

## Typical Control Objectives

- Uncontrolled system (plant) may not behave satisfactorily
$\Rightarrow$ Design a control system that yields satisfactory behavior for the controlled system
- Typical properties desired of a controlled system
- Stability
* Input-output stability: Bounded inputs should give bounded outputs
* Internal stability: All internal variables remain bounded in the absence of inputs
- Tracking: (Output $-\operatorname{Input}) \rightarrow 0$ as $t \rightarrow \infty$
* Regulation: Output $\rightarrow 0$ as $t \rightarrow \infty$
- Disturbance/Noise Rejection: Satisfactory performance in the presence of plant disturbances and measurement noise
- Robustness: Satisfactory performance inspite of unmodelled dynamics and parameter uncertainty/change


## $\underline{\text { Review of Continuous-Time Systems }}$

- All signals are analog signals
- A linear, time invariant, single-input-single-output (SISO) system is typically described by

$$
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{(n)} y=b_{0} u^{(m)}+b_{1} u^{(m-1)}+\cdots+b_{m} u
$$

- Solution $=$ initial condition response + input response
- Input response $=u *$ impulse response (convolution)
- Transfer function $=\mathcal{L}$ (impulse response)
- $\mathcal{L}(y)=$ T.F. $\times \mathcal{L}(u)$ for zero initial conditions
- Transient response decided by poles and zero; poles decide stability
- Frequency response analysis: Harmonic Analysis, Bode, Nyquist


## An Overview of Control Activities

- ANALYSIS:
- Relate system theoretic properties to system behaviour.

Eg. Poles and stability

- Need analysis tools, eg. Routh-Hurwitz test
- CONTROLLER DESIGN:
- Translate specs to system properties and design a controller (control law) that assigns these properties to the controlled system

Eg. Pole placement controller

- Need design tools, eg. pole placement technique
- IMPLEMENTATION:
- Sensors, actuators, filters, processors


## A Digital Controller



## Discrete-Time Signals

- Sequence $\{u(k)\}_{k=0}^{\infty}$ of real numbers
- A real-valued function $k \mapsto u(k)$ of integers
- Right-sided sequence (signal) $u(0), u(1), u(2), \ldots$
- Two-sided sequence (signal) $\ldots, u(-2), u(-1), u(0), u(1), u(2), \ldots$


## Operators on Discrete-Time Signals

- Identity operator 1
- Shift or unit delay operator $\mathcal{S}$

$$
\begin{aligned}
(\mathcal{S} u)(k) & =u(k-1), k \geq 1 \\
& =0 \quad k \leq 1
\end{aligned}
$$

- Unit advance operator $\mathcal{S}^{-1}$

$$
\left(\mathcal{S}^{-1} u\right)(k)=u(k+1), k \geq 0
$$

- Difference operator

$$
\begin{gathered}
\Delta u(k)=u(k)-u(k-1)=(u-\mathcal{S} u)(k) \\
\Delta=1-\mathcal{S}, \mathcal{S}=1-\Delta
\end{gathered}
$$

## Some Basic Discrete-Time Signals

- Unit pulse/impulse signal

$$
\begin{aligned}
\delta(k) & =1, k=0 \\
& =0, k>0
\end{aligned}
$$

- Unit step signal

$$
\begin{gathered}
s(k)=1, \quad k \geq 0 \\
\Delta s=\delta
\end{gathered}
$$

- Harmonic signals

$$
u(k)=\sin (k \theta)
$$

- Exponential signals

$$
u(k)=r^{k}
$$

- Harmonic signals with exponential amplitudes

$$
u(k)=r^{k} \sin (k \theta)=\operatorname{Re}\left(r e^{\jmath \theta}\right)^{k}
$$

## Linear Difference Equations

$$
y(k)+a_{1} y(k-1)+\ldots+a_{n} y(k-n)=b_{0} u(k)+b_{1} u(k-1)+\ldots+b_{m} u(k-m)
$$

- In terms of the shift operator

$$
\begin{gathered}
y(k)+a_{1} \mathcal{S} y(k)+\ldots+a_{n} \mathcal{S}^{n} y(k)=b_{0} u(k)+b_{1} \mathcal{S} u(k)+\ldots+b_{m} \mathcal{S}^{m} u(k) \\
D(\mathcal{S}) y=N(\mathcal{S}) u
\end{gathered}
$$

- Auto-Regressive Moving Averages (ARMA) model
- Causal: Output independent of future input
- Strictly causal if output depends only the past inputs
- Shift invariant (time invariant)
- Shifted input $\mathcal{S} u$ produces shifted output $\mathcal{S} y$
- Linear (Superposition + Homogeneity)
- To solve need $n$ initial conditions + input


## An Example

- To numerically compute

$$
\begin{gathered}
y(t)=\int_{0}^{t} u(\tau) d \tau \\
\dot{y}(t)=u(t), y(0)=0
\end{gathered}
$$

- At instants $0, T, 2 T, \ldots, k T, \ldots$,

$$
y(k T)=y((k-1) T)+\int_{(k-1) T}^{k T} u(\tau) d \tau
$$

- Use forward rectangular rule to approximate the integral

$$
\begin{aligned}
& y(k T)=y((k-1) T)+T u((k-1) T), y(0)=0 \\
& \Delta y=T \mathcal{S} u, y(0)=0
\end{aligned}
$$

## Vector Spaces

- A vector space $\mathcal{V}$ is a set
- whose elements can be added in some manner
- whose elements can multiplied by scalars in some manner
- which contains a zero element

For example:
$-\mathcal{V}=$ set of all functions of time
$-\mathcal{V}=$ set of all right-sided sequences

## Linear Independence

- A linear combination is a finite sum of the form

$$
\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

- Linear independence - every linear combination involving atleast one nonzero scalar is nonzero
- $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathcal{V}$ forms a basis for $\mathcal{V}$ if
$-v$ 's are linearly independent and
- every vector in $\mathcal{V}$ is a linear combination of $v^{\prime}$ s
- If $\mathcal{V}$ has a basis of $n$ elements for some $n$, then $\mathcal{V}$ is $n$-dimensional, else infinite-dimensional
- A linear operator is a linear function $\mathcal{V} \mapsto \mathcal{V}$


## Vector Space of Discrete Signals

- The set of all discrete signals is a vector space with

$$
\left(y_{1}+y_{2}\right)(k)=y_{1}(k)+y_{2}(k),(\alpha y)(k)=\alpha y(k), \text { Zero element } y \equiv 0
$$

- $y_{1}, \ldots, y_{n}$ are linearly dependent iff $\exists \alpha_{1}, \ldots, \alpha_{n}$ such that

$$
\alpha_{1} y_{1}(k)+\ldots+\alpha_{n} y_{n}(k)=0 \forall k
$$

- For $\lambda_{1} \neq \lambda_{2}$ nonzero real, $\left\{\lambda_{1}^{k}\right\},\left\{\lambda_{2}^{k}\right\}$ are linearly independent
- For $\lambda$ complex, $\left\{\operatorname{Re} \lambda^{k}\right\}$ and $\left\{\operatorname{Im} \lambda^{k}\right\}$ are I. i.
- For $\lambda_{1} \neq \lambda_{2}$ complex, $\left\{\operatorname{Re} \lambda_{1,2}^{k}\right\}$ and $\left\{\operatorname{Im} \lambda_{1,2}^{k}\right\}$ are I. i.
- For $\lambda_{1}$ nonzero real and $\lambda_{2}$ complex, $\lambda_{1}^{k},\left\{\operatorname{Re} \lambda_{2}^{k}\right\}$ and $\left\{\operatorname{Im} \lambda_{2}^{k}\right\}$ are I. i.
- No finite basis possible
- Linear operators

$$
\mathcal{S}, D(\mathcal{S}), \Delta, \widehat{D}(\Delta)
$$

## Homogeneous Linear Difference Equations

$$
\begin{gathered}
y(k)+a_{1} y(k-1)+\ldots+a_{n} y(k-n)=0 \\
D(\mathcal{S}) y=0 \\
y(-1), y(-2), \ldots, y(-n)
\end{gathered}
$$

- Zero initial conditions imply solution is zero
- The set of all solutions is a vector space since

$$
\begin{gathered}
y \equiv 0 \text { is a solution } \\
D(\mathcal{S})\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)=\alpha_{1} D(\mathcal{S}) y_{1}+\alpha_{2} D(\mathcal{S}) y_{2}
\end{gathered}
$$

Theorem: The vector space of solutions has dimension $n$
$\left(a_{n} \neq 0\right)$

- To prove, need to find a basis consisting of $n$ solutions


## A Basis of Solutions

- Idea Solutions $\longleftrightarrow$ sets of initial conditions
- If $w_{i}$ form a basis for all initial conditions, the corresponding solutions form a basis for all solutions
- Choose $n$ sets of initial conditions as follows

|  | -1 | -2 | -3 | $\cdots$ | $-n$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y_{1}$ | 1 | 0 | 0 | $\cdots$ | 0 | $w_{1}$ |
| $y_{2}$ | 0 | 1 | 0 | $\cdots$ | 0 | $w_{2}$ |
| $\vdots$ |
| $y_{n}$ | 0 | 0 | 0 | $\cdots$ | 1 | $w_{n}$ |

Claim: $y_{1}, \ldots, y_{n}$ form a basis for all solutions

A Basis of Solutions (cont'd)

- $y_{1}, \ldots, y_{n}$ are linearly independent

$$
\text { If } \alpha_{1} y_{1}(k)+\cdots+\alpha_{n} y_{n}(k)=0 \forall k \text {, then } k=-i \Rightarrow \alpha_{i}=0
$$

- Every solution is a linear combination of $y_{1}, \ldots, y_{n}$

Let $y$ be any solution and consider

$$
\bar{y}(k)=y(-1) y_{1}(k)+\cdots+y(-i) y_{i}(k)+\cdots+y(-n) y_{n}(k)
$$

$-\bar{y}$ is a solution satisfying the same initial conditions as $y$

- Hence $y=\bar{y}$ is a linear combination of $y_{1}, \ldots, y_{n}$


## Solution of Linear Difference Equations

- Choose a basis of initial conditions and use corresponding solutions as a basis of solutions
- Try a solution of the form $y(k)=\lambda^{k}$

$$
\begin{gathered}
(\mathcal{S} y)(k)=\lambda^{k-1}=\lambda^{-1} y(k) \text { for } k \geq 1 \\
\left(\mathcal{S}^{2} y\right)(k)=\lambda^{-2} y(k) \text { for } k \geq 2 \\
D(\mathcal{S}) y(k)=D\left(\lambda^{-1}\right) y(k) \text { for } k \geq n
\end{gathered}
$$

- $y(k)=\lambda^{k}$ is a solution of $D(\mathcal{S}) y=0$ if $\lambda$ satisfies

$$
\begin{gathered}
D\left(\lambda^{-1}\right)=0, \text { that is } \\
1+a_{1} \lambda^{-1}+a_{2} \lambda^{-2}+\ldots+a_{n} \lambda^{-n}=0 \Longrightarrow \\
\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\ldots+a_{n}=0
\end{gathered}
$$

- $\lambda^{n} D\left(\lambda^{-1}\right)=$ characteristic polynomial


## Another Basis of Solutions

- Characteristic polynomial/equation - factor as

$$
C(\lambda)=\left(\lambda-p_{1}\right)^{m_{1}}\left(\lambda-p_{2}\right)^{m_{2}} \ldots\left(\lambda-p_{l}\right)^{m_{l}}
$$

