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Typical Control Objectives

• Uncontrolled system (plant) may not behave satisfactorily

⇒ Design a control system that yields satisfactory behavior for the controlled system

• Typical properties desired of a controlled system

– Stability

∗ Input-output stability: Bounded inputs should give bounded outputs

∗ Internal stability: All internal variables remain bounded in the absence of inputs

– Tracking: (Output − Input)→ 0 as t→∞

∗ Regulation: Output → 0 as t→∞

– Disturbance/Noise Rejection: Satisfactory performance in the presence of plant

disturbances and measurement noise

– Robustness: Satisfactory performance inspite of unmodelled dynamics and parameter

uncertainty/change



Review of Continuous-Time Systems

• All signals are analog signals

• A linear, time invariant, single-input-single-output (SISO) system is typically described by

a0y
(n) + a1y

(n−1) + · · · + a(n)y = b0u
(m) + b1u

(m−1) + · · · + bmu

• Solution = initial condition response + input response

• Input response = u∗ impulse response (convolution)

• Transfer function = L(impulse response)

• L(y) = T.F.× L(u) for zero initial conditions

• Transient response decided by poles and zero; poles decide stability

• Frequency response analysis: Harmonic Analysis, Bode, Nyquist



An Overview of Control Activities

• ANALYSIS:

– Relate system theoretic properties to system behaviour.

Eg. Poles and stability

– Need analysis tools, eg. Routh-Hurwitz test

• CONTROLLER DESIGN:

– Translate specs to system properties and design a controller (control law) that assigns

these properties to the controlled system

Eg. Pole placement controller

– Need design tools, eg. pole placement technique

• IMPLEMENTATION:

– Sensors, actuators, filters, processors
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Discrete-Time Signals

• Sequence {u(k)}∞k=0 of real numbers

• A real-valued function k 7→ u(k) of integers

• Right-sided sequence (signal) u(0), u(1), u(2), . . .

• Two-sided sequence (signal) . . . , u(−2), u(−1), u(0), u(1), u(2), . . .



Operators on Discrete-Time Signals

• Identity operator 1

• Shift or unit delay operator S

(Su)(k) = u(k − 1), k ≥ 1

= 0 k ≤ 1

• Unit advance operator S−1

(S−1u)(k) = u(k + 1), k ≥ 0

• Difference operator

∆u(k) = u(k)− u(k − 1) = (u− Su)(k)

∆ = 1− S, S = 1−∆



Some Basic Discrete-Time Signals

• Unit pulse/impulse signal

δ(k) = 1, k = 0,

= 0, k > 0,

• Unit step signal

s(k) = 1, k ≥ 0

∆s = δ

• Harmonic signals

u(k) = sin(kθ)

• Exponential signals

u(k) = rk

• Harmonic signals with exponential amplitudes

u(k) = rk sin(kθ) = Re (reθ)k



Linear Difference Equations

y(k) + a1y(k − 1) + . . . + any(k − n) = b0u(k) + b1u(k − 1) + . . . + bmu(k −m)

• In terms of the shift operator

y(k) + a1Sy(k) + . . . + anS
ny(k) = b0u(k) + b1Su(k) + . . . + bmS

mu(k)

D(S)y = N(S)u

• Auto-Regressive Moving Averages (ARMA) model

• Causal: Output independent of future input

– Strictly causal if output depends only the past inputs

• Shift invariant (time invariant)

– Shifted input Su produces shifted output Sy

• Linear (Superposition + Homogeneity)

• To solve need n initial conditions + input



An Example

• To numerically compute

y(t) =

t∫

0

u(τ )dτ

ẏ(t) = u(t), y(0) = 0

• At instants 0, T, 2T, . . . , kT, . . . ,

y(kT ) = y((k − 1)T ) +

kT∫

(k−1)T

u(τ )dτ

• Use forward rectangular rule to approximate the integral

y(kT ) = y((k − 1)T ) + Tu((k − 1)T ), y(0) = 0

∆y = TSu, y(0) = 0
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Vector Spaces

• A vector space V is a set

– whose elements can be added in some manner

– whose elements can multiplied by scalars in some manner

– which contains a zero element

For example:

– V = set of all functions of time

– V = set of all right-sided sequences



Linear Independence

• A linear combination is a finite sum of the form

α1v1 + . . . + αnvn

• Linear independence — every linear combination involving atleast one nonzero scalar is

nonzero

• {v1, v2, . . . , vn} ⊂ V forms a basis for V if

– v’s are linearly independent and

– every vector in V is a linear combination of v’s

• If V has a basis of n elements for some n, then V is n-dimensional, else infinite-dimensional

• A linear operator is a linear function V 7→ V



Vector Space of Discrete Signals

• The set of all discrete signals is a vector space with

(y1 + y2)(k) = y1(k) + y2(k), (αy)(k) = αy(k), Zero element y ≡ 0

• y1, . . . , yn are linearly dependent iff ∃ α1, . . . , αn such that

α1y1(k) + . . . + αnyn(k) = 0 ∀k

• For λ1 6= λ2 nonzero real, {λk1}, {λ
k
2} are linearly independent

• For λ complex, {Re λk} and {Im λk} are l. i.

• For λ1 6= λ2 complex, {Re λk1,2} and {Im λk1,2} are l. i.

• For λ1 nonzero real and λ2 complex, λ
k
1, {Re λ

k
2} and {Im λk2} are l. i.

• No finite basis possible

• Linear operators

S, D(S), ∆, D̂(∆)



Homogeneous Linear Difference Equations

y(k) + a1y(k − 1) + . . . + any(k − n) = 0

D(S)y = 0

y(−1), y(−2), . . . , y(−n)

• Zero initial conditions imply solution is zero

• The set of all solutions is a vector space since

y ≡ 0 is a solution

D(S)(α1y1 + α2y2) = α1D(S)y1 + α2D(S)y2

Theorem: The vector space of solutions has dimension n

(an 6= 0)

– To prove, need to find a basis consisting of n solutions



A Basis of Solutions

• Idea Solutions ←→ sets of initial conditions

– If wi form a basis for all initial conditions, the corresponding solutions form a basis for

all solutions

• Choose n sets of initial conditions as follows

−1 −2 −3 · · · −n

y1 1 0 0 · · · 0 w1

y2 0 1 0 · · · 0 w2

... ... ... ... ... ... ...

yn 0 0 0 · · · 1 wn

Claim: y1, . . . , yn form a basis for all solutions



A Basis of Solutions (cont’d)

• y1, . . . , yn are linearly independent

If α1y1(k) + · · · + αnyn(k) = 0 ∀ k, then k = −i⇒ αi = 0

• Every solution is a linear combination of y1, . . . , yn

Let y be any solution and consider

y(k) = y(−1)y1(k) + · · · + y(−i)yi(k) + · · · + y(−n)yn(k)

– y is a solution satisfying the same initial conditions as y

– Hence y = y is a linear combination of y1, . . . , yn



Solution of Linear Difference Equations

• Choose a basis of initial conditions and use corresponding solutions as a basis of solutions

• Try a solution of the form y(k) = λk

(Sy)(k) = λk−1 = λ−1y(k) for k ≥ 1

(S2y)(k) = λ−2y(k) for k ≥ 2

D(S)y(k) = D(λ−1)y(k) for k ≥ n

• y(k) = λk is a solution of D(S)y = 0 if λ satisfies

D(λ−1) = 0, that is

1 + a1λ
−1 + a2λ

−2 + . . . + anλ
−n = 0 =⇒

λn + a1λ
n−1 + a2λ

n−2 + . . . + an = 0

• λnD(λ−1) = characteristic polynomial



Another Basis of Solutions

• Characteristic polynomial/equation — factor as

C(λ) = (λ− p1)
m1(λ− p2)

m2 . . . (λ− pl)
ml

• The following functions form a basis for the solutions of the LDE

– For pi real,

{pki }, {kp
k
i }, {k

2pki }, . . . , {k
mi−1pki }

– For pi = reθ and pi complex,

{rk sin(kθ)}, {krk sin(kθ)}, {k2rk sin(kθ)}, . . . , {kmi−1rk sin(kθ)}

{rk cos(kθ)}, {krk cos(kθ)}, {k2rk cos(kθ)}, . . . , {kmi−1rk cos(kθ)}

• Initial conditions determine the constants in the linear combination



Stability of Initial Condition Response

• Real characteristic root p

{pk} decays iff |p| < 1 {kjpk} decays iff |p| < 1

bounded if |p| = 1

unbounded if |p| > 1 unbounded if |p| ≥ 1

• Complex characteristic root p

{Re pk}, {Im pk} decay iff |p| < 1 {Re kjpk}, {Im kjpk} decay iff |p| < 1

bounded if |p| = 1

unbounded if |p| > 1 unbounded if |p| ≥ 1

• Theorem

– All solutions are bounded iff all characteristic roots lie in the closed unit disc {λ : |λ| ≤ 1}

and all roots with unit magnitude are simple (unrepeated)

