$\begin{array}{l} AE \ 695-State \ Space \ Methods \\ \ Quiz \ 1, \ Monday, \ 17/9/07, \ 3:30 pm-5 pm, \ Open \ Notes, \ 20 \ marks \end{array}$

ONLY ONE'S OWN HANDWRITTEN NOTES ARE PERMITTED. PHOTOCOPIES, PRINTED MATTER ARE NOT ALLOWED.

- 1. Let $\mathcal{V}_1 = \{P \in \mathbb{R}^{3 \times 3} : P = P^T\}$ denote the set of 3×3 real symmetric matrices and $\mathcal{V}_2 = \{A \in \mathbb{R}^{3 \times 3} : A^2 = A\}$ denote the set of 3×3 real *idempotent* matrices.
 - (a) One of \mathcal{V}_1 and \mathcal{V}_2 is a vector space over \mathbb{R} under ordinary matrix addition and scalar multiplication. Which one? Explain briefly. (2)
 - (b) Let \mathcal{V} stand for the vector space among the sets \mathcal{V}_1 and \mathcal{V}_2 (that is, let \mathcal{V} denote your answer to part a) above). What is the dimension of \mathcal{V} ? Find a basis for \mathcal{V} .

(3)

- (c) Define two real-valued functions $f_1 : \mathcal{V} \to \mathbb{R}$ and $f_2 : \mathcal{V} \to \mathbb{R}$ by $f_1(A) =$ trace A and $f_2(A) =$ det A (where "det" denotes the matrix determinant). Which of f_1 and f_2 is a linear operator? Explain briefly. (2)
- (d) Let \mathcal{L} denote the linear operator among f_1 and f_2 (that is, let \mathcal{L} denote your answer to part c) above). What are the range, kernel, rank and nullity of \mathcal{L} ? Find a basis for kernel \mathcal{L} . (4)
- 2. Show that the functions e^t , te^t and t^2e^t are linearly independent on the interval [0,1] over the field \mathbb{R} . (3)
- 3. Let $\mathcal{V} = \mathbb{R}_3[s]$ be the set of polynomials in *s* having real coefficients, and degree 3 or less. Let $\mathcal{L} : \mathcal{V} \to \mathcal{V}$ be the operator that maps any given polynomial *p* in \mathcal{V} to the polynomial p'' + 3p' + 2p, where ' indicates differentiation with respect to *s*. Find the matrix representation of \mathcal{L} in the basis $\{1, s, s^2, s^3\}$ for \mathcal{V} . Using the matrix representation, or otherwise, find the rank of \mathcal{L} . (4)
- 4. Is the set of real invertible $n \times n$ matrices a field under ordinary matrix multiplication and addition? Explain briefly. (2)