AE 695 – State Space Methods Quiz 2, Thursday, 28/09/06, 4:15pm-5pm, Closed Notes, 10 marks

- 1. Give an example of a matrix $A \in \mathbb{R}^{4 \times 4}$ such that $A^k = 0$ for every $k = 3, 4, \dots$, but $A^2 \neq 0$. (2)
- 2. Let x, y be nonzero vectors in \mathbb{R}^n , and let $A = xy^{\mathrm{T}}$. Find the range and kernel of A. For what $z \in \mathbb{R}^n$ does the equation Ap = z have a solution $p \in \mathbb{R}^n$? (3)
- 3. Suppose $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Show that range $[A \ B]$ = range A + range B. (3)
- 4. $A \in \mathbb{R}^{15 \times 15}$ has an eigenvalue $\lambda \in \mathbb{C}$ with algebraic multiplicity 10. The ranks of $(\lambda I A)^k$ for various values of k are shown below. Write down the Jordan block of A associated with λ . (2)

AE 695 – State Space Methods Quiz 2, Thursday, 28/09/06, 4:15pm-5pm, Closed Notes, 10 marks

- 1. Give an example of a matrix $A \in \mathbb{R}^{4 \times 4}$ such that $A^k = 0$ for every $k = 3, 4, \ldots$, but $A^2 \neq 0$. (2)
- 2. Let x, y be nonzero vectors in \mathbb{R}^n , and let $A = xy^{\mathrm{T}}$. Find the range and kernel of A. For what $z \in \mathbb{R}^n$ does the equation Ap = z have a solution $p \in \mathbb{R}^n$? (3)
- 3. Suppose $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Show that range $[A \ B]$ = range A + range B. (3)
- 4. $A \in \mathbb{R}^{15 \times 15}$ has an eigenvalue $\lambda \in \mathbb{C}$ with algebraic multiplicity 10. The ranks of $(\lambda I A)^k$ for various values of k are shown below. Write down the Jordan block of A associated with λ . (2)