- The following functions form a basis for the solutions of the LDE
- For $p_{i}$ real,

$$
\left\{p_{i}^{k}\right\},\left\{k p_{i}^{k}\right\},\left\{k^{2} p_{i}^{k}\right\}, \ldots,\left\{k^{m_{i}-1} p_{i}^{k}\right\}
$$

- For $p_{i}=r e^{\jmath \theta}$ and $\bar{p}_{i}$ complex,
$\left\{r^{k} \sin (k \theta)\right\},\left\{k r^{k} \sin (k \theta)\right\},\left\{k^{2} r^{k} \sin (k \theta)\right\}, \ldots,\left\{k^{m_{i}-1} r^{k} \sin (k \theta)\right\}$
$\left\{r^{k} \cos (k \theta)\right\},\left\{k r^{k} \cos (k \theta)\right\},\left\{k^{2} r^{k} \cos (k \theta)\right\}, \ldots,\left\{k^{m_{i}-1} r^{k} \cos (k \theta)\right\}$
- Initial conditions determine the constants in the linear combination


## Stability of Initial Condition Response

- Real characteristic root $p$

$$
\begin{array}{rll}
\left\{p^{k}\right\} & \text { decays iff }|p|<1 \quad\left\{k^{j} p^{k}\right\} & \text { decays iff }|p|<1 \\
& \text { bounded if }|p|=1 & \\
& \text { unbounded if }|p|>1 & \text { unbounded if }|p| \geq 1
\end{array}
$$

- Complex characteristic root $p$

$$
\begin{array}{rlr}
\left\{\operatorname{Re} p^{k}\right\},\left\{\operatorname{Im} p^{k}\right\} & \text { decay iff }|p|<1 \\
& \text { bounded if }|p|=1 & \left\{\operatorname{Re} k^{j} p^{k}\right\},\left\{\operatorname{Im} k^{j} p^{k}\right\} \quad \text { decay iff }|p|<1 \\
& \text { unbounded if }|p|>1 & \text { unbounded if }|p| \geq 1
\end{array}
$$

- Theorem
- All solutions are bounded iff all characteristic roots lie in the closed unit disc $\{\lambda:|\lambda| \leq 1\}$ and all roots with unit magnitude are simple (unrepeated)
- All solutions decay iff all characteristic roots lie in the open unit disc $\{\lambda:|\lambda|<1\}$


## Convolution

- Convolution of two right sided sequences $u$ and $g$ is the sequence

$$
\begin{aligned}
(u * g)(k) & =\sum_{l=0}^{k} u(l) g(k-l) \\
& =u(0) g(k)+u(1) g(k-1)+\cdots+u(k-1) g(1)+u(k) g(0)
\end{aligned}
$$

$$
\begin{gathered}
u * g=g * u \\
\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}\right) * g=\alpha_{1}\left(u_{1} * g\right)+\alpha_{2}\left(u_{2} * g\right)
\end{gathered}
$$

- For a fixed $g, u * g$ is a linear operator on $u$

$$
\begin{gathered}
\mathscr{S}(u * g)=u * \mathcal{S} g=g * \mathcal{S} u \\
D(\mathcal{S})(u * g)=u * D(\mathcal{S}) g=g * D(\mathcal{S}) u \\
\Delta(u * g)=u * \Delta g=g * \Delta u \\
u * \delta=u \\
-(u * \delta)(k)=u(0) \delta(k)+\ldots+u(k-1) \delta(1)+u(k) \delta(0)=u(k)
\end{gathered}
$$

## Pulse Response and Input Response

- Pulse response $g=$ zero initial condition response to a unit pulse

$$
D(\mathcal{S}) g=N(\mathcal{S}) \delta, 0=g(-1)=g(-2)=\cdots
$$

- Fact: The response $y$ of a linear time invariant system to an arbitrary input $u$ under zero initial conditions is given by

$$
y=u * g
$$

Proof: To show $D(\mathcal{S}) y=N(\mathcal{S}) u$

$$
\begin{aligned}
D(\mathcal{S}) y & =D(\mathcal{S})(u * g) \\
& =u * D(\mathcal{S}) g \\
& =u * N(\mathcal{S}) \delta \\
& =N(\mathcal{S})(u * \delta) \\
& =N(\mathcal{S}) u
\end{aligned}
$$

- Step response $=s * g$


## Bounded-Input-Bounded-Output (BIBO) Stability

- A system is BIBO stable if the output to every bounded input is bounded
- A sequence $y$ is said to be bounded if there exists $M$ such that $|y(k)|<M, \forall k$
- For a bounded sequence $y$, define

$$
\|y\|=\sup _{k>0} y(k)=\text { least upper bound of }\{y(k)\}
$$

- Fact:

A system is BIBO stable if and only if there exists $N$ such that for every nonzero input $u$, the corresponding output $y$ satisfies

$$
\frac{\|y\|}{\|u\|}<N
$$

- Theorem:

A system is BIBO stable iff the input response $g$ is absolutely summable, that is,

$$
\sum_{k=0}^{\infty}|g(k)|<\infty
$$

## BIBO Stability and Pulse Response

- Suppose the pulse response is absolutely summable

$$
\begin{aligned}
|y(k)| & =|(u * g)(k)| \leq \sum_{l=0}^{k}|u(l) \| g(k-l)| \\
& \leq\|u\| \sum_{l=0}^{k}|g(k-l)| \leq\|u\| \sum_{l=0}^{\infty}|g(l)|<\infty
\end{aligned}
$$

- Suppose the pulse response is not absolutely summable

$$
\begin{aligned}
u_{k}(l)= & \operatorname{sign} g(k-l) \\
=0, & l \leq k, \\
& \left\|u_{k}\right\|=1 \\
\left\|y_{k}\right\| \geq y_{k}(k)= & \left(u_{k} * g\right)(k)=\sum_{l=0}^{k}|g(k)| \\
& \left\|y_{k}\right\| \longrightarrow \infty
\end{aligned}
$$

## Output Zeroing Inputs

$$
\begin{gathered}
D(\mathcal{S}) y=N(\mathcal{S}) u \\
y(k)+a_{1} y(k-1)+\cdots+a_{n} y(k-n)=b_{i} u(k-i)+\cdots+b_{m} u(k-m)
\end{gathered}
$$

- An output zeroing input - produces no response under under zero initial conditions, that is, satisfies $u * g=0$
- Must satisfy the difference equation

$$
N(\mathcal{S}) u=0, \text { that is, } b_{i} u(k-i)+\cdots b_{m} u(k-m)=0
$$

- Set of all null inputs is a vector space
- A basis can be found from the characteristic zeros, solutions of

$$
b_{i} \lambda^{m-i}+b_{i+1} \lambda^{m-i-1}+\cdots+b_{m}=0
$$

- Zero $z_{i}$ of multiplicity $m_{i}$ contributes

$$
\left\{z_{i}^{k}\right\},\left\{k z_{i}^{k}\right\}, \cdots,\left\{k^{m_{i}-1} z_{i}^{k}\right\}
$$

- Dimension of this vector space is $m-i$


## Impulse Response and Initial Condition Responses

- Let $d$ be the impulse response of the system $D(\mathcal{S}) y=u$, that is, $D(\mathcal{S}) d=\delta$
- $d$ is an initial condition response of the system $D(\mathcal{S}) d=N(\mathcal{S}) u$ since $(D(\mathcal{S}) d)(k)=0, k>$ 0
- $d$ is a linear combination of the initial condition responses corresponding to the characteristic roots

$$
d=\alpha_{1} y_{1}+\alpha_{2} y_{2}+\cdots+\alpha_{n} y_{n}
$$

- Impulse response $g$ of $D(\mathcal{S}) y=N(\mathcal{S}) u$ is $g=N(\mathcal{S}) d$

$$
g=\alpha_{1} N(\mathcal{S}) y_{1}+\alpha_{2} N(\mathcal{S}) y_{2}+\cdots+\alpha_{n} N(\mathcal{S}) y_{n}
$$

- Characteristic root $p_{i}$ affects $g$ iff it is not a characteristic zero

$$
g(k)=\alpha_{1} N(\mathcal{S}) p_{1}^{k}+\alpha_{2} N(\mathcal{S}) k p_{1}^{k}+\alpha_{3} k^{2} p_{1}^{k}+\alpha_{4} N(\mathcal{S}) p_{2}^{k}
$$

- $g$ decays iff roots $|p| \geq 1$ are also a zeros of equal or greater multiplicity


## Roots, Zeros and BIBO Stability

$$
\begin{gathered}
\sum_{k=0}^{\infty}\left|p^{k}\right|, \sum_{k=0}^{\infty}\left|k p^{k}\right|<\infty \\
\hat{\Downarrow} \\
|p|<1 \\
\hat{\Downarrow} \\
p^{k}, k p^{k} \text { decay }
\end{gathered}
$$

- Since $g$ involves $p^{k}, k p^{k}, g$ is absolutely summable iff $g$ decays
- System is BIBO stable iff pulse response decays
- Theorem:

System is BIBO stable iff every characteristic root with $|p| \geq 1$ is also a characteristic zero of equal or greater multiplicity

## $\mathcal{Z}$ Transform

- The $\mathcal{Z}$ transform of a sequence is a function of the complex variable $z$
- Given a sequence $y$, its right sided $\mathcal{Z}$ transform is

$$
\begin{aligned}
\mathcal{Z}(y): Y(z) & =y(0)+\frac{y(1)}{z}+\frac{y(2)}{z^{2}}+\frac{y(3)}{z^{3}}+\cdots \\
& =\sum_{k=0}^{\infty} y(k) z^{-k}
\end{aligned}
$$

- $\mathcal{Z}(y)$ is the Laurent expansion of the complex function $Y$
$-\mathcal{Z}(y)$ agrees with $Y$ only in the region of convergence of the Laurent series
- Recall that if $|x|<1$, then $1+x+x^{2}+\cdots=\frac{1}{1-x}$
- If $\left|z^{-1}\right|<1$, then

$$
1+z^{-1}+z^{-2}+z^{-3}+\cdots=\frac{1}{1-z^{-1}}=\frac{z}{z-1}
$$

- $\mathcal{Z}$ transform is linear: $\mathcal{Z}\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)=\alpha_{1} \mathcal{Z}\left(y_{1}\right)+\alpha_{2} \mathcal{Z}\left(y_{2}\right)$


## $\underline{\mathcal{Z} \text { Transforms of Some Common Sequences }}$

- Unit pulse $\delta$

$$
\mathcal{Z}(\delta)=1
$$

- Unit step $s$

$$
S(z)=1+z^{-1}+z^{-2}+\cdots=\frac{1}{1-z^{-1}}=\frac{z}{z-1},|z|>1
$$

- Exponential sequence $\left\{p^{k}\right\}$

$$
1+p z^{-1}+p^{2} z^{-2}+\cdots=\frac{1}{1-p z^{-1}}=\frac{z}{z-p},\left|p z^{-1}\right|<1
$$

- Harmonic signal $\{\sin (k \theta)\}$

$$
\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1},|z|>1
$$

- Exponentially modulated harmonic signals $\left\{r^{k} \sin (k \theta)\right\}$

$$
\frac{r z \sin \theta}{z^{2}-2 r z \cos \theta+r^{2}},|z|>r
$$

## Properties of the $\mathcal{Z}$ Transform

- Delay

$$
\begin{gathered}
\mathcal{Z}(\mathcal{S} u)=u(-1)+z^{-1} U(z) \\
\mathcal{Z}\left(\mathcal{S}^{2} u\right)=\mathcal{S} u(-1)+z^{-1} \mathcal{Z}(\mathcal{S} u)=u(-2)+z^{-1} u(-1)+z^{-2} U(z) \\
\mathcal{Z}\left(\mathcal{S}^{n} u\right)=u(-n)+z^{-1} u(-n+1)+\cdots+z^{n-1} u(-1)+z^{-n} U(z) \\
\mathcal{Z}(D(\mathcal{S}) u)=D\left(z^{-1}\right) U(z)
\end{gathered}
$$