– All solutions decay iff all characteristic roots lie in the open unit disc {λ : |λ| < 1}



Convolution

• Convolution of two right sided sequences u and g is the sequence

(u ∗ g)(k) =

k∑

l=0

u(l)g(k − l)

= u(0)g(k) + u(1)g(k − 1) + · · · + u(k − 1)g(1) + u(k)g(0)

u ∗ g = g ∗ u

(α1u1 + α2u2) ∗ g = α1(u1 ∗ g) + α2(u2 ∗ g)

– For a fixed g, u ∗ g is a linear operator on u

S(u ∗ g) = u ∗ Sg = g ∗ Su

D(S)(u ∗ g) = u ∗D(S)g = g ∗D(S)u

∆(u ∗ g) = u ∗∆g = g ∗∆u

u ∗ δ = u

– (u ∗ δ)(k) = u(0)δ(k) + . . . + u(k − 1)δ(1) + u(k)δ(0) = u(k)



Pulse Response and Input Response

• Pulse response g = zero initial condition response to a unit pulse

D(S)g = N(S)δ, 0 = g(−1) = g(−2) = · · ·

• Fact: The response y of a linear time invariant system to an arbitrary input u under zero

initial conditions is given by

y = u ∗ g

Proof: To show D(S)y = N(S)u

D(S)y = D(S)(u ∗ g)

= u ∗D(S)g

= u ∗N(S)δ

= N(S)(u ∗ δ)

= N(S)u

• Step response = s ∗ g



Bounded-Input-Bounded-Output (BIBO) Stability

• A system is BIBO stable if the output to every bounded input is bounded

• A sequence y is said to be bounded if there exists M such that |y(k)| < M, ∀ k

• For a bounded sequence y, define

‖y‖ = sup
k>0

y(k) = least upper bound of {y(k)}

• Fact:

A system is BIBO stable if and only if there exists N such that for every nonzero input u,

the corresponding output y satisfies
‖y‖

‖u‖
< N

• Theorem:

A system is BIBO stable iff the input response g is absolutely summable, that is,
∞∑

k=0

|g(k)| <∞



BIBO Stability and Pulse Response

• Suppose the pulse response is absolutely summable

|y(k)| = |(u ∗ g)(k)| ≤
k∑

l=0

|u(l)||g(k − l)|

≤ ‖u‖
k∑

l=0

|g(k − l)| ≤ ‖u‖
∞∑

l=0

|g(l)| <∞

• Suppose the pulse response is not absolutely summable

uk(l) = sign g(k − l) l ≤ k,

= 0, l > k

‖uk‖ = 1

‖yk‖ ≥ yk(k) = (uk ∗ g)(k) =
k∑

l=0

|g(k)|

‖yk‖ −→ ∞



Output Zeroing Inputs

D(S)y = N(S)u

y(k) + a1y(k − 1) + · · · + any(k − n) = biu(k − i) + · · · + bmu(k −m)

• An output zeroing input— produces no response under under zero initial conditions, that is,

satisfies u ∗ g = 0

• Must satisfy the difference equation

N(S)u = 0, that is, biu(k − i) + · · · bmu(k −m) = 0

• Set of all null inputs is a vector space

• A basis can be found from the characteristic zeros, solutions of

biλ
m−i + bi+1λ

m−i−1 + · · · + bm = 0

– Zero zi of multiplicity mi contributes

{zki }, {kz
k
i }, · · · , {k

mi−1zki }

• Dimension of this vector space is m− i



Impulse Response and Initial Condition Responses

• Let d be the impulse response of the system D(S)y = u, that is, D(S)d = δ

• d is an initial condition response of the system D(S)d = N(S)u since (D(S)d)(k) = 0, k >

0

• d is a linear combination of the initial condition responses corresponding to the characteristic

roots

d = α1y1 + α2y2 + · · · + αnyn

• Impulse response g of D(S)y = N(S)u is g = N(S)d

g = α1N(S)y1 + α2N(S)y2 + · · · + αnN(S)yn

• Characteristic root pi affects g iff it is not a characteristic zero

g(k) = α1N(S)pk1 + α2N(S)kpk1 + α3k
2pk1 + α4N(S)pk2

– g decays iff roots |p| ≥ 1 are also a zeros of equal or greater multiplicity



Roots, Zeros and BIBO Stability

∞∑

k=0

|pk|,
∞∑

k=0

|kpk| <∞

m

|p| < 1

m

pk, kpk decay

• Since g involves pk, kpk, g is absolutely summable iff g decays

• System is BIBO stable iff pulse response decays

• Theorem:

System is BIBO stable iff every characteristic root with |p| ≥ 1 is also a characteristic zero

of equal or greater multiplicity



Z Transform

• The Z transform of a sequence is a function of the complex

variable z

• Given a sequence y, its right sided Z transform is

Z(y) : Y (z) = y(0) +
y(1)

z
+
y(2)

z2
+
y(3)

z3
+ · · ·

=

∞∑

k=0

y(k)z−k

• Z(y) is the Laurent expansion of the complex function Y

– Z(y) agrees with Y only in the region of convergence of the Laurent series

– Recall that if |x| < 1, then 1 + x + x2 + · · · =
1

1− x
– If |z−1| < 1, then

1 + z−1 + z−2 + z−3 + · · · =
1

1− z−1
=

z

z − 1

• Z transform is linear: Z(α1y1 + α2y2) = α1Z(y1) + α2Z(y2)



Z Transforms of Some Common Sequences

• Unit pulse δ

Z(δ) = 1

• Unit step s

S(z) = 1 + z−1 + z−2 + · · · =
1

1− z−1
=

z

z − 1
, |z| > 1

• Exponential sequence {pk}

1 + pz−1 + p2z−2 + · · · =
1

1− pz−1
=

z

z − p
, |pz−1| < 1

• Harmonic signal {sin(kθ)}
z sin θ

z2 − 2z cos θ + 1
, |z| > 1

• Exponentially modulated harmonic signals {rk sin(kθ)}

rz sin θ

z2 − 2rz cos θ + r2
, |z| > r



Properties of the Z Transform

• Delay

Z(Su) = u(−1) + z−1U(z)

Z(S2u) = Su(−1) + z−1Z(Su) = u(−2) + z−1u(−1) + z−2U(z)

Z(Snu) = u(−n) + z−1u(−n + 1) + · · · + zn−1u(−1) + z−nU(z)

Z(D(S)u) = D(z−1)U(z)

• Advance

Z(S−1u) = zU(z)− zu(0), Z(S−2u) = z2U(z)− z2u(0)− zu(1)

Z(S−nu) = znU(z)− znu(0)− zn−1u(1) · · · − zu(n− 1)

• Difference

Z(∆u) = Z(u)−Z(Su) =
z − 1

z
U(z)− u(−1)

• Convolution

Z(u ∗ g) = G(z)U(z)



Properties of the Z Transform (Contd.)

