AE 695 - State Space Methods

Quiz 1, Monday, 17/9/07, 3:30pm-5pm, Open Notes, 20 marks

ONLY ONE'S OWN HANDWRITTEN NOTES ARE PERMITTED. PHOTOCOPIES, PRINTED MATTER ARE NOT ALLOWED.

1. Let $\mathcal{V}_{1}=\left\{P \in \mathbb{R}^{3 \times 3}: P=P^{\mathrm{T}}\right\}$ denote the set of 3×3 real symmetric matrices and $\mathcal{V}_{2}=\left\{A \in \mathbb{R}^{3 \times 3}: A^{2}=A\right\}$ denote the set of 3×3 real idempotent matrices.
(a) One of \mathcal{V}_{1} and \mathcal{V}_{2} is a vector space over \mathbb{R} under ordinary matrix addition and scalar multiplication. Which one? Explain briefly.
(b) Let \mathcal{V} stand for the vector space among the sets \mathcal{V}_{1} and \mathcal{V}_{2} (that is, let \mathcal{V} denote your answer to part a) above). What is the dimension of \mathcal{V} ? Find a basis for \mathcal{V}.
(c) Define two real-valued functions $f_{1}: \mathcal{V} \rightarrow \mathbb{R}$ and $f_{2}: \mathcal{V} \rightarrow \mathbb{R}$ by $f_{1}(A)=$ trace A and $f_{2}(A)=\operatorname{det} A$ (where "det" denotes the matrix determinant). Which of f_{1} and f_{2} is a linear operator? Explain briefly.
(d) Let \mathcal{L} denote the linear operator among f_{1} and f_{2} (that is, let \mathcal{L} denote your answer to part c) above). What are the range, kernel, rank and nullity of \mathcal{L} ? Find a basis for kernel \mathcal{L}.
2. Show that the functions e^{t}, $t e^{t}$ and $t^{2} e^{t}$ are linearly independent on the interval $[0,1]$ over the field \mathbb{R}.
3. Let $\mathcal{V}=\mathbb{R}_{3}[s]$ be the set of polynomials in s having real coefficients, and degree 3 or less. Let $\mathcal{L}: \mathcal{V} \rightarrow \mathcal{V}$ be the operator that maps any given polynomial p in \mathcal{V} to the polynomial $p^{\prime \prime}+3 p^{\prime}+2 p$, where ' indicates differentiation with respect to s. Find the matrix representation of \mathcal{L} in the basis $\left\{1, s, s^{2}, s^{3}\right\}$ for \mathcal{V}. Using the matrix representation, or otherwise, find the rank of \mathcal{L}.
4. Is the set of real invertible $n \times n$ matrices a field under ordinary matrix multiplication and addition? Explain briefly.