- Advance

$$
\begin{gathered}
\mathcal{Z}\left(\mathcal{S}^{-1} u\right)=z U(z)-z u(0), \mathcal{Z}\left(\mathcal{S}^{-2} u\right)=z^{2} U(z)-z^{2} u(0)-z u(1) \\
\mathcal{Z}\left(\mathcal{S}^{-n} u\right)=z^{n} U(z)-z^{n} u(0)-z^{n-1} u(1) \cdots-z u(n-1)
\end{gathered}
$$

- Difference

$$
\mathcal{Z}(\Delta u)=\mathcal{Z}(u)-\mathcal{Z}(\mathcal{S} u)=\frac{z-1}{z} U(z)-u(-1)
$$

- Convolution

$$
\mathcal{Z}(u * g)=G(z) U(z)
$$

## Properties of the $\mathcal{Z}$ Transform (Contd.)

- Scaling in the complex plane

$$
\mathcal{Z}\left(\left\{r^{k} u(k)\right\}\right)=U(z / r)
$$

- Complex differentiation

$$
\mathcal{Z}(\{k u(k)\})=-z \frac{d U}{d z}(z)
$$

- Initial value

$$
u(0)=\lim _{z \rightarrow \infty} U(z)
$$

- Final value theorem

$$
\lim _{k \rightarrow \infty} u(k)=\lim _{z \rightarrow 1}(z-1) U(z)
$$

- provided the limit on the left exists


## Transfer Functions

- The transfer function $G$ of the system $D(\mathcal{S}) y=N(\mathcal{S}) u$ is the $\mathcal{Z}$ transform of its pulse response $g$

$$
G(z)=\mathcal{Z}(g)
$$

- If $y$ is the input response (zero i.c.) to the input $u$, then

$$
\begin{aligned}
y & =(g * u) \\
Y(z) & =G(z) U(z) \\
G(z) & =\frac{Y(z)}{U(z)} \\
\text { transfer function } & =\left.\frac{\mathcal{Z} \text { (output) }}{\mathcal{Z} \text { (input) }}\right|_{\text {zero initial conditions }}
\end{aligned}
$$

- To calculate the transfer function of $D(\mathcal{S}) y=N(\mathcal{S}) u$, take the $\mathcal{Z}$ transform on both sides

$$
\begin{aligned}
& \mathcal{Z}(D(\mathcal{S}) y)=\mathcal{Z}(N(\mathcal{S}) u) \\
& G(z)=\frac{Y(z)}{U(z)}=\frac{N\left(z^{-1}\right)}{D\left(z^{-1}\right)}
\end{aligned}
$$

## Transfer Functions of Common Operators

- Unit Delay: $y=\mathcal{S} u$

$$
\begin{gathered}
Y(z)=\mathcal{Z}(\mathcal{S} u)=u(-1)+z^{-1} U(z),\left.\frac{Y(z)}{U(z)}\right|_{\text {zero i.c. }}=z^{-1} \\
\text { Pulse Response }=\mathcal{Z}^{-1}\left(z^{-1}\right)=\{0,1,0,0, \ldots\}
\end{gathered}
$$

- Unit advance: $y=\mathcal{S}^{-1} u$

$$
Y(z)=z U(z)-u(0), Y(z) / U(z)=z
$$

- Non causal. $y(k)=u(k+1)$
- Difference operator: $y(k)=u(k)-u(k-1)$

$$
\begin{aligned}
D(\lambda)= & 1, N(\lambda)=1-\lambda, \text { T.f. }=\frac{N\left(z^{-1}\right)}{D\left(z^{-1}\right)}=1-z^{-1} \\
& \text { Impulse Response }=\{1,-1,0,0, \ldots\}
\end{aligned}
$$

- Causal but not strictly causal


## Inverse $\mathcal{Z}$ Transform

- Laurent expansion
- Perform long division for rational $Y(z)$
- Partial fraction expansion followed by look-up table
- Convolution property

$$
\begin{gathered}
Y(z)=Y_{1}(z) Y_{2}(z) \\
\Longrightarrow y=y_{1} * y_{2}
\end{gathered}
$$

- Solve numerically by forming a linear difference equation

$$
\begin{gathered}
Y(z)=\frac{N\left(z^{-1}\right)}{D\left(z^{-1}\right)} \\
\Longrightarrow y=\text { pulse response of } D(\mathcal{S}) y=N(\mathcal{S}) u
\end{gathered}
$$

## Partial Fractions

$$
Y(z)=\frac{N\left(z^{-1}\right)}{D\left(z^{-1}\right)}=\frac{N\left(z^{-1}\right)}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)^{2} \cdots}
$$

- Unrepeated factor $1-p z^{-1}$ contributes to the expansion

$$
\frac{A}{1-p z^{-1}}
$$

- Repeated factor $\left(1-p z^{-1}\right)^{m}$ contributes

$$
\frac{A_{m}}{\left(1-p z^{-1}\right)^{m}}+\frac{A_{m-1}}{\left(1-p z^{-1}\right)^{m-1}}+\cdots+\frac{A_{1}}{\left(1-p z^{-1}\right)}
$$

- Unrepeated quadratic factor $1-2 r z^{-1} \cos \theta+z^{-2}$ contributes

$$
\frac{A z^{-1}+B}{1-2 r z^{-1} \cos \theta+z^{-2}}
$$

- Repeated quadratic $\left(1-2 r z^{-1} \cos \theta+z^{-2}\right)^{m}$ factor contributes

$$
\frac{A_{m} z^{-1}+B_{m}}{\left(1-2 r z^{-1} \cos \theta+z^{-2}\right)^{m}}+\cdots+\frac{A_{1} z^{-1}+B_{1}}{1-2 r z^{-1} \cos \theta+z^{-2}}
$$

- Expand in terms of $z^{-1}$ (not $z$ ) in the usual fashion
- Inverse transform each term in the expansion using tables


## The $s-z$ Correspondence

- $y(t)=e^{\sigma t}: Y(s)$ has a pole at $s=\sigma$
$-y(k T)=e^{\sigma k T}=\left(e^{\sigma T}\right)^{k}=r^{k}: Y(z)$ has a pole at $z=r=e^{\sigma T}$
- $y(t)=e^{\sigma t} \sin \omega t: Y(s)$ has a pole at $s=\sigma \pm \imath \omega$

$$
\begin{aligned}
& -y(k T)=e^{\sigma k T} \sin \omega k T=\left(e^{\sigma T}\right)^{k} \sin k(\omega T)=r^{k} \sin k \theta: Y(z) \text { has poles at } z=r e^{ \pm \imath \theta}= \\
& e^{\sigma T} e^{ \pm \omega \omega}=e^{(\sigma \pm \omega) T}
\end{aligned}
$$

- Suggests the correspondence $z=e^{s T}$ for mapping poles of a $s$-domain signal to the poles of its sampled sequence in $z$-domain
- Where should $z$ poles lie to get good transient behaviour $\left(\zeta, \omega_{\mathrm{n}}\right)$ ?
- Locate $s$ poles using $s$ domain experience for desired $\zeta, \omega_{\mathrm{n}}$
- Map $s$ poles to $z$ poles using $z=e^{s T}$


## Jury's Test for Stability

$$
a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}=0, a_{0}>0
$$

- is said to be Hurwitz if all roots lie in the OLHP, Schur if all roots lie in the OUD

$$
\begin{gathered}
\begin{array}{ccccccc}
\hline z^{n} & z^{n-1} & z^{n-2} & \cdots & z^{2} & z & z^{0} \\
\hline a_{0} & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} & a_{n} \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{2} & a_{1} & a_{0} \\
b_{0} & b_{1} & b_{2} & \cdots & b_{n-2} & b_{n-1} \\
b_{n-1} & b_{n-2} & b_{n-3} & \cdots & b_{1} & b_{0} \\
c_{0} & c_{1} & c_{2} & \cdots & c_{n-2} \\
c_{n-2} & c_{n-3} & c_{n-4} & \cdots & c_{0} \\
\vdots & \vdots & \vdots & \\
b_{k}=\frac{1}{a_{0}}\left|\begin{array}{cc}
a_{0} & a_{n-k} \\
a_{n} & a_{k}
\end{array}\right|, k=0,1, \ldots, n-1, & c_{k}=\frac{1}{b_{0}}\left|\begin{array}{cc}
b_{0} & b_{n-1-k} \\
b_{n-1} & b_{k}
\end{array}\right|, k=0,1, \ldots, n-2
\end{array}
\end{gathered}
$$

- Stable if $a_{0}>0, b_{0}>0, c_{0}>0, \ldots$


## Stability through $s-z$ Transformation

$$
\begin{gathered}
z=\frac{1+s T / 2}{1-s T / 2}, s=\frac{2}{T} \frac{(z-1)}{(z+1)} \\
\text { OLHP } \longleftrightarrow \text { open unit disc }
\end{gathered}
$$

$$
\text { imaginary axis } \longleftrightarrow \text { unit circle }
$$

- Given a polynomial $p(z)$,

$$
\begin{aligned}
& p(z)=p\left(\frac{1+s T / 2}{1-s T / 2}\right)=\frac{n(s)}{d(s)} \\
& \text { zeros of } p(z) \longleftrightarrow \text { zeros of } n(s)
\end{aligned}
$$

- $p$ is Schur iff $n$ is Hurwitz
- Apply Routh-Hurwitz test to $n(s)$


## BIBO Stability of Transfer Functions

- A system given by a transfer function $G(z)$ is BIBO stable
- if and only if the impulse response $g$ is absolutely summable
- if and only if the impulse response $g$ decays
- if and only if all poles (after cancellation) of $G(z)$ lie in the interior of the unit disc, the open unit disc (OUD)

$$
\{z:|z|<1\}
$$

- We call a transfer function stable if all its poles lie in the OUD


## Step Response

$$
Y(z)=G(z)\left(1-z^{-1}\right)^{-1}
$$

- Bounded if (after pole-zero cancellation)
- all poles of $G(z)$ lie in $\{z:|z| \leq 1\}$
- no repeated poles on the unit circle
- no pole at $z=1$
- Approaches a limit if
- all poles of $G(z)$ lie in $\{z:|z|<1\}$

Steady state value $=\lim _{k \rightarrow \infty} y(k)=\lim _{z \rightarrow 1}(z-1) Y(z)=G(1)$

- Decays to zero if
- all poles of $G(z)$ lie in $\{z:|z|<1\}$ and $z=1$ is a zero, that is, $G(1)=0$
- For asymptotic tracking of a step input, need stability $+G(1)=1$
- For asymptotic rejection of a step disturbance, need stability $+G(1)=0$


