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Typical Control Objectives

e Uncontrolled system (plant) may not behave satisfactorily

= Design a control system that yields satisfactory behavior for the controlled system

e Typical properties desired of a controlled system

— Stability

* Input-output stability: Bounded inputs should give bounded outputs

x Internal stability: All internal variables remain bounded in the absence of inputs
— Tracking: (Output — Input)— 0 as t — o

* Regulation: OQutput — 0 ast — o0

— Disturbance/Noise Rejection: Satisfactory performance in the presence of plant

disturbances and measurement noise

— Robustness: Satisfactory performance inspite of unmodelled dynamics and parameter

uncertainty/change



Review of Continuous-Time Systems

e All signals are analog signals
e A linear, time invariant, single-input-single-output (SISO) system is typically described by

agy™ + ary" V4 -+ agyy = boul™ + b b

e Solution = initial condition response + input response

e Input response = ux impulse response (convolution)

e Transfer function = L(impulse response)

o L(y) =T.F. x L(u) for zero initial conditions

e Transient response decided by poles and zero; poles decide stability

e Frequency response analysis: Harmonic Analysis, Bode, Nyquist



An Overview of Control Activities

e ANALYSIS:

— Relate system theoretic properties to system behaviour.

Eg. Poles and stability

— Need analysis tools, eg. Routh-Hurwitz test
e CONTROLLER DESIGN:

— Translate specs to system properties and design a controller (control law) that assigns
these properties to the controlled system

Eg. Pole placement controller

— Need design tools, eg. pole placement technique
o IMPLEMENTATION:

— Sensors, actuators, filters, processors
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Discrete-Time Signals

e Sequence {u(k)}72,, of real numbers
e A real-valued function k — u(k) of integers

e Right-sided sequence (signal) u(0), u(1),u(2), ...

e Two-sided sequence (signal) ..., u(—2), u(—1),u(0),u(1),u(2),...



Operators on Discrete-Time Signals

e |dentity operator 1

e Shift or unit delay operator &

(Su)(k) = uk—1), k>1
=0 k<1

e Unit advance operator S~!
(St u)(k) =u(k +1), k>0

e Difference operator

Au(k) =u(k) —u(k — 1) = (u — Su)(k)
A=1-§ S§=1-A



Some Basic Discrete-Time Signals

e Unit pulse/impulse signal

ok) =1, k=0,
=0, k>0,
e Unit step signal
s(k)=1, k>0
As =

e Harmonic signals

u(k) = sin(k0)

e Exponential signals
u(k) ="

e Harmonic signals with exponential amplitudes

u(k) = r"sin(kf) = Re (7“679)/ZC



Linear Difference Equations

y(k)+ay(k—1)+ ...+ ay(k —n) = bou(k) + bu(k — 1) +

e In terms of the shift operator

y(k) + a1Sy(k) + ... + a,S"y(k) = bou(k) + b1Su(k) +

e Auto-Regressive Moving Averages (ARMA) model
e Causal: Output independent of future input
— Strictly causal if output depends only the past inputs
e Shift invariant (time invariant)
— Shifted input Su produces shifted output Sy
e Linear (Superposition + Homogeneity)

e To solve need n initial conditions + input

o+ bpu(k —m)

oo+ 0 S u(k)



An Example

e To numerically compute

e At instants 0,7.,27,... KT, ...,

y(kT)=y((k—1)T) + / u(T)dT

(k—1)T

e Use forward rectangular rule to approximate the integral
y(kT) = y((k = 1)T) + Tu((k — 1)T), y(0) =0
Ay = TSu, y(0

e(t)
u(t)
t




Vector Spaces

e A vector space V is a set

— whose elements can be added in some manner
— whose elements can multiplied by scalars in some manner

— which contains a zero element
For example:

— ) = set of all functions of time

— V = set of all right-sided sequences



Linear Independence

e A linear combination is a finite sum of the form

a1V + ...+ QuU,

e Linear independence — every linear combination involving atleast one nonzero scalar is

nonzero
o {v1,v9,...,v,} CV forms a basis for V if

— v's are linearly independent and

— every vector in ) is a linear combination of v's
e If VV has a basis of n elements for some n, then V is n-dimensional, else infinite-dimensional

e A linear operator is a linear function V +— )



Vector Space of Discrete Signals

e The set of all discrete signals is a vector space with
(Y1 +92)(k) = 1(K) +y2(k), (ay)(k) = ay(k), Zero clement y = 0
® yy,...,1, are linearly dependent iff 4 o, ..., «, such that
aryr (k) + ...+ apyn(k) = 0 VEk
e For \; # )y nonzero real, {\}}, {\5} are linearly independent
e For \ complex, {Re \*} and {Im \*} are . i.
o For A\; # Ay complex, {Re X[y} and {Im A{,} are | i.
e For \; nonzero real and \y complex, A}, {Re A5} and {Im A5} are I. i.
e No finite basis possible

e Linear operators



Homogeneous Linear Difference Equations

y(k)+aylk—1)+...+aylk—n)=0
D(S)y =0
y(=1),9(=2), ..., y(=n)
e /ero initial conditions imply solution is zero

e The set of all solutions is a vector space since

y = 0 is a solution

D(S)(a1y1 + Oézyg) = Ole(S)yl + O[QD(S)yQ

Theorem: The vector space of solutions has dimension n

(an 7é O)