• Scaling in the complex plane

Z({rku(k)}) = U(z/r)

• Complex differentiation

Z({ku(k)}) = −z
dU

dz
(z)

• Initial value

u(0) = lim
z→∞

U(z)

• Final value theorem

lim
k→∞

u(k) = lim
z→1

(z − 1)U(z)

– provided the limit on the left exists



Transfer Functions

• The transfer function G of the system D(S)y = N(S)u is the Z transform of its pulse

response g

G(z) = Z(g)

• If y is the input response (zero i.c.) to the input u, then

y = (g ∗ u)

Y (z) = G(z)U(z)

G(z) =
Y (z)

U(z)

transfer function =
Z(output)

Z(input)

∣∣∣∣
zero initial conditions

• To calculate the transfer function of D(S)y = N(S)u, take the Z transform on both sides

Z(D(S)y) = Z(N(S)u)

G(z) =
Y (z)

U(z)
=
N(z−1)

D(z−1)



Transfer Functions of Common Operators

• Unit Delay: y = Su

Y (z) = Z(Su) = u(−1) + z−1U(z),
Y (z)

U(z)

∣∣∣∣
zero i.c.

= z−1

Pulse Response = Z−1(z−1) = {0, 1, 0, 0, . . .}

• Unit advance: y = S−1u

Y (z) = zU(z)− u(0), Y (z)/U(z) = z

– Non causal. y(k) = u(k + 1)

• Difference operator: y(k) = u(k)− u(k − 1)

D(λ) = 1, N(λ) = 1− λ, T.f. =
N(z−1)

D(z−1)
= 1− z−1

Impulse Response = {1,−1, 0, 0, . . .}

– Causal but not strictly causal



Inverse Z Transform

• Laurent expansion

– Perform long division for rational Y (z)

• Partial fraction expansion followed by look-up table

• Convolution property

Y (z) = Y1(z)Y2(z)

=⇒ y = y1 ∗ y2

• Solve numerically by forming a linear difference equation

Y (z) =
N(z−1)

D(z−1)

=⇒ y = pulse response of D(S)y = N(S)u



Partial Fractions

Y (z) =
N(z−1)

D(z−1)
=

N(z−1)

(1− p1z−1)(1− p2z−1)2 · · ·

• Unrepeated factor 1− pz−1 contributes to the expansion

A

1− pz−1

• Repeated factor (1− pz−1)m contributes

Am

(1− pz−1)m
+

Am−1

(1− pz−1)m−1
+ · · · +

A1

(1− pz−1)

• Unrepeated quadratic factor 1− 2rz−1 cos θ + z−2 contributes

Az−1 +B

1− 2rz−1 cos θ + z−2

• Repeated quadratic (1− 2rz−1 cos θ + z−2)m factor contributes

Amz
−1 +Bm

(1− 2rz−1 cos θ + z−2)m
+ · · · +

A1z
−1 +B1

1− 2rz−1 cos θ + z−2

• Expand in terms of z−1 (not z) in the usual fashion

• Inverse transform each term in the expansion using tables



The s – z Correspondence

• y(t) = eσt: Y (s) has a pole at s = σ

– y(kT ) = eσkT = (eσT )k = rk: Y (z) has a pole at z = r = eσT

• y(t) = eσt sinωt: Y (s) has a pole at s = σ ± ıω

– y(kT ) = eσkT sinωkT = (eσT )k sin k(ωT ) = rk sin kθ: Y (z) has poles at z = re±ıθ =

eσTe±ıωT = e(σ±ıω)T

• Suggests the correspondence z = esT for mapping poles of a s-domain signal to the poles of

its sampled sequence in z-domain

• Where should z poles lie to get good transient behaviour (ζ, ωn)?

– Locate s poles using s domain experience for desired ζ, ωn

– Map s poles to z poles using z = esT



Jury’s Test for Stability

a0z
n + a1z

n−1 + · · · + an−1z + an = 0, a0 > 0

– is said to be Hurwitz if all roots lie in the OLHP, Schur if all roots lie in the OUD

zn zn−1 zn−2 · · · z2 z z0

a0 a1 a2 · · · an−2 an−1 an

an an−1 an−2 · · · a2 a1 a0

b0 b1 b2 · · · bn−2 bn−1

bn−1 bn−2 bn−3 · · · b1 b0

c0 c1 c2 · · · cn−2

cn−2 cn−3 cn−4 · · · c0
... ... ...

bk =
1

a0

∣∣∣∣∣∣
a0 an−k

an ak

∣∣∣∣∣∣
, k = 0, 1, . . . , n− 1, ck =

1

b0

∣∣∣∣∣∣
b0 bn−1−k

bn−1 bk

∣∣∣∣∣∣
, k = 0, 1, . . . , n− 2

• Stable if a0 > 0, b0 > 0, c0 > 0, . . .



Stability through s− z Transformation

z =
1 + sT/2

1− sT/2
, s =

2

T

(z − 1)

(z + 1)

OLHP←→ open unit disc

imaginary axis←→ unit circle

• Given a polynomial p(z),

p(z) = p

(
1 + sT/2

1− sT/2

)
=
n(s)

d(s)

zeros of p(z)←→ zeros of n(s)

• p is Schur iff n is Hurwitz

• Apply Routh-Hurwitz test to n(s)



BIBO Stability of Transfer Functions

• A system given by a transfer function G(z) is BIBO stable

– if and only if the impulse response g is absolutely summable

– if and only if the impulse response g decays

– if and only if all poles (after cancellation) of G(z) lie in the interior of the unit disc, the

open unit disc (OUD)

{z : |z| < 1}

• We call a transfer function stable if all its poles lie in the OUD



Step Response

Y (z) = G(z)(1− z−1)−1

• Bounded if (after pole-zero cancellation)

– all poles of G(z) lie in {z : |z| ≤ 1}

– no repeated poles on the unit circle

– no pole at z = 1

• Approaches a limit if

– all poles of G(z) lie in {z : |z| < 1}

Steady state value = lim
k→∞

y(k) = lim
z→1

(z − 1)Y (z) = G(1)

• Decays to zero if

– all poles of G(z) lie in {z : |z| < 1} and z = 1 is a zero, that is, G(1) = 0

• For asymptotic tracking of a step input, need stability + G(1) = 1

• For asymptotic rejection of a step disturbance, need stability + G(1) = 0



Harmonic Response of Stable Transfer Functions

u(k) = sin(kωT )

U(z) =
z sinωT

z2 − 2z cosωT + 1
=

z−1 sinωT

(1− eωTz−1)(1− e−ωTz−1)

Y (z) = G(z)U(z) =
a1

1− eωTz−1
+

a2

1− e−ωTz−1
+

b1
1− p1z−1

+ · · ·

a1 = G(z)U(z)(1− eωTz−1)
∣∣
z=eωT =

1

2
G(eωT ) =

1

2
reφ

a2 = ā1 = −
1

2
re−φ

Yss(z) =
a1

1− eωTz−1
+

a2

1− e−ωTz−1

yss(k) = a1(e
ωT )k + a2(e

−ωT )k = Im reφ(eωT )k

yss(k) = r sin(kωT + φ), r = |G(eωT )|, φ = ∠G(eωT )

• Amplification at ω is |G(eωT )|, phase difference is ∠G(eωT )

• Frequency response is periodic in frequency



– Same response at ω and ω + ωs

Digital – Analog Conversion

ZOH

D/AComputerA/D

ZOH

A/D
r(t) {r(kT)}

T

Sampler

D/A

Zero−Order Hold 



Analysis of Sample-and-Hold Operation

ZOH
r(t)r(t)

T

{r(kT)}

• Let s(t) = unit step function, s(t− kT ) = unit step function delayed by kT

r(t) = r(0)[s(t)− s(t− T )] + r(T )[s(t− T )− s(t− 2T )] + · · ·

=

∞∑

k=0

r(kT )[s(t− kT )− s(t− kT − T )]

L(s(t)) = s−1, L(s(t− kT )) = s−1e−skT

R(s) =

[
∞∑

k=0

r(kT )(e−sT )k

]

︸ ︷︷ ︸
R∗(s)

[
1− e−sT

s

]

︸ ︷︷ ︸
GZOH(s)