## $\underline{\text { Harmonic Response of Stable Transfer Functions }}$

$$
\begin{gathered}
u(k)=\sin (k \omega T) \\
U(z)=\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}=\frac{z^{-1} \sin \omega T}{\left(1-e^{\jmath \omega T} z^{-1}\right)\left(1-e^{-\jmath \omega T} z^{-1}\right)} \\
Y(z)=G(z) U(z)=\frac{a_{1}}{1-e^{\jmath \omega T} z^{-1}}+\frac{a_{2}}{1-e^{-\jmath \omega T} z^{-1}}+\frac{b_{1}}{1-p_{1} z^{-1}}+\cdots \\
a_{1}=\left.G(z) U(z)\left(1-e^{\jmath \omega T} z^{-1}\right)\right|_{z=e^{\jmath \omega T}}=\frac{1}{2 \jmath} G\left(e^{\jmath \omega T}\right)=\frac{1}{2 \jmath} r e^{\jmath \phi} \\
a_{2}=\bar{a}_{1}=-\frac{1}{2 \jmath} r e^{-\jmath \phi} \\
Y_{\mathrm{ss}}(z)=\frac{a_{1}}{1-e^{\jmath \omega T} z^{-1}}+\frac{a_{2}}{1-e^{-\jmath \omega T} z^{-1}} \\
y_{\mathrm{ss}}(k)=a_{1}\left(e^{\jmath \omega T}\right)^{k}+a_{2}\left(e^{-\jmath \omega T}\right)^{k}=\operatorname{Im} r e^{\jmath \phi}\left(e^{\jmath \omega T}\right)^{k} \\
y_{\mathrm{ss}}(k)=r \sin (k \omega T+\phi), r=\left|G\left(e^{\jmath \omega T}\right)\right|, \phi=\angle G\left(e^{\jmath \omega T}\right)
\end{gathered}
$$

- Amplification at $\omega$ is $\left|G\left(e^{\jmath \omega T}\right)\right|$, phase difference is $\angle G\left(e^{\jmath \omega T}\right)$
- Frequency response is periodic in frequency


## Digital - Analog Conversion

- Same response at $\omega$ and $\omega+\omega_{\mathrm{s}}$


Sampler


Zero-Order Hold


## Analysis of Sample-and-Hold Operation



- Let $\bar{s}(t)=$ unit step function, $\bar{s}(t-k T)=$ unit step function delayed by $k T$

$$
\begin{gathered}
\bar{r}(t)=r(0)[\bar{s}(t)-\bar{s}(t-T)]+r(T)[\bar{s}(t-T)-\bar{s}(t-2 T)]+\cdots \\
=\sum_{k=0}^{\infty} r(k T)[\bar{s}(t-k T)-\bar{s}(t-k T-T)] \\
\mathcal{L}(\bar{s}(t))=s^{-1}, \mathcal{L}(\bar{s}(t-k T))=s^{-1} e^{-s k T} \\
\bar{R}(s)=\underbrace{\left[\sum_{k=0}^{\infty} r(k T)\left(e^{-s T}\right)^{k}\right]}_{R^{*}(s)} \underbrace{\left.\frac{1-e^{-s T}}{s}\right]}_{G_{\mathrm{ZOH}}(s)} \\
\mathcal{Z}(R(s)) \stackrel{\text { def }}{=} \mathcal{Z}(\text { sampled sequence of } r(t)) \\
R^{*}(s)=\left.\mathcal{Z}(R(s))\right|_{z=e^{s T}}
\end{gathered}
$$

## Sampler as an Impulse Modulator

- Let $\bar{\delta}(t)=$ unit impulse in continuous time

$$
\begin{gathered}
\mathcal{L}(\bar{\delta}(t))=1, \mathcal{L}(\bar{\delta}(t-k T))=e^{-s k T} \\
R^{*}(s)=\mathcal{L}\left(\sum_{k=0}^{\infty} r(k T) \bar{\delta}(t-k T)\right)=\mathcal{L}\left(r^{*}(t)\right)
\end{gathered}
$$

- Define $\delta_{T}(t)=\sum_{k=0}^{\infty} \bar{\delta}(t-k T)$
$-\delta_{T}$ is an impulse train

$$
r^{*}(t)=r(t) \delta_{T}(t)
$$

$-r^{*}$ is a modulated impulse train


- Ideal sampler $=$ impulse modulator

$$
\begin{aligned}
G_{\mathrm{ZOH}}(s) & =\frac{1}{s}-\frac{e^{-s T}}{s} \\
& =\mathcal{L}[\bar{s}(t)-\bar{s}(t-T)] \\
& =\mathcal{L}[\text { "impulse" response of } \mathrm{ZOH}]
\end{aligned}
$$



- NOTE: No transfer function possible for a ZOH


## Frequency Domain Analysis of an Impulse Train

- $\delta_{T}(t)$ is a periodic function $\Longrightarrow$ expand in a Fourier series

$$
\begin{gathered}
\delta_{T}(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{\jmath 2 \pi n t / T} \\
c_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} \delta_{T}(t) e^{-\jmath 2 \pi n t / T} d t \\
=\frac{1}{T} \\
\delta_{T}=\sum_{n=-\infty}^{\infty} \frac{1}{T} e^{\jmath n \omega_{\mathrm{s}} t}
\end{gathered}
$$

- Fourier transform of $\delta_{T}(t)$



## Frequency Domain Analysis of a Modulated Impulse Train

$$
\begin{aligned}
R^{*}(s) & =\mathcal{L}\left(r^{*}(t)\right)=\mathcal{L}\left(r(t) \delta_{T}(t)\right) \\
& =\frac{1}{T} \int_{0}^{\infty} r(t) \delta_{T}(t) e^{-s t} d t \\
& =\frac{1}{T} \int_{0}^{\infty} r(t) \sum_{n=-\infty}^{\infty} e^{\jmath n \omega_{\mathrm{s}} t} e^{-s t} d t \\
& \stackrel{?}{=} \frac{1}{T} \sum_{n=-\infty}^{\infty} \int_{0}^{\infty} r(t) e^{-\left(s-\jmath \omega_{\mathrm{s}} n\right) t} d t \\
& =\frac{1}{T} \sum_{n=-\infty}^{\infty} R\left(s-\jmath \omega_{\mathrm{s}} n\right)
\end{aligned}
$$

- Fourier transform $R^{*}(\jmath \omega)$ is periodic in $\omega$ with period $\omega_{\mathrm{s}}$
- $R^{*}(\jmath \omega)$ obtained by superimposing scaled copies of $R(\jmath \omega)$ shifted by multiples of $\omega_{\mathrm{s}}$

Aliasing


- Contributions at $\omega$ due to $R(\jmath \omega), R\left(\jmath \omega \pm n \jmath \omega_{\mathrm{s}}\right)$
- Frequencies $\omega \pm n \omega_{\mathrm{s}}$ aliases of $\omega$, show up at $\omega$ after sampling


## An Example of Aliasing



$$
y_{1}(t)=\sin t, y_{2}(t)=\sin 7 t, \omega_{\mathrm{s}}=6, T=\pi / 3
$$

$$
y_{1}(k T)=y_{2}(k T)=\sin k T
$$

## Anti-Aliasing



- Nyquist's/Shannon's Sampling Theorem: A signal can be recovered from its samples if the sampling frequency is more than twice the highest frequency in the signal
- To minimise the effect of aliasing, sampling is preceded by a low-pass antialias filter
- Eliminates frequencies above the Nyquist frequency


## Signal Reconstruction from Samples

- Possible if signal is band limited and $\omega_{\mathrm{m}}<\omega_{\mathrm{s}} / 2$
- To recover $R(\jmath \omega)$ from $R^{*}(\jmath \omega)$, need a filter $L$ such that

$$
\begin{aligned}
& R(\jmath \omega)=L(\jmath \omega) R^{*}(\jmath \omega) \\
& R^{*}(\jmath \omega)=\frac{1}{T} R(\jmath \omega)+\frac{1}{T} \underbrace{\sum_{n=-\infty, n \neq 0}^{\infty} R\left(\jmath \omega-n \jmath \omega_{\mathrm{s}}\right)}_{\text {frequencies }>\omega_{\mathrm{s}} / 2} \\
&|L(\jmath \omega)|=T, \omega \in\left[-\omega_{\mathrm{s}} / 2, \omega_{\mathrm{s}} / 2\right], \\
&=0, \text { elsewhere } \\
& \angle L(\jmath \omega)=0 \quad \text { everywhere } \\
&=\underbrace{|\mathrm{L}(\mathrm{j} \omega)|}_{-\omega_{\mathrm{s}}} \mathrm{\omega} \omega
\end{aligned}
$$

## Impulse Response of an Ideal Low-Pass Filter

- Inverse Fourier transform of $L(\jmath \omega)$

$$
\begin{aligned}
l(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} L(\jmath \omega) e^{\jmath \omega t} d \omega \\
& =\frac{1}{2 \pi} \int_{-\omega_{\mathrm{s}} / 2}^{\omega_{\mathrm{s}} / 2} T e^{\jmath \omega t} d \omega \\
& =\frac{\sin \left(\omega_{\mathrm{s}} t / 2\right)}{\omega_{\mathrm{s}} t / 2}=\operatorname{sinc}\left(\omega_{\mathrm{s}} t / 2\right)
\end{aligned}
$$



- Note: $L$ is a noncausal filter


## Reconstruction Using a Low-Pass Filter

$$
\begin{aligned}
r(t) & =\left(l * r^{*}\right)(t) \\
& =\int_{-\infty}^{\infty} r(\tau) \delta_{T}(\tau) l(t-\tau) d \tau \\
& =\sum_{k=-\infty}^{\infty} r(k T) \operatorname{sinc}\left(\omega_{\mathrm{s}}(t-k T) / 2\right)
\end{aligned}
$$

- RHS is the unique band limited signal that has
$-\omega_{\mathrm{m}}<\omega_{\mathrm{s}} / 2$
- Same samples as $r$
- Reconstruction is noncausal - present value depends on future samples
- Cannot be implemented online, can be used for offline reconstruction


## Antialias Filtering



## Frequency Domain Analysis of Zero-Order Hold

$$
\begin{aligned}
G_{\mathrm{ZOH}}(\jmath \omega) & =\frac{1-e^{-\jmath \omega T}}{\jmath \omega} \\
& =T e^{-\jmath \omega T / 2} \frac{\sin (\omega T / 2)}{(\omega T / 2)} \\
& =T e^{-\jmath \omega T / 2} \operatorname{sinc}(\omega T / 2) \\
\operatorname{sinc} x & =\frac{\sin x}{x}, \quad x \neq 0 \\
& =1, \quad x=0
\end{aligned}
$$

Magnitude : $\left|G_{\mathrm{ZOH}}(\jmath \omega)\right|=T|\operatorname{sinc}(\omega T / 2)|$
Phase : $\angle G_{\mathrm{ZOH}}(\jmath \omega)=-\frac{\omega T}{2}+\pi$ at every sign change of sinc

Frequency Response of $G_{\text {ZOH }}$



$\omega \mathrm{T} / 2 \pi$

Harmonic Response of Sample and Hold


Harmonic Response of Sample and Hold: An Example


## Higher-Order Hold Functions

- Interpolation using Taylor series

$$
r(t)=r(n T)+\dot{r}(n T)(t-n T)+\frac{1}{2} \ddot{r}(n T)(t-n T)^{2}+\cdots, n T \leq t<(n+1) T
$$