— To prove, need to find a basis consisting of n solutions



A Basis of Solutions

e Idea Solutions «+— sets of initial conditions

— If w; form a basis for all initial conditions, the corresponding solutions form a basis for

all solutions

e Choose n sets of initial conditions as follows

U1 1 0 0 cee 0 w1
Yo 0 1 0 s 0 wo
y| O 0 0 -+ 1 |w,

Claim: y1,...,y, form a basis for all solutions



A Basis of Solutions (cont’d)

® yi,...,Y, are linearly independent

If coyr (k) + -+ apyn(k) =0V k, then k= —i = a; =0

e Every solution is a linear combination of y1,...,y,

Let vy be any solution and consider

y(k) = y(=Dy1(k) + - +y(=i)yi(k) + - - - + y(=n)yn(k)
— 7 is a solution satisfying the same initial conditions as ¥y

— Hence y = ¥ is a linear combination of y1,...,y,



Solution of Linear Difference Equations

e Choose a basis of initial conditions and use corresponding solutions as a basis of solutions

e Try a solution of the form y(k) = \*
(Sy)(k) = N1 = A"ty(k) for k> 1

(S%y) (k) = X2y (k) for k > 2
D(S)y(k) = DN Yy(k) for k > n

e y(k) = M\ is a solution of D(S)y = 0 if \ satisfies
DA™Y =0, that is

l4+a)d '+ 2+, . +a )\ "=0—=

N+ a NP+ a2+, . +a,=0

e \"D(\™1) = characteristic polynomial



Another Basis of Solutions

e Characteristic polynomial /equation — factor as
CA) =A=p)™ (A =p2)™ .. (A= p)™
e The following functions form a basis for the solutions of the LDE

— For p; real,
{pi}, {epi} (R2pr}, o AR )

— For p; = re’’ and p; complex,
{r¥sin(k0)}, {kr¥sin(k0)}, {k*r*sin(k0)},..., {k™ 1r¥sin(k)}
{r¥cos(kO)}, {kr¥cos(kf)}, {k*r*cos(k0)},..., {k™ ¥ cos(kO)}

e Initial conditions determine the constants in the linear combination



Stability of Initial Condition Response

e Real characteristic root p
{p*} decays iff [p| < 1 {kip*} decays iff [p| < 1
bounded if |p| =1
unbounded if |p| > 1 unbounded if |p| > 1

e Complex characteristic root p
{Re p*}, {Im p*} decay iff |p| < 1 {Re Kp*}, {Im k7p*} decay iff [p| < 1
bounded if |p| =1
unbounded if |p| > 1 unbounded if |p| > 1

e Theorem

— All solutions are bounded iff all characteristic roots lie in the closed unit disc { : |A| < 1}

and all roots with unit magnitude are simple (unrepeated)

— All solutions decay iff all characteristic roots lie in the open unit disc {\ : |A| < 1}



Convolution

e Convolution of two right sided sequences u and ¢ is the sequence

k
(wxg)(k) = > ull)glk—1)
[=0

= u(0)g(k) +u(l)g(k —1) + -+ u(k = 1)g(1) + u(k)g(0)

Uxg=g*xu

(aquy + o) * g = aq(ug * g) + ao(us * g)

— For a fixed g, u * g is a linear operator on

Suxg)=uxSg=gxSu

D(S)(uxg)=uxD(S)g = g=* D(S)u

Aluxg)=uxAg=g=*Au

uxd=u

— (u* 8)(k) = u(0)5(k) + ... + ulk — 1)5(1) + u(k)5(0) = u(k)



Pulse Response and Input Response

e Pulse response g = zero initial condition response to a unit pulse

e Fact: The response y of a linear time invariant system to an arbitrary input u under zero
initial conditions is given by
y=u*xg
Proof: To show D(S)y = N(S)u

D(S)y = D(S)(ux*g)

e Step response = s * ¢



Bounded-Input-Bounded-Output (BIBO) Stability

e A system is BIBO stable if the output to every bounded input is bounded
e A sequence y is said to be bounded if there exists M such that |y(k)| < M, V k

e For a bounded sequence y, define

ly|| = sup y(k) = least upper bound of {y(k)}
k>0

e Fact:
A system is BIBO stable if and only if there exists NV such that for every nonzero input wu,
the corresponding output ¥ satisfies