Z(R(s))
def
= Z(sampled sequence of r(t))

R∗(s) = Z(R(s))|z=esT



Sampler as an Impulse Modulator

• Let δ(t) = unit impulse in continuous time

L(δ(t)) = 1, L(δ(t− kT )) = e−skT

R∗(s) = L

(
∞∑

k=0

r(kT )δ(t− kT )

)
= L(r∗(t))

• Define δT (t) =
∞∑
k=0

δ(t− kT )

– δT is an impulse train

r∗(t) = r(t)δT (t)

– r∗ is a modulated impulse train

δ T(t) r *(t)

– Ideal sampler = impulse modulator



An Ideal ZOH

GZOH(s) =
1

s
−
e−sT

s
= L[s(t)− s(t− T )]

= L[“impulse′′ response of ZOH]

ZOH

• NOTE: No transfer function possible for a ZOH



Frequency Domain Analysis of an Impulse Train

• δT (t) is a periodic function =⇒ expand in a Fourier series

δT (t) =

∞∑

n=−∞

cne
2πnt/T

cn =
1

T

T/2∫

−T/2

δT (t)e
−2πnt/Tdt

=
1

T

δT =

∞∑

n=−∞

1

T
enωst

– Fourier transform of δT (t)

ω s2 ω s3ω s−ω s−2 ω sω s−3 0



Frequency Domain Analysis of a Modulated Impulse Train

R∗(s) = L(r∗(t)) = L(r(t)δT (t))

=
1

T

∞∫

0

r(t)δT (t)e
−stdt

=
1

T

∞∫

0

r(t)

∞∑

n=−∞

enωste−stdt

?
=

1

T

∞∑

n=−∞

∞∫

0

r(t)e−(s−ωsn)tdt

=
1

T

∞∑

n=−∞

R(s− ωsn)

• Fourier transform R∗(ω) is periodic in ω with period ωs

• R∗(ω) obtained by superimposing scaled copies of R(ω) shifted by multiples of ωs



Aliasing

ω sω s−2 ω s− ω s2

R(jω)

ω)R (j*

ω

ω

• Contributions at ω due to R(ω), R(ω ± nωs)

• Frequencies ω ± nωs aliases of ω, show up at ω after sampling



An Example of Aliasing

0 2 4 6 8 10 12
−1
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−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y1(t) = sin t, y2(t) = sin 7t, ωs = 6, T = π/3

y1(kT ) = y2(kT ) = sin kT



Anti-Aliasing

ω sω s−2 ω s− ω s2

R(jω)

ω)R (j*

ω m

ω s<m2ω

ω

ω

ω sω s−2 ω s− ω s2

R(jω)

ω m

ω)R (j*

ω s

ω

ω

m2ω >

• Nyquist’s/Shannon’s Sampling Theorem: A signal can be recovered from its samples if the

sampling frequency is more than twice the highest frequency in the signal

• To minimise the effect of aliasing, sampling is preceded by a low-pass antialias filter

– Eliminates frequencies above the Nyquist frequency



Signal Reconstruction from Samples

• Possible if signal is band limited and ωm < ωs/2

• To recover R(ω) from R∗(ω), need a filter Lsuch that

R(ω) = L(ω)R∗(ω)

R∗(ω) =
1

T
R(ω) +

1

T

∞∑

n=−∞,n6=0

R(ω − nωs)

︸ ︷︷ ︸
frequencies>ωs/2

|L(ω)| = T, ω ∈ [−ωs/2, ωs/2],

= 0, elsewhere

∠L(ω) = 0 everywhere

ω s− ω s

ω)L(j

ω

T



Impulse Response of an Ideal Low-Pass Filter

• Inverse Fourier transform of L(ω)

l(t) =
1

2π

∫ ∞

−∞
L(ω)eωtdω

=
1

2π

∫ ωs/2

−ωs/2

Teωtdω

=
sin(ωst/2)

ωst/2
= sinc(ωst/2)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

t/T

si
nc

(π
 t/

T
)

• Note: L is a noncausal filter



Reconstruction Using a Low-Pass Filter

r(t) = (l ∗ r∗)(t)

=

∫ ∞

−∞
r(τ )δT (τ )l(t− τ )dτ

=

∞∑

k=−∞

r(kT )sinc(ωs(t− kT )/2)

• RHS is the unique band limited signal that has

– ωm < ωs/2

– Same samples as r

• Reconstruction is noncausal — present value depends on future samples

• Cannot be implemented online, can be used for offline reconstruction



Antialias Filtering

R(jω)

ω sω s−2 ω s− ω s2

ω)R (j*

ω

ω

Antialias

Sample



Frequency Domain Analysis of Zero-Order Hold

GZOH(ω) =
1− e−ωT

ω

= Te−ωT/2
sin(ωT/2)

(ωT/2)

= Te−ωT/2sinc(ωT/2)

sincx =
sinx

x
, x 6= 0,

= 1, x = 0

Magnitude : |GZOH(ω)| = T |sinc(ωT/2)|

Phase : ∠GZOH(ω) = −
ωT

2
+ π at every sign change of sinc



Frequency Response of GZOH
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Harmonic Response of Sample and Hold

ω sω s−2 ω s− ω s2

R(jω)

ω)R (j*

R(jω)

ω

ωω−

First harmonic Imposter

• Input sinusoid of frequency

ω < ωs/2

• First harmonic of output has

magnitude : sinc(ωT/2)

phase : −ωT/2

• First harmonic is

sinc(ωT/2) sinω(t− T/2)



Harmonic Response of Sample and Hold: An Example
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r(t) 



Harmonic Response of Sample and Hold: An Example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r(t) 

r(t) 



Harmonic Response of Sample and Hold: An Example
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Harmonic Response of Sample and Hold: An Example
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r(t) 
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First harmonic 



Higher-Order Hold Functions

• Interpolation using Taylor series

r(t) = r(nT ) + ṙ(nT )(t− nT ) + 1
2 r̈(nT )(t− nT )2 + · · · , nT ≤ t < (n + 1)T

• Zero-order hold: Truncate at first term

r(t) = r(nT ), nT ≤ t ≤ (n + 1)T

• First-order hold: Truncate at first-order term

r(t) = r(nT ) + ṙ(nT )(t− nT ), nT ≤ t ≤ (n + 1)T

– To find ṙ(nT ), extrapolate to (n− 1)T ≤ t ≤ (n + 1)T , put t = (n− 1)T

ṙ(nT ) =
r(nT )− r((n− 1)T )

T



First-Order Hold

nT(n−1)T

Pulse Response

Pulse Response = s̄(t) +
t

T
s̄(t)

−2s̄(t− T )−
2

T
(t− T )s̄(t− T )

+s̄(t− 2T ) +
1

T
(t− 2T )s̄(t− 2T ).

GFOH(s) =
1

s
−

1

s
2e−sT +

1

s
e−2sT +

1

Ts2
(1− 2e−sT + e−2sT )

=
(1 + Ts)

T

(
1− e−sT

s

)2



Analysis of a Sampler and First-Order Hold

r(t)r(t)

T

{r(kT)}
FOH

R(s) = R∗(s)GFOH(s)
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Analysis of a Sample, Process and Hold

e(kT)
H(z)

u(kT)
   ZOH

e(t) u(t)

U(s) = U ∗(s)GZOH(s)

= U(z)|z=esT GZOH(s)

= [H(z)E(z)]|z=esT GZOH(s)

= H∗(s)E∗(s)︸ ︷︷ ︸
convolved impulse trains

GZOH(s)



ZOH Equivalent

u(kT)
ZOH

u(t)
   G(s)

y(t) y(kT)

• Transfer Function possible

• Let u(kT ) = δ(kT ), unit pulse sequence

ū(t) = s̄(t)− s̄(t− τ )

y(t) = w(t)− w(t− τ ), w = unit step response of.G(s)

y(kT ) = w(kT )− w((k − 1)T )

Y (z) = (1− z−1)W (z)

W (z) = Z [L−1(s−1G(s))] = Z(s−1G(s))

Transfer Function = (1− z−1)Z(s−1G(s))︸ ︷︷ ︸
ZOH equivalent

.