- Zero-order hold: Truncate at first term

$$
r(t)=r(n T), n T \leq t \leq(n+1) T
$$

- First-order hold: Truncate at first-order term

$$
r(t)=r(n T)+\dot{r}(n T)(t-n T), n T \leq t \leq(n+1) T
$$

- To find $\dot{r}(n T)$, extrapolate to $(n-1) T \leq t \leq(n+1) T$, put $t=(n-1) T$

$$
\dot{r}(n T)=\frac{r(n T)-r((n-1) T)}{T}
$$

First-Order Hold


$$
\begin{aligned}
\text { Pulse Response }= & \bar{s}(t)+\frac{t}{T} \bar{s}(t) \\
& -2 \bar{s}(t-T)-\frac{2}{T}(t-T) \bar{s}(t-T) \\
& +\bar{s}(t-2 T)+\frac{1}{T}(t-2 T) \bar{s}(t-2 T) \\
G_{\mathrm{FOH}}(s)= & \frac{1}{s}-\frac{1}{s} 2 e^{-s T}+\frac{1}{s} e^{-2 s T}+\frac{1}{T s^{2}}\left(1-2 e^{-s T}+e^{-2 s T}\right) \\
= & \frac{(1+T s)}{T}\left(\frac{1-e^{-s T}}{s}\right)^{2}
\end{aligned}
$$

Analysis of a Sampler and First-Order Hold




Analysis of a Sample, Process and Hold


$$
\begin{aligned}
\bar{U}(s) & =U^{*}(s) G_{\mathrm{ZOH}}(s) \\
& =\left.U(z)\right|_{z=e^{s T}} G_{\mathrm{ZOH}}(s) \\
& =\left.[H(z) E(z)]\right|_{z=e^{s T}} G_{\mathrm{ZOH}}(s) \\
& =\underbrace{H^{*}(s) E^{*}(s)}_{\text {convolved impulse trains }} G_{\mathrm{ZOH}}(s)
\end{aligned}
$$

## ZOH Equivalent



- Transfer Function possible
- Let $u(k T)=\delta(k T)$, unit pulse sequence

$$
\begin{aligned}
\bar{u}(t) & =\bar{s}(t)-\bar{s}(t-\tau) \\
y(t) & =w(t)-w(t-\tau), w=\text { unit step response of. } G(s) \\
y(k T) & =w(k T)-w((k-1) T) \\
Y(z) & =\left(1-z^{-1}\right) W(z) \\
W(z) & =\mathcal{Z}\left[\mathcal{L}^{-1}\left(s^{-1} G(s)\right)\right]=\mathcal{Z}\left(s^{-1} G(s)\right)
\end{aligned}
$$

$$
\text { Transfer Function }=\underbrace{\left(1-z^{-1}\right) \mathcal{Z}\left(s^{-1} G(s)\right)}_{\text {ZOH equivalent }}
$$

$$
Y^{*}(s)=\left.Y(z)\right|_{z=e^{s T}}=\left.\left(1-e^{-s T}\right) \mathcal{Z}\left(s^{-1} G(s)\right)\right|_{z=e^{s T}} U^{*}(s)
$$

$$
Y(s)=G(s) \bar{U}(s)=G(s) G_{\mathrm{ZOH}}(s) U^{*}(s)
$$

## A Glossary of Notation

$$
G_{\mathrm{ZOH}}(s)=\frac{1-e^{-s T}}{s}
$$

- Given $U(s)$

$$
\begin{aligned}
\mathcal{Z}(U(s)) & =\mathcal{Z} \text { transform of sampled } u(t) \\
U^{*}(s) & =\left.\mathcal{Z}(U(s))\right|_{z=e^{s T}}
\end{aligned}
$$

- Given $U(z)$

$$
U^{*}(s)=\left.U(z)\right|_{z=e^{s T}}
$$

- Given $G(s)$

$$
G_{\mathrm{h}_{0}}(z) \stackrel{\text { def }}{=} \mathrm{ZOH} \text { equivalent of } G(s)=\left(1-z^{-1}\right) \mathcal{Z}\left(s^{-1} G(s)\right)
$$

An Example


- No transfer function possible between $y(t)$ and $e(t)$
- Can find $Y(s)$
- Transfer function possible between $y(k T)$ and $e(k T)$


## An Example



- No transfer function possible between $y(t)$ and $e(t)$
- Can find $Y(s)$
- Transfer function possible between $y(k T)$ and $e(k T)$

$$
Y(s)=G(s) \bar{U}(s)=G(s) G_{\mathrm{ZOH}}(s) U^{*}(s)=G(s) G_{\mathrm{ZOH}}(s) H^{*}(s) E^{*}(s)
$$

## An Example



- No transfer function possible between $y(t)$ and $e(t)$
- Can find $Y(s)$
- Transfer function possible between $y(k T)$ and $e(k T)$

$$
\begin{gathered}
Y(s)=G(s) \bar{U}(s)=G(s) G_{\mathrm{ZOH}}(s) U^{*}(s)=G(s) G_{\mathrm{ZOH}}(s) H^{*}(s) E^{*}(s) \\
\frac{Y(z)}{E(z)}=H(z) G_{\mathrm{h}_{0}}(z)=H(z)\left(1-z^{-1}\right) \mathcal{Z}\left(s^{-1} G(s)\right)
\end{gathered}
$$

Block Diagram Manipulation For Sampled Data System: An Example


## Another Example




$$
R_{1}^{\prime}(s)=\left(G R_{1}\right)^{\prime}(s) \neq G^{*}(s) R^{\prime}(s)
$$

- Design controller in continuous time
- Numerically implement a discrete-time equivalent
- Example

$$
H(s)=\frac{1}{s+a} \Longrightarrow \dot{y}+a y=u
$$

$$
\begin{gathered}
\Longrightarrow y(t)=\int_{0}^{t}[u(\tau)-a y(\tau)] d \tau \\
\Longrightarrow y(k T)=y(k T-T)+\int_{(k-1) T}^{k T}[u(\tau)-a y(\tau)] d \tau
\end{gathered}
$$

- Each numerical approximation for the integral gives a discrete-time equivalent


## Backward Rectangular Rule

$$
\begin{gathered}
\int_{(k-1) T}^{k T} u(\tau) d \tau \approx u(k T) T \\
y(k T)=y(k T-T)+\int_{(k-1) T}^{k T}[u(\tau)-a y(\tau)] d \tau \\
y(k T)=y(k T-T)+T u(k T)-a T y(k T) \\
\frac{Y(z)}{U(z)}=\frac{T}{1-z^{-1}+a T}=\frac{1}{\left(\frac{1-z^{-1}}{T}\right)+a} \\
H_{\mathrm{B}}(z)=\left.H(s)\right|_{s=\left(1-z^{-1}\right) / T} \\
s \longleftrightarrow \frac{1-z^{-1}}{T}, z \longleftrightarrow \frac{1}{1-T s}
\end{gathered}
$$

Stability Regions Under Backward Rule

$$
\begin{aligned}
\left|z-\frac{1}{2}\right| & =\frac{1}{2}\left|\frac{1+T s}{1-T s}\right| \\
\operatorname{Re} s<0 & \Longrightarrow\left|z-\frac{1}{2}\right|<\frac{1}{2}
\end{aligned}
$$



## Forward Rectangular Rule

$$
\begin{gathered}
\int_{(k-1) T}^{k T} u(\tau) d \tau \approx u(k T-T) T \\
y(k T)=y(k T-T)+\int_{(k-1) T}^{k T}[u(\tau)-a y(\tau)] d \tau \\
y(k T)=y(k T-T)+T u(k T-T)-a T y(k T-T) \\
\frac{Y(z)}{U(z)}=\frac{T}{z-1+a T}=\frac{1}{\left(\frac{z-1}{T}\right)+a} \\
H_{\mathrm{F}}(z)=\left.H(s)\right|_{s=(z-1) / T} \\
s \longleftrightarrow \frac{z-1}{T}, z \longleftrightarrow 1+T s
\end{gathered}
$$

## Stability Regions Under Forward Rule

$$
\begin{gathered}
z=1+T s \\
\operatorname{Re} s<0 \Longrightarrow \operatorname{Re} z<1
\end{gathered}
$$



## Trapezoidal Rule

$$
\begin{gathered}
\int_{(k-1) T}^{k T} u(\tau) d \tau \approx \frac{T}{2}[u(k T-T)+u(k T)] \\
y(k T)=y(k T-T)+\int_{(k-1) T}^{k T}[u(\tau)-a y(\tau)] d \tau \\
y(k T)=y(k T-T)+\frac{T}{2}[u(k T-T)+u(k T)]-\frac{a T}{2}[y(k T-T)+y(k T)] \\
\frac{Y(z)}{U(z)}=\frac{1}{\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right)+a} \\
H_{\mathrm{T}}(z)=\left.H(s)\right|_{s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}: \text { Tustin's Rule }} \\
s \longleftrightarrow \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}, z \longleftrightarrow \frac{1+T s / 2}{1-T s / 2}
\end{gathered}
$$

## Stability Regions Under Tustin's Rule

$$
\begin{aligned}
z & =\frac{1+T s / 2}{1-T s / 2} \\
\operatorname{Re} s & <0 \Longrightarrow|z|<1
\end{aligned}
$$



Discrete-Time Equivalent by Impulse Invariance

- Find $\widehat{H}(z)$ such that pulse response of $\widehat{H}(z)$ is the sampled sequence of the impulse response of $H(s)$



## Discrete-Time Equivalence by Step Invariance

- Find $\widehat{H}(z)$ such that step response of $\widehat{H}(z)$ is the sampled sequence of the step response of $H(s)$



## Equivalence at a Frequency

- When will the steady state response of $\widehat{H}(z)$ to $\{\cos k \omega T\}$ equal the sampled sequence of the steady state response of $H(s)$ to $\cos \omega t$ ?

- If and only if

$$
H(\jmath \omega)=\widehat{H}\left(e^{\jmath \omega T}\right)
$$

## Tustin's Rule and Equivalence at a Frequency

$$
\begin{gathered}
H(s)=\frac{a}{s+a}, H_{\mathrm{T}}(z)=\frac{a}{\frac{2}{T} \frac{z-1}{z+1}+a} \\
H(\jmath a)=\frac{1}{1+\jmath}, H_{\mathrm{T}}\left(e^{\jmath a T}\right)=\frac{1}{1+\jmath \frac{2}{a T} \tan \frac{a T}{2}}
\end{gathered}
$$

- The discrete equivalent does not "match" the original at the corner frequency
- Tustin's rule causes frequency distortion
- Distortion is reduced if $a T / 2 \ll 1$


## Tustin's Rule with Pre-warping

- Pre-warp the continuous system such that on applying Tustin's rule, matching is obtained at the selected frequency
- Substitute

$$
s=b \frac{z-1}{z+1}
$$

- Recover Tustin's rule if $b=2 / T$
- Same as applying Tustin's rule to the "pre-warped" transfer function

$$
H_{\text {pre-warped }}(s)=H(b T s / 2)
$$

- Choose $b$ to get matching at the desired frequency


## Pole-Zero Mapping Equivalent

- Map all poles of $H(s)$ according to $z=e^{s T}$

$$
\frac{1}{s+a} \mapsto \frac{1}{1-e^{-a T} z^{-1}}
$$

- Map all finite zeros of $H(s)$ by $z=e^{s T}$

$$
(s+a) \mapsto 1-e^{-a T} z^{-1}
$$

- Map zeros at $\infty$ to zeros at -1

$$
\frac{1}{s} \mapsto 1+z^{-1}
$$

- To get a strictly causal system, map one $s^{-1}$ factor to $z^{-1}$
- Choose gain factor to get matching at a specified frequency

$$
H(\jmath \omega)=H_{\mathrm{zp}}\left(e^{\jmath \omega T}\right)
$$

- Usually $\omega=0$, that is, matching at DC


## Root Locus



- Root locus $=$ locus of roots of $1+K H(z) G_{h 0}(z)=0$ as $K$ varies fro 0 to $\infty$
- Plotted in the same way as for continuous-time systems


