AE 695 - State Space Methods

Quiz 2, Thursday, 28/09/06, 4:15pm-5pm, Closed Notes, 10 marks

1. Give an example of a matrix $A \in \mathbb{R}^{4 \times 4}$ such that $A^{k}=0$ for every $k=3,4, \ldots$, but $A^{2} \neq 0$.
2. Let x, y be nonzero vectors in \mathbb{R}^{n}, and let $A=x y^{T}$. Find the range and kernel of A. For what $z \in \mathbb{R}^{n}$ does the equation $A p=z$ have a solution $p \in \mathbb{R}^{n}$?
3. Suppose $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Show that range $[A B]=$ range $A+$ range B.
4. $A \in \mathbb{R}^{15 \times 15}$ has an eigenvalue $\lambda \in \mathbb{C}$ with algebraic multiplicity 10 . The ranks of $(\lambda I-A)^{k}$ for various values of k are shown below. Write down the Jordan block of A associated with λ.

$$
\begin{array}{cccccc}
\mathrm{k} & 1 & 2 & 3 & 4 & 5 \tag{2}\\
\operatorname{rank} & 12 & 9 & 6 & 5 & 5
\end{array}
$$

AE 695 - State Space Methods

Quiz 2, Thursday, 28/09/06, 4:15pm-5pm, Closed Notes, 10 marks

1. Give an example of a matrix $A \in \mathbb{R}^{4 \times 4}$ such that $A^{k}=0$ for every $k=3,4, \ldots$, but $A^{2} \neq 0$.
2. Let x, y be nonzero vectors in \mathbb{R}^{n}, and let $A=x y^{\mathrm{T}}$. Find the range and kernel of A. For what $z \in \mathbb{R}^{n}$ does the equation $A p=z$ have a solution $p \in \mathbb{R}^{n}$?
3. Suppose $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Show that range $[A B]=$ range $A+$ range B.
4. $A \in \mathbb{R}^{15 \times 15}$ has an eigenvalue $\lambda \in \mathbb{C}$ with algebraic multiplicity 10 . The ranks of $(\lambda I-A)^{k}$ for various values of k are shown below. Write down the Jordan block of A associated with λ.

$$
\begin{array}{cccccc}
\mathrm{k} & 1 & 2 & 3 & 4 & 5 \tag{2}\\
\operatorname{rank} & 12 & 9 & 6 & 5 & 5
\end{array}
$$