Y ∗(s) = Y (z)|z=esT = (1− e−sT )Z(s−1G(s))|z=esTU
∗(s)

Y (s) = G(s)Ū(s) = G(s)GZOH(s)U
∗(s)



A Glossary of Notation

GZOH(s) =
1− e−sT

s

• Given U(s)

Z(U(s)) = Z transform of sampled u(t)

U ∗(s) = Z(U(s))|z=esT

• Given U(z)

U ∗(s) = U(z)|z=esT

• Given G(s)

Gh0
(z)

def
= ZOH equivalent of G(s) = (1− z−1)Z(s−1G(s))



An Example

H(z) ZOH
u(kT) u(t)e(t) y(t) y(kT)

G(s)

• No transfer function possible between y(t) and e(t)

• Can find Y (s)

• Transfer function possible between y(kT ) and e(kT )



An Example

H(z) ZOH
u(kT) u(t)e(t) y(t) y(kT)

G(s)

• No transfer function possible between y(t) and e(t)

• Can find Y (s)

• Transfer function possible between y(kT ) and e(kT )

Y (s) = G(s)U(s) = G(s)GZOH(s)U
∗(s) = G(s)GZOH(s)H

∗(s)E∗(s)



An Example

H(z) ZOH
u(kT) u(t)e(t) y(t) y(kT)

G(s)

• No transfer function possible between y(t) and e(t)

• Can find Y (s)

• Transfer function possible between y(kT ) and e(kT )

Y (s) = G(s)U(s) = G(s)GZOH(s)U
∗(s) = G(s)GZOH(s)H

∗(s)E∗(s)

Y (z)

E(z)
= H(z)Gh0

(z) = H(z)(1− z−1)Z(s−1G(s))



Block Diagram Manipulation For Sampled Data System: An Example

h0G   (z)
r(t) r(kT)

u(kT)

C(z)

u(t)
ZOH G(s)

y(kT)

y(t)

u(kT) u(t)

ZOH G(s)C(z)

C(z) ZOH G(s)
y(t)

y(t)

y(kT)

e(t) e(kT)r(t)

r(t) r(kT)

u(kT) u(t)

Y (z)

E(z)
=

C(z)Gh0
(z)

1 + C(z)Gh0
(z)

Y (s) = G(s)GZOH(s)U
∗(s) = G(s)GZOH(s)C

∗(s)(R∗(s)− Y ∗(s))



Another Example

u(t)r(t) e1(t)
G1(s) H(z)

e2(kT)e2(t) u(kT)
ZOH G(s)

y(t)

r1(t)

r1(kT)

r(t)
G1(s) H(z) ZOH G(s) G1(s)

y(t)

y1(kT)

Y1(z)

R1(z)
=

H(z)(GG1)h0
(z)

1 +H(z)(GG1)h0
(z)

, Y ∗1 (s) =

(
Y1(z)

R1(z)

)∣∣∣∣
z=esT

R∗1(s)

Y (s) = G(s)GZOH(s)H
∗(s)[R∗1(s)− Y ∗1 (s)]

R∗1(s) = (GR1)
∗(s) 6= G∗(s)R∗(s)

Discrete-Time Equivalents of Continuous-Time Controllers

• Design controller in continuous time

• Numerically implement a discrete-time equivalent

• Example

H(s) =
1

s + a
=⇒ ẏ + ay = u



=⇒ y(t) =

∫ t

0

[u(τ )− ay(τ )]dτ

=⇒ y(kT ) = y(kT − T ) +

∫ kT

(k−1)T

[u(τ )− ay(τ )]dτ

• Each numerical approximation for the integral gives a discrete-time equivalent



Backward Rectangular Rule

∫ kT

(k−1)T

u(τ )dτ ≈ u(kT )T

y(kT ) = y(kT − T ) +

∫ kT

(k−1)T

[u(τ )− ay(τ )]dτ

y(kT ) = y(kT − T ) + Tu(kT )− aTy(kT )

Y (z)

U(z)
=

T

1− z−1 + aT
=

1(
1−z−1

T

)
+ a

HB(z) = H(s)|s=(1−z−1)/T

s←→
1− z−1

T
, z ←→

1

1− Ts



Stability Regions Under Backward Rule

|z − 1
2| =

1

2

∣∣∣∣
1 + Ts

1− Ts

∣∣∣∣

Re s < 0 =⇒ |z − 1
2| <

1
2

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �
� � �

� � �

� � �

� � �

� � �

� � �

Image of OLHP

Re

Im

0 1



Forward Rectangular Rule

∫ kT

(k−1)T

u(τ )dτ ≈ u(kT − T )T

y(kT ) = y(kT − T ) +

∫ kT

(k−1)T

[u(τ )− ay(τ )]dτ

y(kT ) = y(kT − T ) + Tu(kT − T )− aTy(kT − T )

Y (z)

U(z)
=

T

z − 1 + aT
=

1(
z−1
T

)
+ a

HF(z) = H(s)|s=(z−1)/T

s←→
z − 1

T
, z ←→ 1 + Ts



Stability Regions Under Forward Rule

z = 1 + Ts

Re s < 0 =⇒ Re z < 1
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Trapezoidal Rule

∫ kT

(k−1)T

u(τ )dτ ≈
T

2
[u(kT − T ) + u(kT )]

y(kT ) = y(kT − T ) +

∫ kT

(k−1)T

[u(τ )− ay(τ )]dτ

y(kT ) = y(kT − T ) +
T

2
[u(kT − T ) + u(kT )]−

aT

2
[y(kT − T ) + y(kT )]

Y (z)

U(z)
=

1(
2
T

1−z−1

1+z−1

)
+ a

HT(z) = H(s)|
s= 2

T
1−z−1

1+z−1

: Tustin′s Rule

s←→
2

T

1− z−1

1 + z−1
, z ←→

1 + Ts/2

1− Ts/2



Stability Regions Under Tustin’s Rule

z =
1 + Ts/2

1− Ts/2

Re s < 0 =⇒ |z| < 1
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Discrete-Time Equivalent by Impulse Invariance

• Find Ĥ(z) such that pulse response of Ĥ(z) is the sampled sequence of the impulse response

of H(s)

H(z)^

H(s)

SAME

Ĥ(z) = Z(H(s))



Discrete-Time Equivalence by Step Invariance

• Find Ĥ(z) such that step response of Ĥ(z) is the sampled sequence of the step response of

H(s)

H(z)^

H(s)

SAME

Ĥ(z) = (1− z−1)Z

(
H(s)

s

)
= Hh0

(z)



Equivalence at a Frequency

• When will the steady state response of Ĥ(z) to {cos kωT} equal the sampled sequence of

the steady state response of H(s) to cosωt?

H(z)^

H(s)

SAME

• If and only if

H(ω) = Ĥ(eωT )



Tustin’s Rule and Equivalence at a Frequency

H(s) =
a

s + a
, HT(z) =

a
2
T
z−1
z+1 + a

H(a) =
1

1 + 
, HT(e

aT ) =
1

1 +  2
aT tan aT

2

• The discrete equivalent does not “match” the original at the corner frequency

• Tustin’s rule causes frequency distortion

• Distortion is reduced if aT/2 << 1



Tustin’s Rule with Pre-warping

• Pre-warp the continuous system such that on applying Tustin’s rule, matching is obtained at

the selected frequency

• Substitute

s = b
z − 1

z + 1

– Recover Tustin’s rule if b = 2/T

– Same as applying Tustin’s rule to the “pre-warped” transfer function

Hpre−warped(s) = H(bTs/2)

• Choose b to get matching at the desired frequency



Pole-Zero Mapping Equivalent

• Map all poles of H(s) according to z = esT

1

s + a
7→

1

1− e−aTz−1

• Map all finite zeros of H(s) by z = esT

(s + a) 7→ 1− e−aTz−1

• Map zeros at ∞ to zeros at −1
1

s
7→ 1 + z−1

• To get a strictly causal system, map one s−1 factor to z−1

• Choose gain factor to get matching at a specified frequency

H(ω) = Hzp(e
ωT )