## Mapping Theorem

- Based on Mapping Theorem
$-z$ traces a simple closed curve $C$ clockwise in the complex plane
- The no. clockwise of encirclements of the origin by $F(z)$ equals
no. of zeros of $F$ enclosed by $C$ no of poles of $F$ enclosed by $C$
- Application to closed-loop stability analysis
- Choose $F(z)=1+G(z) H(z)=$ closed-loop characteristic polynomial
- Choose $C$ to enclose all possible unstable poles


## Nyquist Contour

- Choose $C$ to enclose the exterior of the open unit disc

- All encirclements are contributed by portion along the unit circle


## Nyquist Criterion



Nyquist Criterion:

$$
Z=N+P
$$

$P=$ no. of unstable open-loop poles (unstable poles of $L(z)$ )
$Z=$ no. of closed-loop unstable poles (unstable roots of $1+L(z)=0$ )
$N=$ no. of clockwise encirclements of -1 by $L\left(e^{\jmath \omega T}\right), \omega \in\left[0, \omega_{\mathrm{s}}\right]$

Gain and Phase Margins


## Frequency Response Analysis with $\mathcal{W}$-Transform

- Frequency response in terms of $\mathcal{Z}$-transform is
- Periodic in $\omega$
- Difficult to draw by hand (s-domain rules do not apply)
- Use $\mathcal{W}$-transform to map OUD into OLHP using

$$
\begin{gathered}
w=\frac{2}{T} \frac{(z-1)}{(z+1)}, z=\frac{1+w T / 2}{1-w T / 2} \\
\widehat{G}(w)=\left.G(z)\right|_{z=\frac{1+w T / 2}{1-w T / 2}}
\end{gathered}
$$

- Bode plots of $\widehat{G}(w)$ can be drawn using $s$-domain rules
- Nyquist criterion can be applied to $\widehat{G}(w)$ as in $s$-domain
- Controller $\widehat{H}$ designed for $\widehat{G}$ can be transformed back and applied to $G$
- $\widehat{G}$ and $G$ yield the same gain and phase margins

Closed-Loop Asymptotic Tracking of Reference Inputs


- Asymptotic Tracking: Want

$$
\lim _{k \rightarrow \infty} e(k)=0
$$

- $\lim _{k \rightarrow \infty} e(k)$ exists if and only if all poles of $E(z)$ lie in the OUD except possibly for one pole at $z=1$
$-\lim _{k \rightarrow \infty} e(k)$, if it exists, equals $\lim _{z \rightarrow 1}(z-1) E(z)$


## Tracking of Step Inputs

$$
\begin{gathered}
r(k)=1, R(z)=\frac{z}{z-1} \\
E(z)=\frac{z}{(z-1)} \frac{1}{[1+G(z) H(z)]}
\end{gathered}
$$

- For $\lim _{k \rightarrow \infty} e(k)$ to exist, all closed-loop poles must lie in the OUD

$$
\lim _{k \rightarrow \infty} e(k)=\lim _{z \rightarrow 1} \frac{z}{1+G(z) H(z)}=\frac{1}{1+\lim _{z \rightarrow 1} G(z) H(z)}
$$

- For $\lim _{k \rightarrow \infty} e(k)=0$, the (open) loop transfer function must have a pole at $z=1$
- No. of poles of $G(z) H(z)$ at $z=1$ is the type of the open-loop system
- Define position error constant

$$
K_{\mathrm{p}}=\lim _{z \rightarrow 1} G(z) H(z)
$$

- For perfect tracking, need $K_{\mathrm{p}}=\infty$

For perfectly tracking step inputs, need closed-loop stability + type 1 open-loop system

## Tracking of Ramp Inputs

$$
\begin{gathered}
r(k)=k T, R(z)=\frac{T z}{(z-1)^{2}} \\
E(z)=\frac{T z}{(z-1)^{2}} \frac{1}{[1+G(z) H(z)]}=\frac{T z}{(z-1)[z-1+(z-1) G(z) H(z)]}
\end{gathered}
$$

- For $\lim _{k \rightarrow \infty} e(k)$ to exist, all closed-loop poles must lie in the OUD, and open-loop system must be of type 1

$$
\lim _{k \rightarrow \infty} e(k)=\lim _{z \rightarrow 1} \frac{T z}{(z-1)[1+G(z) H(z)]}=\frac{T}{\lim _{z \rightarrow 1}(z-1) G(z) H(z)}
$$

- For $\lim _{k \rightarrow \infty} e(k)=0$, the (open) loop transfer function must have at least two poles at $z=1$
- Define velocity error constant

$$
K_{\mathrm{v}}=\lim _{z \rightarrow 1}(z-1) G(z) H(z) / T
$$

- For perfect tracking, need $K_{\mathrm{v}}=\infty$

For perfectly tracking ramp inputs, need closed-loop stability + type 2 open-loop system

## Tracking of Sinusoidal Inputs

$$
r(k)=A \sin (k \omega T), R(z) \text { has poles at } e^{ \pm \not \jmath \omega T}
$$

- For $e(k)$ to converge to a steady state behavior, closed-loop must be (BIBO) stable
- Steady-state error amplitude

$$
=\frac{1}{\left|1+G\left(e^{\jmath \omega T}\right) H\left(e^{\jmath \omega T}\right)\right|}
$$

- For $\lim _{k \rightarrow \infty} e(k)=0, G(z) H(z)$ must have at least one pole at $z=e^{\jmath \omega T}$

For perfectly tracking $\{A \sin k \omega T\}$, need closed-loop stability + open-loop poles at $z=e^{ \pm \jmath \omega T}$

## Internal Model Principle

- Requirements for closed-loop tracking

| Input to be tracked |  | Requirements for tracking |  |
| :--- | :--- | :--- | :--- |
| Input | Input poles | Open-loop poles | Closed-loop poles |
| Step | $z=1$ | $z=1$ | OUD |
| Ramp | $z=1,1$ | $z=1,1$ | OUD |
| Sinusoidal | $z=e^{ \pm \jmath \omega T}$ | $z=e^{ \pm \jmath \omega T}$ | OUD |

- Internal Model Principle: A closed-loop system will track an input perfectly asymptotically if and only if
- The closed-loop system is stable and
- The open-loop system contains a "model" of the input


## Continuous-Time LTI State-Space Systems

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad \text { state dynamics } \\
y & =C x+D u, \quad \text { measurement equation } \\
x & =\text { vector of state/internal variables } \\
y & =\text { vector of output measurements } \\
u & =\text { vector of inputs }
\end{aligned}
$$

- Linear: $A, B, C, D$ independent of $x, y$
- Time Invariant: $A, B, C, D$ independent of time
- To find output, need
- Initial state vector and input


## Matrix Exponential

- Given a square matrix $A$, define

$$
e^{A t} \stackrel{\text { def }}{=} I+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots
$$

- Well defined (series converges sufficiently nicely)
- Satisfies

$$
\begin{aligned}
e^{A 0} & =I \\
\frac{d}{d t} e^{A t} & =A e^{A t}=e^{A t} A \\
e^{A(t+\tau)} & =e^{A t} e^{A \tau} \\
\left(e^{A t}\right)^{-1} & =e^{-A t}
\end{aligned}
$$

- Note: $\left(e^{A t}\right)_{i j} \neq e^{A_{i j} t}$


## Examples

- $\ddot{y}+\omega_{\mathrm{n}}^{2} y=\frac{1}{m} u$

$$
\begin{gathered}
\frac{d}{d t}\left[\begin{array}{c}
y \\
\dot{y}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-\omega_{\mathrm{n}}^{2} & 0
\end{array}\right]}_{A}\left[\begin{array}{c}
y \\
\dot{y}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\frac{1}{k} \\
0
\end{array}\right]}_{B} u \\
e^{A t}=\left[\begin{array}{cc}
\cos \omega_{\mathrm{n}} t & \frac{1}{\omega_{\mathrm{n}}} \sin \omega_{\mathrm{n}} t \\
-\omega_{\mathrm{n}} \sin \omega_{\mathrm{n}} t & \cos \omega_{\mathrm{n}} t
\end{array}\right]
\end{gathered}
$$

- $\ddot{y}=u$

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], e^{A t}=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

## Solution of the State Equation

- State response

$$
\begin{gathered}
x(t)=\underbrace{e^{A t} x(0)}_{\text {Natural Response }}+\underbrace{\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau}_{\text {Forced Response }} \\
e^{A t}=\text { state transition matrix }
\end{gathered}
$$

- Output response

$$
y(t)=\underbrace{C e^{A t} x(0)}_{\text {Natural Response }}+\underbrace{\int_{0}^{t} C e^{A(t-\tau)} B u(\tau) d \tau+D u(t)}_{\text {Forced Response }}
$$

- Impulse response

$$
g(t)=C e^{A t} B+D \delta(t)
$$

- Transfer matrix

$$
C(s I-A)^{-1} B+D
$$

## ZOH Equivalent of a State Space System

$$
\begin{gathered}
\bullet \xrightarrow{\bullet} \xrightarrow{\mathrm{u}(\mathrm{kT})} \xrightarrow{\overline{\mathrm{u}}(\mathrm{t})} \xrightarrow{\begin{array}{c}
\text { State Space } \\
\text { System }
\end{array}} \xrightarrow{\mathrm{y}(\mathrm{t})} \xrightarrow{\mathrm{y}(\mathrm{kT})} \\
\bar{u}(t)=u(k), t \in[k T, k T+T) \\
x(k+1)=e^{A T} x(k)+\int_{k T}^{k T+T} e^{A(k T+T-\tau)} B u(k) d \tau \\
=e^{A T} x(k)+\left[\int_{0}^{T} e^{A(T-\sigma)} B d \sigma\right] u(k), \sigma=\tau-k T
\end{gathered}
$$

- Discrete-time state space model of the ZOH equivalent

$$
\begin{gathered}
x(k+1)=\Phi x(k)+\Gamma u(k) \\
y(k)=H x(k)+J u(k) \\
\Phi=e^{A T}, \Gamma=\left[\int_{0}^{T} e^{A(T-\sigma)} B d \sigma\right], H=C, J=D
\end{gathered}
$$

## State Space Realizations

$$
G(z)=\frac{b_{0}+b_{1} z^{-1} \cdots+b_{n} z^{-n}}{1+a_{1} z^{-1}+\cdots+a_{n} z^{-n}}
$$

- Let $\widehat{Y}(z)=U(z)\left[1+a_{1} z^{-1}+\cdots+a_{n} z^{-n}\right]^{-1}$, so that $Y(z)=\left[b_{0}+b_{1} z^{-1} \cdots+b_{n} z^{-n}\right] \widehat{Y}(z)$

$$
\hat{y}(k)+a_{1} \hat{y}(k-1)+\cdots+a_{n} \hat{y}(k-n)=u(k)
$$

- Choose

$$
\begin{aligned}
x(k)= & {\left[\begin{array}{c}
\hat{y}(k-n) \\
\hat{y}(k-n+1) \\
\vdots \\
\hat{y}(k-1)
\end{array}\right], x(k+1)=\left[\begin{array}{c}
\hat{y}(k-n+1) \\
\hat{y}(k-n+2) \\
\vdots \\
\hat{y}(k)
\end{array}\right]=\left[\begin{array}{c}
x_{2}(k) \\
x_{3}(k) \\
\vdots \\
-a_{n} x_{1}(k)-\cdots-a_{1} x_{n}(k)+u(k)
\end{array}\right] } \\
y(k) & =b_{0} \hat{y}(k)+b_{1} \hat{y}(k-1)+\cdots+b_{n} \hat{y}(k-n) \\
& =b_{0} \hat{y}(k)+b_{1} x_{n}(k)+\cdots+b_{n} x_{1}(k) \\
& =\left(b_{n}-b_{0} a_{n}\right) x_{1}(k)+\left(b_{n-1}-b_{0} a_{n-1}\right) x_{2}(k)+\cdots+\left(b_{1}-b_{0} a_{1}\right) x_{n}(k)+b_{0} u(k)
\end{aligned}
$$

