AE 703: Digital Control Systems

• Course Outline

- Linear difference equations
 - * Initial condition response,
 - * Impulse response
 - * Convolution and input response
 - * Input-output stability
- Z-transforms
 - * z-transform theorems
 - * Inverse z-transform
- Transfer functions
 - * Poles and stability
 - $\ast\,$ Poles and transient response
 - * Response to step and harmonic inputs
- Discrete equivalents of s-transfer functions
 - * Forward, backward and trapezoidal rules
 - * Pole-zero mapping
 - * Hold equivalents
- Sampling and reconstruction
- Analysis of sampled-data systems
- Design using classical techniques
- State-space concepts
 - * Continuous-time state-space systems
 - $\ast\,$ ZOH equivalents of continuous time systems
 - * Controllability and observability
 - * Pole placement
 - * Observers
 - * LQR (?)
- Texts
 - Digital Control of Dynamic Systems, Franklin, Powell and Workman
 - Digital Control Systems, B. C. Kuo
 - Digital Control System Analysis and Design, Phillips and Nagle
- References
 - Digital Control: A State Space Approach, R. J. Vacaro
 - Digital Control and State Variable Methods, M. Gopal
- Evaluation

Quizzes	30~%
Midsem	30~%
Endsem	40~%