– Usually ω = 0, that is, matching at DC



Root Locus

ZOH G(s)
y(t)r(t)

Gh0(s)
y(kT)

H(z)

H(z)

K*

K*

• Root locus = locus of roots of 1 +KH(z)Gh0(z) = 0 as K varies fro 0 to ∞

• Plotted in the same way as for continuous-time systems



Mapping Theorem

• Based on Mapping Theorem

– z traces a simple closed curve C clockwise in the complex plane

– The no. clockwise of encirclements of the origin by F (z) equals

no. of zeros of F enclosed by C − no of poles of F enclosed by C

• Application to closed-loop stability analysis

– Choose F (z) = 1 +G(z)H(z) = closed-loop characteristic polynomial

– Choose C to enclose all possible unstable poles



Nyquist Contour

• Choose C to enclose the exterior of the open unit disc

ω=ωs /2

Re

Im

OUD

• All encirclements are contributed by portion along the unit circle



Nyquist Criterion

+ G(z)

H(z)

Loop transfer function L(z) = G(z)H(z)

Nyquist Criterion:

Z = N + P

P = no. of unstable open-loop poles (unstable poles of L(z))

Z = no. of closed-loop unstable poles (unstable roots of 1 + L(z) = 0)

N = no. of clockwise encirclements of −1 by L(eωT ), ω ∈ [0, ωs]



Gain and Phase Margins

1/GM

PM

−1



Frequency Response Analysis with W-Transform

• Frequency response in terms of Z-transform is

– Periodic in ω

– Difficult to draw by hand (s-domain rules do not apply)

• Use W-transform to map OUD into OLHP using

w =
2

T

(z − 1)

(z + 1)
, z =

1 + wT/2

1− wT/2

Ĝ(w) = G(z)|
z=

1+wT/2
1−wT/2

• Bode plots of Ĝ(w) can be drawn using s-domain rules

• Nyquist criterion can be applied to Ĝ(w) as in s-domain

• Controller Ĥ designed for Ĝ can be transformed back and applied to G

• Ĝ and G yield the same gain and phase margins



Closed-Loop Asymptotic Tracking of Reference Inputs

G(z)H(z)+r(k) e(k) y(k)

E(z)

R(z)
=

1

1 +G(z)H(z)

• Asymptotic Tracking: Want

lim
k→∞

e(k) = 0

– limk→∞ e(k) exists if and only if all poles of E(z) lie in the OUD except possibly for one

pole at z = 1

– limk→∞ e(k), if it exists, equals limz→1(z − 1)E(z)



Tracking of Step Inputs

r(k) = 1, R(z) =
z

z − 1

E(z) =
z

(z − 1)

1

[1 +G(z)H(z)]

• For limk→∞ e(k) to exist, all closed-loop poles must lie in the OUD

lim
k→∞

e(k) = lim
z→1

z

1 +G(z)H(z)
=

1

1 + limz→1G(z)H(z)

• For limk→∞ e(k) = 0, the (open) loop transfer function must have a pole at z = 1

• No. of poles of G(z)H(z) at z = 1 is the type of the open-loop system

• Define position error constant

Kp = lim
z→1

G(z)H(z)

• For perfect tracking, need Kp =∞

For perfectly tracking step inputs, need closed-loop stability + type 1 open-loop system



Tracking of Ramp Inputs

r(k) = kT, R(z) =
Tz

(z − 1)2

E(z) =
Tz

(z − 1)2
1

[1 +G(z)H(z)]
=

Tz

(z − 1)[z − 1 + (z − 1)G(z)H(z)]

• For limk→∞ e(k) to exist, all closed-loop poles must lie in the OUD, and open-loop system

must be of type 1

lim
k→∞

e(k) = lim
z→1

Tz

(z − 1)[1 +G(z)H(z)]
=

T

limz→1(z − 1)G(z)H(z)

• For limk→∞ e(k) = 0, the (open) loop transfer function must have at least two poles at

z = 1

• Define velocity error constant

Kv = lim
z→1

(z − 1)G(z)H(z)/T

• For perfect tracking, need Kv =∞

For perfectly tracking ramp inputs, need closed-loop stability + type 2 open-loop system



Tracking of Sinusoidal Inputs

r(k) = A sin(kωT ), R(z) has poles at e±ωT

• For e(k) to converge to a steady state behavior, closed-loop must be (BIBO) stable

• Steady-state error amplitude

=
1

|1 +G(eωT )H(eωT )|

• For limk→∞ e(k) = 0, G(z)H(z) must have at least one pole at z = eωT

For perfectly tracking {A sin kωT}, need closed-loop stability + open-loop poles at z = e±ωT



Internal Model Principle

• Requirements for closed-loop tracking

Input to be tracked Requirements for tracking

Input Input poles Open-loop poles Closed-loop poles

Step z = 1 z = 1 OUD

Ramp z = 1, 1 z = 1, 1 OUD

Sinusoidal z = e±ωT z = e±ωT OUD

• Internal Model Principle: A closed-loop system will track an input perfectly asymptotically if

and only if

– The closed-loop system is stable and

– The open-loop system contains a “model” of the input



Continuous-Time LTI State-Space Systems

ẋ = Ax +Bu, state dynamics

y = Cx +Du, measurement equation

x = vector of state/internal variables

y = vector of output measurements

u = vector of inputs

• Linear: A, B, C, D independent of x, y

• Time Invariant: A, B, C, D independent of time

• To find output, need

– Initial state vector and input



Matrix Exponential

• Given a square matrix A, define

eAt
def
= I + At +

1

2!
A2t2 +

1

3!
A3t3 + · · ·

• Well defined (series converges sufficiently nicely)

• Satisfies

eA0 = I
d

dt
eAt = AeAt = eAtA

eA(t+τ) = eAteAτ

(eAt)−1 = e−At

• Note: (eAt)ij 6= eAijt



Examples

• ÿ + ω2
ny = 1

mu

d

dt


 y

ẏ


 =


 0 1

−ω2
n 0




︸ ︷︷ ︸
A


 y

ẏ


 +




1
k

0




︸ ︷︷ ︸
B

u

eAt =


 cosωnt

1
ωn

sinωnt

−ωn sinωnt cosωnt




• ÿ = u

A =


 0 1

0 0


 , eAt =


 1 t

0 1






Solution of the State Equation

• State response

x(t) = eAtx(0)︸ ︷︷ ︸
Natural Response

+

∫ t

0

eA(t−τ)Bu(τ )dτ
︸ ︷︷ ︸

Forced Response

eAt = state transition matrix

• Output response

y(t) = CeAtx(0)︸ ︷︷ ︸
Natural Response

+

∫ t

0

CeA(t−τ)Bu(τ )dτ +Du(t)
︸ ︷︷ ︸

Forced Response

• Impulse response

g(t) = CeAtB +Dδ(t)

• Transfer matrix

C(sI − A)−1B +D



ZOH Equivalent of a State Space System

y(t) y(kT)u(kT)
ZOH

u(t)    State Space 
System

u(t) = u(k), t ∈ [kT, kT + T )

x(k + 1) = eATx(k) +

∫ kT+T

kT

eA(kT+T−τ)Bu(k)dτ

= eATx(k) +

[∫ T

0

eA(T−σ)Bdσ

]
u(k), σ = τ − kT

• Discrete-time state space model of the ZOH equivalent

x(k + 1) = Φx(k) + Γu(k)

y(k) = Hx(k) + Ju(k)

Φ = eAT , Γ =

[∫ T

0

eA(T−σ)Bdσ

]
, H = C, J = D



State Space Realizations

G(z) =
b0 + b1z

−1 · · · + bnz
−n

1 + a1z−1 + · · · + anz−n

• Let Ŷ (z) = U(z)[1 + a1z
−1 + · · ·+ anz

−n]−1, so that Y (z) = [b0 + b1z
−1 · · ·+ bnz

−n]Ŷ (z)

ŷ(k) + a1ŷ(k − 1) + · · · + anŷ(k − n) = u(k)

• Choose

x(k) =




ŷ(k − n)

ŷ(k − n + 1)
...

