AE 695 - State Space Methods

Quiz 3, Thursday, 19/10/06, 3:30pm-5pm, Closed Notes, 15 marks

1. Use series expansion to compute $e^{A t}$ for $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.
2. Use Laplace transforms to compute $e^{A t}$ for

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \tag{3}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3. Verify that $X(t)=e^{A t} C e^{B t}$ is the solution of the matrix differential equation $\dot{X}=$ $A X+X B$ satisfying $X(0)=C$.
4. Suppose the matrix exponential of the partitioned matrix $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]$ is itself partitioned (consistent with the partitioning of A) as $e^{A t}=\left[\begin{array}{ll}B_{11}(t) & B_{12}(t) \\ B_{21}(t) & B_{22}(t)\end{array}\right]$. Show that $B_{21}(t)=0$ for every t, while $B_{i i}(t)=e^{A_{i i t}}$ for $i=1,2$.
5. Suppose $A \in \mathbb{R}^{n \times n}$ is asymptotically stable and $Q \in \mathbb{R}^{n \times n}$ is symmetric and positive definite. Let $P=\int_{0}^{\infty} e^{A^{\mathrm{T}} t} Q e^{A t} d t$. Show that P is positive definite and satisfies $A^{\mathrm{T}} P+$ $P A=-Q$.
6. Suppose $A \in \mathbb{R}^{n \times n}$ satisfies $A^{\mathrm{T}} P+P A=0$ for some symmetric positive-definite matrix P. Show that every eigenvalue of A is imaginary.
7. (Optional Bonus Question) Show that the matrix A in the question above is Lyapunov stable, that is, every eigenvalue of A is also semisimple.
