AE 695 - State Space Methods

Quiz 2, Friday, 26/10/07, 6:30pm-8pm, Open Notes, 15 marks
ONLY ONE'S OWN HANDWRITTEN NOTES ARE PERMITTED. PHOTOCOPIES, PRINTED MATTER ARE NOT ALLOWED. This paper is printed on BOTH sides.

1. Consider the matrix-valued function $F: \mathbb{R} \rightarrow \mathbb{R}^{2 \times 2}$ given by

$$
F(t)=\left[\begin{array}{cc}
e^{t} & e^{-t} \tag{2}\\
e^{-t} & e^{t}
\end{array}\right]
$$

Does there exist $A \in \mathbb{R}^{2 \times 2}$ such that $F(t)=e^{A t}$? Explain briefly.
2. Is the following true? Explain briefly.

$$
e^{A t}=e^{3 t}\left[\begin{array}{lll}
1 & 1 & 1 \tag{2}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \text { where } A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

3. Find the state response of the system

$$
\begin{align*}
\dot{x}_{1} & =2 x_{2}, \\
\dot{x}_{2} & =2 x_{1}, \tag{3}
\end{align*}
$$

to the initial condition $x(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$.

AE 695 - State Space Methods

Quiz 2, Friday, 26/10/07, 6:30pm-8pm, Open Notes, 15 marks
ONLY ONE'S OWN HANDWRITTEN NOTES ARE PERMITTED. PHOTOCOPIES, PRINTED MATTER ARE NOT ALLOWED. This paper is printed on BOTH sides.

1. Consider the matrix-valued function $F: \mathbb{R} \rightarrow \mathbb{R}^{2 \times 2}$ given by

$$
F(t)=\left[\begin{array}{cc}
e^{t} & e^{-t} \tag{2}\\
e^{-t} & e^{t}
\end{array}\right]
$$

Does there exist $A \in \mathbb{R}^{2 \times 2}$ such that $F(t)=e^{A t}$? Explain briefly.
2. Is the following true? Explain briefly.

$$
e^{A t}=e^{3 t}\left[\begin{array}{lll}
1 & 1 & 1 \tag{2}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \text { where } A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

3. Find the state response of the system

$$
\begin{align*}
\dot{x}_{1} & =2 x_{2} \\
\dot{x}_{2} & =2 x_{1} \tag{3}
\end{align*}
$$

to the initial condition $x(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}$.
4. Verify that 2 is an eigenvalue of the matrix A given below. Find the algebraic and geometric multiplicities, and Jordan block corresponding to this eigenvalue.

$$
\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \tag{4}\\
-1 & 2 & 1 & 0 \\
-1 & 0 & 3 & 0 \\
-1 & 0 & 1 & 2
\end{array}\right]
$$

5. Suppose the matrices A, P_{1} and P_{2} are as given below. Ascertain whether the matrices $A^{\mathrm{T}} A, A+A^{\mathrm{T}}, A^{\mathrm{T}} P_{1}+P_{1} A$ and $A^{\mathrm{T}} P_{2}+P_{2} A$ are positive definite, negative definite, positive semidefinite, negative semidefinite, or indefinite.

$$
A=\left[\begin{array}{rr}
0 & 1 \tag{4}\\
-2 & -1
\end{array}\right], P_{1}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], P_{2}=\left[\begin{array}{cc}
11 & 1 \\
1 & 5
\end{array}\right] .
$$

4. Verify that 2 is an eigenvalue of the matrix A given below. Find the algebraic and geometric multiplicities, and Jordan block corresponding to this eigenvalue.

$$
\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \tag{4}\\
-1 & 2 & 1 & 0 \\
-1 & 0 & 3 & 0 \\
-1 & 0 & 1 & 2
\end{array}\right]
$$

5. Suppose the matrices A, P_{1} and P_{2} are as given below. Ascertain whether the matrices $A^{\mathrm{T}} A, A+A^{\mathrm{T}}, A^{\mathrm{T}} P_{1}+P_{1} A$ and $A^{\mathrm{T}} P_{2}+P_{2} A$ are positive definite, negative definite, positive semidefinite, negative semidefinite, or indefinite.

$$
A=\left[\begin{array}{rr}
0 & 1 \tag{4}\\
-2 & -1
\end{array}\right], P_{1}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right], P_{2}=\left[\begin{array}{cc}
11 & 1 \\
1 & 5
\end{array}\right] .
$$