ŷ(k − 1)



, x(k+1) =




ŷ(k − n + 1)

ŷ(k − n + 2)
...

ŷ(k)




=




x2(k)

x3(k)
...

−anx1(k)− · · · − a1xn(k) + u(k)




y(k) = b0ŷ(k) + b1ŷ(k − 1) + · · · + bnŷ(k − n)

= b0ŷ(k) + b1xn(k) + · · · + bnx1(k)

= (bn − b0an)x1(k) + (bn−1 − b0an−1)x2(k) + · · · + (b1 − b0a1)xn(k) + b0u(k)



State Space Realizations (cont’d)

• First companion form

x(k + 1) =




0 1 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...

0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1




︸ ︷︷ ︸
A

x(k) +




0

0
...

0

1




︸ ︷︷ ︸
B

u(k)

y(k) =
[
(bn − b0an) · · · (b1 − b0a1)

]

︸ ︷︷ ︸
C

x(k) + [b0]︸︷︷︸
D

u(k)



Transfer Matrix from State Space Model

• State dynamics equations in Laplace domain

zX(z)− zx(0) = AX(z) +BU(z)

X(z) = z(zI − A)−1x(0)︸ ︷︷ ︸
Natural response

+ (zI − A)−1BU(z)︸ ︷︷ ︸
Forced response

Y (z) = CX(z) +DU(z)

= Cz(zI − A)−1x(0) + [C(zI − A)−1B +D]︸ ︷︷ ︸
Transfer matrix

U(s)

Transfer matrix = C(zI − A)−1B +D

• Poles are eigenvalues of A



Transformations of State Space Models

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

• State transformation x̂ = Sx

x̂(k + 1) = SAS−1︸ ︷︷ ︸
Â

x̂(k) + SB︸︷︷︸
B̂

u(k)

y(k) = CS−1︸ ︷︷ ︸
Ĉ

x̂(k) + D︸︷︷︸
D̂

u(k)

• Input-output relation is unchanged

C(zI − A)−1B +D = Ĉ(zI − Â)−1B̂ + D̂

• Two state-space models are equivalent if they yield the same transfer matrix

• Every input-output system has several equivalent state space representations/realizations



State Evolution in Discrete-Time System

x(k + 1) = Ax(k) +Bu(k)

x(1) = Ax(0) +Bu(0)

x(2) = A2x(0) + ABu(0) +Bu(1)

x(3) = A3x(0) + A2Bu(0) + ABu(1) +Bu(2)

...

x(k) = Akx(0)︸ ︷︷ ︸
natural response

+

k−1∑

l=0

Ak−l−1Bu(l)

︸ ︷︷ ︸
forced response

y(k) = CAkx(0)︸ ︷︷ ︸
natural response

+

k−1∑

l=0

CAk−l−1Bu(l) +Du(k)

︸ ︷︷ ︸
forced response



Impulse Response

• Response to impulse input u(k) = u0δ(k)

y(k) = CAk−1Bu0 +Du0δ(k)

• Impulse response sequence

= {Du0, CBu0, CABu0, . . .}

• Impulse response matrix

H(k) = D, k = 0

= CAk−1B, k > 0

• General response

y(k) = CAkx(0) + (H ∗ u)(k)

• Compare with forced response in z-domain

Y (z) = [C(zI − A)−1B +D]U(z)

=⇒ Z(H) = C(zI − A)−1B +D = D + z−1CB + z−2CAB + · · ·



Reachable Sets

• Which states can be reached from a given initial condition by using all possible inputs?

• Reachable set from x0 at step k

R(k, x0) = {states reachable from x0 in k steps}

=

{
Akx0 +

k−1∑

l=0

Ak−l−1Bu(l) : u(0), u(1), . . . , u(k − 1) arbitrary

}

• System is controllable if every state can be reached from every other state in a finite (but

possibly large) number of steps

• System is controllable iff R(k, x0) = Rn for sufficiently large k



Facts on Reachable Sets

Fact 1 : R(k, x0) = R(k, 0) + Akx0

Fact 2 : R(n, 0) = Range C, C = [B AB A2B · · ·An−1B]

• If a ∈ R(n, 0), then

a = Bu(n− 1) + ABu(n− 2) + · · · + An−1Bu(0) = C




u(n− 1)
...

u(0)


 ∈ Range C

• If a ∈ Range C, then

a = Cb = Bb1 + ABb2 + · · · + An−1Bbn ∈ R(n, 0)



Facts on Reachable Sets (cont’d)

Fact 3 : R(k, 0) = R(n, 0), k ≥ n

• Clearly R(n, 0) ⊆ R(k, 0)

• For k > n, an element of R(k, 0) is of the form

Bu(k − 1) + · · · + An−1Bu(k − n) + AnBu(k − n + 1) + · · · + Ak−1Bu(0)

• By Cayley-Hamilton theorem, powers of A higher than n− 1 can be written as combinations

of powers of A upto n− 1

• Elements of R(k, 0) are contained in R(n, 0)

System is controllable iff rank C = n



Unobservable Sets

• Can we guess the initial state by observing only the output?

y1(k) = CAkx1 + (H ∗ u)(k)

y2(k) = CAkx2 + (H ∗ u)(k)

• Can distinguish x1 from x2 iff CA
kx1 6= CAkx2 for some k

• Unobservable set from x0 at step k

U(k, x0) = {states that yield the same output as x0 upto step k − 1}

= {x : CAix = CAix0, i = 0, 1, · · · , k − 1}

• System is observable if every state can be distinguished from every other state in a finite

(but possibly large) number of steps

• System is observable iff U(k, x0) = {x0} for sufficiently large k



Facts on Unobservable Sets

Fact 1 : U(k, x0) = U(k, 0) + x0

Fact 2 : U(k, 0) = U(n, 0), k ≥ n

Fact 3 : U(n, 0) = kernel O, O =




C

CA
...

CAn−1




System is observable iff rank O = n



Hautus Test for Controllability

• Eigenvalue λ ∈ C of A is controllable if

rank [λI − A B] = n

• Fact: System is controllable iff every eigenvalue of A is controllable

• If λ is not controllable, then there exists x ∈ Cn such that

x∗A = λx∗, x∗B = 0 =⇒ x∗AiB = 0 =⇒ x∗C = 0 =⇒ rank C < n

• Controllability remains invariant under state transformation

• Uncontrollable eigenvalues are unaffected by control

– If λ is an uncontrollable eigenvalue, and the feedback u = Kx is used, then λ also

appears as a closed-loop eigenvalue



Hautus Test for Observability

• Eigenvalue λ ∈ C of A is unobservable if

rank


 λI − A

C


 = n

• Fact: System is observable iff every eigenvalue of A is observable

• If λ is not observable, then there exists x ∈ Cn such that

Ax = λx,Cx = 0 =⇒ CAix = 0 =⇒ Ox = 0 =⇒ rank O < n

• Observability remains unchanged under state transformations

• Unobservable eigenvalues cannot be detected through the output



A Two-Dimensional Example

A =


 λ1 0

0 λ2


 , B =


 b1

b2




C =
[
c1 c2

]

u y

b

b

1 c

c
2

λ1

2

1 +

+

−1

λ2
−1

(z−     )

(z−     )

• By the Hautus test, need b1 6= 0 6= b2 for controllability and c1 6= 0 6= c2 for observability



Kalman Decomposition Theorem

• Fact: Every state space system can be transformed into

x(k + 1) =




Aco A12 A13

0 Aco A23

0 0 Ac







xco(k)

xco(k)

xc(k)


 +




Bco

Bco

0


 u(k)

y(k) =
[

0 Cco Cc

]
x(k) + Du(k)

