AE 695 - State Space Methods

Quiz 3, Thursday, 15/11/07, 3:45pm-5pm, Open Notes, 15 marks

ONLY ONE'S OWN HANDWRITTEN NOTES ARE PERMITTED. PHOTOCOPIES, PRINTED MATTER ARE NOT ALLOWED.

1. Show that the controllability Grammian $P(t)=\int_{0}^{t} e^{A \tau} B B^{\mathrm{T}} e^{A^{\mathrm{T}} \tau} d \tau$ satisfies the matrix differential equation $\dot{P}(t)=A P(t)+P(t) A^{\mathrm{T}}+B B^{\mathrm{T}}$ with initial condition $P(0)=0$.
2. Suppose the symmetric, positive-definite matrix $P \in \mathbb{R}^{n \times n}$ satisfies $A^{\mathrm{T}} P+P A+\mu P=-Q$, where $A \in \mathbb{R}^{n \times n}, \mu \in \mathbb{R}$ is positive, and $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive-definite matrix. Show that every eigenvalue of A has real part less than $-\mu$.
3. Consider the system $\dot{x}=A x+B u$ and $y=C x$, where

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
5 & 3 & 6 \\
-5 & -1 & -4
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], C=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right] .
$$

Does there exist an input which steers the system from the initial state $x_{\mathrm{i}}=0$ to the state $x_{\mathrm{f}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}$? Are the outputs generated by initial conditions $x_{1}=\left[\begin{array}{lll}3 & 2 & 0\end{array}\right]^{\mathrm{T}}$ and $x_{2}=\left[\begin{array}{ll}4 & 3\end{array}-1\right]^{\mathrm{T}}$ in response to a given input same or different? Explain.
4. In the problem above, verify that 2 and -3 are eigenvalues of A. Is the eigenvalue 2 controllable? Is the eigenvalue -3 observable?

AE 695 - State Space Methods

Quiz 3, Thursday, 15/11/07, 3:45pm-5pm, Open Notes, 15 marks

ONLY ONE'S OWN HANDWRITTEN NOTES ARE PERMITTED. PHOTOCOPIES, PRINTED MATTER ARE NOT ALLOWED.

1. Show that the controllability Grammian $P(t)=\int_{0}^{t} e^{A \tau} B B^{\mathrm{T}} e^{A^{\mathrm{T}} \tau} d \tau$ satisfies the matrix differential equation $\dot{P}(t)=A P(t)+P(t) A^{\mathrm{T}}+B B^{\mathrm{T}}$ with initial condition $P(0)=0$.
2. Suppose the symmetric, positive-definite matrix $P \in \mathbb{R}^{n \times n}$ satisfies $A^{\mathrm{T}} P+P A+\mu P=-Q$, where $A \in \mathbb{R}^{n \times n}, \mu \in \mathbb{R}$ is positive, and $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive-definite matrix. Show that every eigenvalue of A has real part less than $-\mu$.
3. Consider the system $\dot{x}=A x+B u$ and $y=C x$, where

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
5 & 3 & 6 \\
-5 & -1 & -4
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], C=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right] .
$$

Does there exist an input which steers the system from the initial state $x_{\mathrm{i}}=0$ to the state $x_{\mathrm{f}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{\mathrm{T}}$? Are the outputs generated by initial conditions $x_{1}=\left[\begin{array}{lll}3 & 2 & 0\end{array}\right]^{\mathrm{T}}$ and $x_{2}=\left[\begin{array}{ll}4 & 3\end{array}\right]^{\mathrm{T}}$ in response to a given input same or different? Explain.
4. In the problem above, verify that 2 and -3 are eigenvalues of A. Is the eigenvalue 2 controllable? Is the eigenvalue -3 observable?