## State Space Realizations (cont'd)

- First companion form

$$
\begin{gathered}
x(k+1)=\underbrace{\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{n} & -a_{n-1}-a_{n-2} & \cdots & -a_{1}
\end{array}\right]}_{A} x(k)+\underbrace{\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]}_{B} u(k) \\
y(k)=\underbrace{\left[\left(b_{n}-b_{0} a_{n}\right) \cdots\left(b_{1}-b_{0} a_{1}\right)\right]}_{B} x(k)+\underbrace{\left[b_{0}\right]}_{D} u(k)
\end{gathered}
$$

## Transfer Matrix from State Space Model

- State dynamics equations in Laplace domain

$$
\begin{gathered}
z X(z)-z x(0)=A X(z)+B U(z) \\
X(z)=\underbrace{z(z I-A)^{-1} x(0)}_{\text {Natural response }}+\underbrace{(z I-A)^{-1} B U(z)}_{\text {Forced response }} \\
Y(z)=C X(z)+D U(z) \\
=C z(z I-A)^{-1} x(0)+\underbrace{\left[C(z I-A)^{-1} B+D\right]}_{\text {Transfer matrix }} U(s) \\
\text { Transfer matrix }=C(z I-A)^{-1} B+D
\end{gathered}
$$

- Poles are eigenvalues of $A$


## Transformations of State Space Models

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
y(k) & =C x(k)+D u(k)
\end{aligned}
$$

- State transformation $\hat{x}=S x$

$$
\begin{aligned}
\hat{x}(k+1) & =\underbrace{S A S^{-1}}_{\widehat{A}} \hat{x}(k)+\underbrace{S B}_{\widehat{B}} u(k) \\
y(k) & =\underbrace{C S^{-1}}_{\overparen{C}} \hat{x}(k)+\underbrace{D}_{\widehat{D}} u(k)
\end{aligned}
$$

- Input-output relation is unchanged

$$
C(z I-A)^{-1} B+D=\widehat{C}(z I-\widehat{A})^{-1} \widehat{B}+\widehat{D}
$$

- Two state-space models are equivalent if they yield the same transfer matrix
- Every input-output system has several equivalent state space representations/realizations

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
x(1) & =A x(0)+B u(0) \\
x(2) & =A^{2} x(0)+A B u(0)+B u(1) \\
x(3) & =A^{3} x(0)+A^{2} B u(0)+A B u(1)+B u(2) \\
& \vdots \\
x(k) & =\underbrace{A^{k} x(0)}_{\text {natural response }}+\underbrace{\sum_{l=0}^{k-1} A^{k-l-1} B u(l)}_{\text {forced response }} \\
y(k) & =\underbrace{C A^{k} x(0)}_{\text {natural response }}+\underbrace{\sum_{l=0}^{k-1} C A^{k-l-1} B u(l)+D u(k)}_{\text {forced response }}
\end{aligned}
$$

## Impulse Response

- Response to impulse input $u(k)=u_{0} \delta(k)$

$$
y(k)=C A^{k-1} B u_{0}+D u_{0} \delta(k)
$$

- Impulse response sequence

$$
=\left\{D u_{0}, C B u_{0}, C A B u_{0}, \ldots\right\}
$$

- Impulse response matrix

$$
\begin{aligned}
H(k) & =D, k=0 \\
& =C A^{k-1} B, k>0
\end{aligned}
$$

- General response

$$
y(k)=C A^{k} x(0)+(H * u)(k)
$$

- Compare with forced response in $z$-domain

$$
\begin{gathered}
Y(z)=\left[C(z I-A)^{-1} B+D\right] U(z) \\
\Longrightarrow \mathcal{Z}(H)=C(z I-A)^{-1} B+D=D+z^{-1} C B+z^{-2} C A B+\cdots
\end{gathered}
$$

## Reachable Sets

- Which states can be reached from a given initial condition by using all possible inputs?
- Reachable set from $x_{0}$ at step $k$

$$
\begin{aligned}
\mathcal{R}\left(k, x_{0}\right) & =\left\{\text { states reachable from } x_{0} \text { in } k \text { steps }\right\} \\
& =\left\{A^{k} x_{0}+\sum_{l=0}^{k-1} A^{k-l-1} B u(l): u(0), u(1), \ldots, u(k-1) \text { arbitrary }\right\}
\end{aligned}
$$

- System is controllable if every state can be reached from every other state in a finite (but possibly large) number of steps
- System is controllable iff $\mathcal{R}\left(k, x_{0}\right)=\mathbb{R}^{n}$ for sufficiently large $k$


## Facts on Reachable Sets

$$
\text { Fact } 1: \mathcal{R}\left(k, x_{0}\right)=\mathcal{R}(k, 0)+A^{k} x_{0}
$$

$$
\text { Fact } 2: \mathcal{R}(n, 0)=\text { Range } \mathcal{C}, \mathcal{C}=\left[\begin{array}{llll}
B A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right]
$$

- If $a \in \mathcal{R}(n, 0)$, then

$$
a=B u(n-1)+A B u(n-2)+\cdots+A^{n-1} B u(0)=\mathcal{C}\left[\begin{array}{c}
u(n-1) \\
\vdots \\
u(0)
\end{array}\right] \in \text { Range } \mathcal{C}
$$

- If $a \in$ Range $\mathcal{C}$, then

$$
a=\mathcal{C} b=B b_{1}+A B b_{2}+\cdots+A^{n-1} B b_{n} \in \mathcal{R}(n, 0)
$$

## Facts on Reachable Sets (cont'd)

$$
\text { Fact } 3: \mathcal{R}(k, 0)=\mathcal{R}(n, 0), k \geq n
$$

- Clearly $\mathcal{R}(n, 0) \subseteq \mathcal{R}(k, 0)$
- For $k>n$, an element of $\mathcal{R}(k, 0)$ is of the form

$$
B u(k-1)+\cdots+A^{n-1} B u(k-n)+A^{n} B u(k-n+1)+\cdots+A^{k-1} B u(0)
$$

- By Cayley-Hamilton theorem, powers of $A$ higher than $n-1$ can be written as combinations of powers of $A$ upto $n-1$
- Elements of $\mathcal{R}(k, 0)$ are contained in $\mathcal{R}(n, 0)$

System is controllable iff rank $\mathcal{C}=n$

- Can we guess the initial state by observing only the output?

$$
\begin{aligned}
& y_{1}(k)=C A^{k} x_{1}+(H * u)(k) \\
& y_{2}(k)=C A^{k} x_{2}+(H * u)(k)
\end{aligned}
$$

- Can distinguish $x_{1}$ from $x_{2}$ iff $C A^{k} x_{1} \neq C A^{k} x_{2}$ for some $k$
- Unobservable set from $x_{0}$ at step $k$

$$
\begin{aligned}
\mathcal{U}\left(k, x_{0}\right) & =\left\{\text { states that yield the same output as } x_{0} \text { upto step } k-1\right\} \\
& =\left\{x: C A^{i} x=C A^{i} x_{0}, i=0,1, \cdots, k-1\right\}
\end{aligned}
$$

- System is observable if every state can be distinguished from every other state in a finite (but possibly large) number of steps
- System is observable iff $\mathcal{U}\left(k, x_{0}\right)=\left\{x_{0}\right\}$ for sufficiently large $k$

Fact 1: $\mathcal{U}\left(k, x_{0}\right)=\boldsymbol{U}(k, 0)+x_{0}$
Fact $2: \mathcal{U}(k, 0)=\mathcal{U}(n, 0), k \geq n$
Fact $3: \mathcal{U}(n, 0)=\operatorname{kernel} \mathcal{O}, \mathcal{O}=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]$
System is observable iff $\operatorname{rank} \mathcal{O}=n$

## Hautus Test for Controllability

- Eigenvalue $\lambda \in \mathbb{C}$ of $A$ is controllable if

$$
\operatorname{rank}[\lambda I-A B]=n
$$

- Fact: System is controllable iff every eigenvalue of $A$ is controllable
- If $\lambda$ is not controllable, then there exists $x \in \mathbb{C}^{n}$ such that

$$
x^{*} A=\lambda x^{*}, x^{*} B=0 \Longrightarrow x^{*} A^{i} B=0 \Longrightarrow x^{*} \mathcal{C}=0 \Longrightarrow \operatorname{rank} \mathcal{C}<n
$$

- Controllability remains invariant under state transformation
- Uncontrollable eigenvalues are unaffected by control
- If $\lambda$ is an uncontrollable eigenvalue, and the feedback $u=K x$ is used, then $\lambda$ also appears as a closed-loop eigenvalue


## Hautus Test for Observability

- Eigenvalue $\lambda \in \mathbb{C}$ of $A$ is unobservable if

$$
\operatorname{rank}\left[\begin{array}{c}
\lambda I-A \\
C
\end{array}\right]=n
$$

- Fact: System is observable iff every eigenvalue of $A$ is observable
- If $\lambda$ is not observable, then there exists $x \in \mathbb{C}^{n}$ such that

$$
A x=\lambda x, C x=0 \Longrightarrow C A^{i} x=0 \Longrightarrow \mathcal{O} x=0 \Longrightarrow \operatorname{rank} \mathcal{O}<n
$$

- Observability remains unchanged under state transformations
- Unobservable eigenvalues cannot be detected through the output


## A Two-Dimensional Example



- By the Hautus test, need $b_{1} \neq 0 \neq b_{2}$ for controllability and $c_{1} \neq 0 \neq c_{2}$ for observability


## Kalman Decomposition Theorem

- Fact: Every state space system can be transformed into

$$
\begin{aligned}
& x(k+1)=\left[\begin{array}{ccc}
A_{\mathrm{c} \bar{o}} & A_{12} & A_{13} \\
0 & A_{\mathrm{co}} & A_{23} \\
0 & 0 & A_{\overline{\mathrm{c}}}
\end{array}\right]\left[\begin{array}{c}
x_{\mathrm{co}}(k) \\
x_{\mathrm{co}}(k) \\
x_{\overline{\mathrm{c}}}(k)
\end{array}\right]+\left[\begin{array}{c}
B_{\mathrm{c} \overline{\mathrm{o}}} \\
B_{\mathrm{co}} \\
0
\end{array}\right] u(k) \\
& y(k)=\left[\begin{array}{lll}
0 & \left.C_{\mathrm{co}} C_{\overline{\mathrm{c}}}\right] x(k)+D u(k) \\
G(s)=C(z I-A)^{1} B+D=C_{\mathrm{co}}\left(z I-A_{\mathrm{co}}\right)^{-1} B_{\mathrm{co}}+D
\end{array}\right.
\end{aligned}
$$

- The controllable and observable part yields a smaller realization
- Eigenvalues that are either unobservable or uncontrollable are not poles


