, Q \in \mathbb{R}^{n \times n}$.
- 3. Let $v \in \mathbb{R}^3$ be a fixed vector. Define an operator $L : \mathbb{R}^3 \times \mathbb{R}^3$ by $L(x) = v \times x$, where " \times " denotes the familiar cross product operation on vectors in ordinary 3D space. Write down the matrix representation of L in the standard basis for \mathbb{R}^3 . (3)