G(s) = C(zI − A)1B + D = Cco(zI − Aco)
−1Bco + D

• The controllable and observable part yields a smaller realization

• Eigenvalues that are either unobservable or uncontrollable are not poles



Minimal Realizations

• A minimal realization is one having the least no. of states

– Desirable for implementation

• A minimal realization has as many states as the number of poles

• A realization is minimal iff it is controllable and observable

• All minimal realizations are equivalent



Jordan Form

• Every matrix can be reduced to its Jordan form through a similarity transformation



λ1 1 0 0 0 0 0 0 0

0 λ1 1 0 0 0 0 0 0

0 0 λ1 0 0 0 0 0 0

0 0 0 λ2 1 0 0 0 0

0 0 0 0 λ2 0 0 0 0

0 0 0 0 0 λ2 0 0 0

0 0 0 0 0 0 λ3 0 0

0 0 0 0 0 0 0 λ3 0

0 0 0 0 0 0 0 0 λ4




characteristic polynomial = (z − λ1)
3(z − λ2)

3(z − λ3)
2(z − λ4)

• λ1 and λ4 have 1 eigenvector each, λ2 and λ3 have 2 eigenvectors each

• λ3 and λ4 are semisimple, λ4 is simple



Internal Stability

• Internal stability refers to the natural response of state (internal) variables

• A state space system is (internally)

– Lyapunov stable if every initial condition response is bounded

– Asymptotically stable if every initial condition response decays to zero

– Unstable if it is not Lyapunov stable

x(k) = Akx(0) = TJkT−1x(0), J = Jordan form

• Stability depends on the elements of J k



Powers of Jordan Blocks

J =


 λ 0

0 λ


 =⇒ Jk =


 λk 0

0 λk




J =


 λ 1

0 λ


 =⇒ Jk =


 λk kλk−1

0 λk




J =




λ 1 0

0 λ 1

0 0 λ


 =⇒ Jk =




λk kλk−1 k(k−1)
2 λk−2

0 λk kλk−1

0 0 λk




• System is Lyapunov stable iff

– All eigenvalues ∈ CUD and

– All eigenvalues of unit magnitude are semisimple

• System is asymptotically stable iff all eigenvalues ∈ OUD



BIBO Stability and Internal Stability

• System is BIBO stable iff every input vector with bounded components gives

an output vector with bounded components

• System is BIBO stable if and only if every pole ∈ OUD

(internal) asymptotic stability =⇒ BIBO stability

• Converse does not hold in general

• Fact: A controllable, observable, BIBO stable system is asymptotically stable

• Fact: A system is BIBO stable iff every minimal realization is asymptotically

stable



Positive-Definite Matrices

• P ∈ Rn×n, symmetric, is positive-definite (P > 0) if xTPx > 0 for every x ∈ Cn, x 6= 0

• A symmetric positive-definite matrix has real eigenvalues that are positive

• Every symmetric positive-definite matrix gives rise to the quadratic function VP (x) = xTPx

• If P > 0, then the level sets of VP are hyper-ellipsoids, eg. P =


 1 1

2

1
2 1




x
1
 

x
2
 

Level curves of V
P



Lyapunov Function

• How does a given quadratic function change along the natural state response?

x(k + 1) = Ax(k)

VP (x(k)) = xT(k)Px(k)

VP (x(k + 1)) = xT(k + 1)Px(k + 1) = xT(k)ATPAx(k)

VP (x(k + 1))− VP (x(k)) = xT(k)[ATPA− P ]x(k)

• Idea: If P is positive definite and VP (x(k)) decreases with k, then x(k)→ 0

– Such a VP is called a Lyapunov function

– Want P > 0 and ATPA− P = −Q, where Q > 0



Lyapunov Equation

• Fact: If there exist P > 0 and Q > 0 satisfying the Lyapunov equation below, then system

is asymptotically stable

ATPA− P = −Q

• Fact: System is asymptotically stable iff for every Q > 0, there exists a positive-definite

solution P to the Lyapunov equation

– For an asymptotically stable system, the solution P is unique

• To prove stability or instability, pick Q > 0 (eg. Q = I), solve for P and check sign

definiteness of P

• OR check the feasibility of the linear matrix inequalities (LMIs)

−ATPA + P > 0

P > 0

– Can be done using efficient numerical algorithms



Full-State Feedback

x(k + 1) = Ax(k) +Bu(k) Open− loop system

u(k) = −Kx(k) + r(k) Full− state feedback

x(k + 1) = (A−BK)x(k) +Br(k) Closed− loop system

• Pole-placement problem Can we design a gain matrix K such that A − BK has desired

eigenvalues?

• Fact: Every uncontrollable open-loop eigenvalue is a closed-loop eigenvalue

• Assume

– Complete controllability

– Single input



Pole Placement using Companion Form

• Idea: Use state transformation x̂ = Sx such that

Â = SAS−1 =




0 1 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...

0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1




, B̂ = SB =




0

0
...

0

1




︸ ︷︷ ︸
controller canonical form

• Use feedback u = −K̂x̂ = −[k̂n k̂n−1 · · · k̂1]x̂

Â− B̂K̂ =




0 1 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...

0 0 0 · · · 1

−an − k̂n −an−1 − k̂n−1 −an−2 − k̂n−2 · · · −a1 − k̂1






Pole Placement using Companion Form (cont’d)

• Characteristic polynomial of A and Â

zn + a1z
n−1 + · · · + an

• Characteristic polynomial of Â− B̂K̂

zn + (a1 + k̂1)z
n−1 + · · · + (an + k̂n)

• Desired characteristic polynomial

zn + α1z
n−1 + · · · + αn

• Choose K̂ = [αn − an αn−1 − an−1 · · · α1 − a1]

• Feedback in terms of original states

u = −K̂x̂ = − K̂S︸︷︷︸
K

x

• Ackermann’s Formula:

K = eT
nC

−1[An + α1A
n−1 + · · · + αnI ]

eT
n = [0 0 · · · 1]



Proof of Ackermann’s Formula

• Define s1 = eT
nC

−1, and consider

S =




s1

s1A
...

s1A
n−1




• Claim: SA = ÂS

• Claim: S is invertible

• Claim: SB = B̂

– S yields the transformation to the controller canonical form

• K = K̂S yields Ackermann’s formula

• Multi-input case: redundant degrees of freedom in choosing K

– Can be used to assign eigenstructure



Estimation/Observation

• Online reconstruction of state vector from the output

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
︸ ︷︷ ︸

Observable single−output system

, x̂(k + 1) = Ax̂(k) +Bu(k) +

output injection︷ ︸︸ ︷
L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)
︸ ︷︷ ︸

Luenberger observer

b
s
e
r
v
e
r

O

x

y

+

A, B C

CA, B

L

y^ ^

u

x

• Error dynamics

e(k + 1) = (A− LC)e(k), e = x− x̂



Observer Design by Pole Placement

• Can we choose observer gain matrix L such that A− LC is Schur?

• Yes, if the system is observable

– (A,C) is observable iff (AT, CT) is controllable

– There exists a gain matrix K such that AT − CTK has desired eigenvalues

K = eT
n [C

T CTAT · · · CTA(n−1)T]−1[AnT + α1A
(n−1)T + · · · + αnI ]

– Letting L = KT, A− LC has desired eigenvalues

L = [An + α1A
n−1 + · · · + αnI ]O

−1en



Dynamic Output-Feedback Compensation

• Idea: In a full-state feedback controller, use state estimate generated by an observer in place

of the actual state

A, B C

x̂

+

A, B C

L

ŷ

y
x

K

ur
+

Dynamic output−feedback controller



Seperation Principle

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k))

u(k) = −Kx̂(k) + r(k)


 x(k + 1)

x̂(k + 1)


 =


 A −BK

LC A− LC −BK




 x(k)

x̂(k)


 +


 B

B


 r(k)

︸ ︷︷ ︸
Closed−loop system

• Choose state vector as [xT eT]T, e = x− x̂

 x(k + 1)

e(k + 1)


 =


 A−BK BK

0 A− LC




 x(k)

e(k)


 +


 B

0


 r(k)

• Seperation Principle: Output-feedback controller can be obtained by combining an indepen-

dently designed

– Regulator that uses full state feedback with

– An observer