## Minimal Realizations

- A minimal realization is one having the least no. of states
- Desirable for implementation
- A minimal realization has as many states as the number of poles
- A realization is minimal iff it is controllable and observable
- All minimal realizations are equivalent


## Jordan Form

- Every matrix can be reduced to its Jordan form through a similarity transformation
$\left[\begin{array}{ccccccccc}\lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \lambda_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda_{4}\end{array}\right]$

$$
\text { characteristic polynomial }=\left(z-\lambda_{1}\right)^{3}\left(z-\lambda_{2}\right)^{3}\left(z-\lambda_{3}\right)^{2}\left(z-\lambda_{4}\right)
$$

- $\lambda_{1}$ and $\lambda_{4}$ have 1 eigenvector each, $\lambda_{2}$ and $\lambda_{3}$ have 2 eigenvectors each
- $\lambda_{3}$ and $\lambda_{4}$ are semisimple, $\lambda_{4}$ is simple


## Internal Stability

- Internal stability refers to the natural response of state (internal) variables
- A state space system is (internally)
- Lyapunov stable if every initial condition response is bounded
- Asymptotically stable if every initial condition response decays to zero
- Unstable if it is not Lyapunov stable

$$
x(k)=A^{k} x(0)=T J^{k} T^{-1} x(0), \quad J=\text { Jordan form }
$$

- Stability depends on the elements of $J^{k}$


## Powers of Jordan Blocks

$$
\begin{gathered}
J=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \Longrightarrow J^{k}=\left[\begin{array}{cc}
\lambda^{k} & 0 \\
0 & \lambda^{k}
\end{array}\right] \\
J=\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right] \Longrightarrow J^{k}=\left[\begin{array}{cc}
\lambda^{k} & k \lambda^{k-1} \\
0 & \lambda^{k}
\end{array}\right] \\
J=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] \Longrightarrow J^{k}=\left[\begin{array}{ccc}
\lambda^{k} & k \lambda^{k-1} & \frac{k(k-1)}{2} \lambda^{k-2} \\
0 & \lambda^{k} & k \lambda^{k-1} \\
0 & 0 & \lambda^{k}
\end{array}\right]
\end{gathered}
$$

- System is Lyapunov stable iff
- All eigenvalues $\in$ CUD and
- All eigenvalues of unit magnitude are semisimple
- System is asymptotically stable iff all eigenvalues $\in$ OUD


## BIBO Stability and Internal Stability

- System is BIBO stable iff every input vector with bounded components gives an output vector with bounded components
- System is BIBO stable if and only if every pole $\in$ OUD
(internal) asymptotic stability $\Longrightarrow$ BIBO stability
- Converse does not hold in general
- Fact: A controllable, observable, BIBO stable system is asymptotically stable
- Fact: A system is BIBO stable iff every minimal realization is asymptotically stable


## Positive-Definite Matrices

- $P \in \mathbb{R}^{n \times n}$, symmetric, is positive-definite $(P>0)$ if $x^{\mathrm{T}} P x>0$ for every $x \in \mathbb{C}^{n}, x \neq 0$
- A symmetric positive-definite matrix has real eigenvalues that are positive
- Every symmetric positive-definite matrix gives rise to the quadratic function $V_{P}(x)=x^{\mathrm{T}} P x$
- If $P>0$, then the level sets of $V_{P}$ are hyper-ellipsoids, eg. $P=\left[\begin{array}{cc}1 & \frac{1}{2} \\ \frac{1}{2} & 1\end{array}\right]$


Level curves of $V_{P}$

## Lyapunov Function

- How does a given quadratic function change along the natural state response?

$$
\begin{aligned}
x(k+1) & =A x(k) \\
V_{P}(x(k)) & =x^{\mathrm{T}}(k) P x(k) \\
V_{P}(x(k+1)) & =x^{\mathrm{T}}(k+1) P x(k+1)=x^{\mathrm{T}}(k) A^{\mathrm{T}} P A x(k) \\
V_{P}(x(k+1))-V_{P}(x(k)) & =x^{\mathrm{T}}(k)\left[A^{\mathrm{T}} P A-P\right] x(k)
\end{aligned}
$$

- Idea: If $P$ is positive definite and $V_{P}(x(k))$ decreases with $k$, then $x(k) \rightarrow 0$
- Such a $V_{P}$ is called a Lyapunov function
- Want $P>0$ and $A^{\mathrm{T}} P A-P=-Q$, where $Q>0$


## Lyapunov Equation

- Fact: If there exist $P>0$ and $Q>0$ satisfying the Lyapunov equation below, then system is asymptotically stable

$$
A^{\mathrm{T}} P A-P=-Q
$$

- Fact: System is asymptotically stable iff for every $Q>0$, there exists a positive-definite solution $P$ to the Lyapunov equation
- For an asymptotically stable system, the solution $P$ is unique
- To prove stability or instability, pick $Q>0$ (eg. $Q=I$ ), solve for $P$ and check sign definiteness of $P$
- OR check the feasibility of the linear matrix inequalities (LMIs)

$$
\begin{array}{r}
-A^{\mathrm{T}} P A+P>0 \\
P>0
\end{array}
$$

- Can be done using efficient numerical algorithms


## Full-State Feedback

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) & & \text { Open - loop system } \\
u(k) & =-K x(k)+r(k) & & \text { Full }- \text { state feedback } \\
x(k+1) & =(A-B K) x(k)+B r(k) & & \text { Closed }- \text { loop system }
\end{aligned}
$$

- Pole-placement problem Can we design a gain matrix $K$ such that $A-B K$ has desired eigenvalues?
- Fact: Every uncontrollable open-loop eigenvalue is a closed-loop eigenvalue
- Assume
- Complete controllability
- Single input


## Pole Placement using Companion Form

- Idea: Use state transformation $\hat{x}=S x$ such that

$$
\widehat{A}=S A S^{-1}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1}
\end{array}\right], \widehat{B}=S B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

controller canonical form

- Use feedback $u=-\widehat{K} \hat{x}=-\left[\hat{k}_{n} \hat{k}_{n-1} \cdots \hat{k}_{1}\right] \hat{x}$

$$
\widehat{A}-\widehat{B} \widehat{K}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{n}-\hat{k}_{n} & -a_{n-1}-\hat{k}_{n-1} & -a_{n-2}-\hat{k}_{n-2} & \cdots & -a_{1}-\hat{k}_{1}
\end{array}\right]
$$

## Pole Placement using Companion Form (cont'd)

- Characteristic polynomial of $A$ and $\widehat{A}$

$$
z^{n}+a_{1} z^{n-1}+\cdots+a_{n}
$$

- Characteristic polynomial of $\widehat{A}-\widehat{B} \widehat{K}$

$$
z^{n}+\left(a_{1}+\hat{k}_{1}\right) z^{n-1}+\cdots+\left(a_{n}+\hat{k}_{n}\right)
$$

- Desired characteristic polynomial

$$
z^{n}+\alpha_{1} z^{n-1}+\cdots+\alpha_{n}
$$

- Choose $\widehat{K}=\left[\alpha_{n}-a_{n} \alpha_{n-1}-a_{n-1} \cdots \alpha_{1}-a_{1}\right]$
- Feedback in terms of original states

$$
u=-\widehat{K} \hat{x}=-\underbrace{\widehat{K} S}_{K} x
$$

- Ackermann's Formula:

$$
\begin{gathered}
K=e_{n}^{\mathrm{T}} \mathcal{C}^{-1}\left[A^{n}+\alpha_{1} A^{n-1}+\cdots+\alpha_{n} I\right] \\
e_{n}^{\mathrm{T}}=\left[\begin{array}{llll}
0 & 0 & \cdots & 1
\end{array}\right]
\end{gathered}
$$

## Proof of Ackermann's Formula

- Define $s_{1}=e_{n}^{\mathrm{T}} \mathcal{C}^{-1}$, and consider

$$
S=\left[\begin{array}{c}
s_{1} \\
s_{1} A \\
\vdots \\
s_{1} A^{n-1}
\end{array}\right]
$$

- Claim: $S A=\widehat{A} S$
- Claim: $S$ is invertible
- Claim: $S B=\widehat{B}$
- $S$ yields the transformation to the controller canonical form
- $K=\widehat{K} S$ yields Ackermann's formula
- Multi-input case: redundant degrees of freedom in choosing $K$
- Can be used to assign eigenstructure


## Estimation/Observation

- Online reconstruction of state vector from the output

$$
\underbrace{\begin{array}{c}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)
\end{array}}_{\text {Observable single-output system }}, \underbrace{\begin{array}{c}
\widehat{x}(k+1)=A \widehat{x}(k)+B u(k)+\overbrace{L(y(k)-\widehat{y}(k))}^{\text {output injection }} \\
\widehat{y}(k)=C \hat{x}(k)
\end{array}}_{\text {Luenberger observer }}
$$



- Error dynamics

$$
e(k+1)=(A-L C) e(k), e=x-\widehat{x}
$$

## Observer Design by Pole Placement

- Can we choose observer gain matrix $L$ such that $A-L C$ is Schur?
- Yes, if the system is observable
$-(A, C)$ is observable iff $\left(A^{\mathrm{T}}, C^{\mathrm{T}}\right)$ is controllable
- There exists a gain matrix $K$ such that $A^{\mathrm{T}}-C^{\mathrm{T}} K$ has desired eigenvalues

$$
K=e_{n}^{\mathrm{T}}\left[C^{\mathrm{T}} C^{\mathrm{T}} A^{\mathrm{T}} \cdots C^{\mathrm{T}} A^{(n-1) \mathrm{T}}\right]^{-1}\left[A^{n \mathrm{~T}}+\alpha_{1} A^{(n-1) \mathrm{T}}+\cdots+\alpha_{n} I\right]
$$

- Letting $L=K^{\mathrm{T}}, A-L C$ has desired eigenvalues

$$
L=\left[A^{n}+\alpha_{1} A^{n-1}+\cdots+\alpha_{n} I\right] \mathcal{O}^{-1} e_{n}
$$

## Dynamic Output-Feedback Compensation

- Idea: In a full-state feedback controller, use state estimate generated by an observer in place of the actual state


Dynamic output-feedback controller

## Seperation Principle

$$
\begin{aligned}
& x(k+1)=A x(k)+B u(k) \\
& y(k)(k+1)=A \widehat{x}(k)+B u(k)+L(y(k)-C \widehat{x}(k)) \\
& u(k)=-K \hat{x}(k)+r(k) \\
& \underbrace{\left[\begin{array}{l}
x(k+1) \\
\widehat{x}(k+1)
\end{array}\right]=\left[\begin{array}{cc}
A & -B K \\
L C & A-L C-B K
\end{array}\right]\left[\begin{array}{l}
x(k) \\
\widehat{x}(k)
\end{array}\right]+\left[\begin{array}{l}
B \\
B
\end{array}\right] r(k)}_{\text {Closed-loop system }}
\end{aligned}
$$

- Choose state vector as $\left[x^{\mathrm{T}} e^{\mathrm{T}}\right]^{\mathrm{T}}, e=x-\widehat{x}$

$$
\left[\begin{array}{c}
x(k+1) \\
e(k+1)
\end{array}\right]=\left[\begin{array}{cc}
A-B K & B K \\
0 & A-L C
\end{array}\right]\left[\begin{array}{l}
x(k) \\
e(k)
\end{array}\right]+\left[\begin{array}{l}
B \\
0
\end{array}\right] r(k)
$$

- Seperation Principle: Output-feedback controller can be obtained by combining an independently designed
- Regulator that uses full state feedback with
- An observer