Iyl _

]

e Theorem:

A system is BIBO stable iff the input response g is absolutely summable, that is,

> lg(k)| < oo
k=0



BIBO Stability and Pulse Response

e Suppose the pulse response is absolutely summable

y(k)] = [(uxg)( SZ Dllg(k

< lul Z lg(k = D] < [|u] Z g(D)] < o0
1=0 =0

e Suppose the pulse response is not absolutely summable

ur(l) = sign gk —1) | <k,
= 0, [ >k

]| = 1

lyell = yi(k) = (ur x g)(k) = |g(k)

Hka — 0



Output Zeroing Inputs

D(S)y = N(S)u
y(k)+aylk —1)+ -+ ayyk —n) =bu(k —i) + -+ bpu(k —m)
e An output zeroing input — produces no response under under zero initial conditions, that is,

satisfies u x g = 0
e Must satisfy the difference equation
N(S)u =0, that is, bju(k — i) + - - - bpu(k —m) =0

e Set of all null inputs is a vector space

e A basis can be found from the characteristic zeros, solutions of

BN A b AT by, =0
— Zero z; of multiplicity m,; contributes
{zi AR} (R

e Dimension of this vector space is m — ¢



Impulse Response and Initial Condition Responses

e Let d be the impulse response of the system D(S)y = u, thatis, D(S)d = ¢

e ( is an initial condition response of the system D(S)d = N(S)u since (D(S)d)(k) =0, k >
0

e d is a linear combination of the initial condition responses corresponding to the characteristic

roots

d= a1y + agys + -+ + apyy
e Impulse response g of D(S)y = N(S)uis g = N(S)d
g =oaN(S)y1 + N (S)y2 + - - - + anN(S)yn
e Characteristic root p; affects ¢ iff it is not a characteristic zero
g(k) = a1 N(S)py + aaN(S)kpi + azk?pi + asN(S)ps

— ¢ decays iff roots |p| > 1 are also a zeros of equal or greater multiplicity



Roots, Zeros and BIBO Stability
SO Y JkpM| < o0
k=0 k=0
)

p| <1

0

p*, kp® decay

e Since g involves p*, kp¥, g is absolutely summable iff g decays
e System is BIBO stable iff pulse response decays

e Theorem:
System is BIBO stable iff every characteristic root with |p| > 1 is also a characteristic zero

of equal or greater multiplicity



Z Transform

e The Z transform of a sequence is a function of the complex

variable z
e Given a sequence y, its right sided Z transform is

Z(y): Y(z) = y(0)+ y(;) IO O

= > ylk)z*
k=0

e Z(y) is the Laurent expansion of the complex function Y

— Z(y) agrees with Y only in the region of convergence of the Laurent series
1

— Recall that if |x| < 1, then 1—|—a:+a:'2—|—---:1
—x

—If |z71 < 1, then
1 z
l+z ' 4272427+ = =
: N : l—21t 2z-1

e Z transform is linear: Z(a1y; + aoys) = a1 Z(y1) + a2 Z(y2)




Z Transforms of Some Common Sequences

e Unit pulse ¢
Z(6) =1

e Unit step s
S)=1+2z"+27+... = = 2| > 1

e Exponential sequence {p*}

1 z

1+pz 4 pe 24 = —
1 —pz Z—0p

e Harmonic signal {sin(k6)}
Zsind

22 —2zcosf+ 1’

2| > 1

e Exponentially modulated harmonic signals {r*sin(k6)}

rzsin @

>
22 — Orzcos@ + r?’ 2>



Properties of the Z Transform

e Delay
Z(Su) = u(—1) + 2 'U(z)
Z(S2) = Su(—1) + 2 1 Z(Su) = u(—2) + 2 u(—1) + 22U (2)
Z(8"u) = u(—n)+z u(-n+ 1)+ -+ 2" (1) + 27"U(2)
Z(D(S)u) = D(z"HU(2)
e Advance

Z(S8 ) = 2U(2) — 2u(0), Z(S%u) = 2°U(2) — 2°u(0) — zu(1)
Z(8 ") = 2"U(2) — 2"u(0) — 2" tu(l) - — zu(n — 1)

e Difference

e Convolution



Properties of the Z Transform (Contd.)

e Scaling in the complex plane
Z({r*u(k)}) = U(z/r)

e Complex differentiation

Z({ku(k)}) =~ ()

e Initial value

u(0) = lim U(z2)

Z— 00
e Final value theorem

lim u(k) = lim(z — 1)U(2)

k—o00 z—1

— provided the limit on the left exists



Transfer Functions

e The transfer function G of the system D(S)y = N(S)u is the Z transform of its pulse

response ¢

y = (g*u)
Y(2) = G(2)U(2)
Y(z)
G —
(2) 70
transfer function = Z(gutput)
Z(lnput) zero initial conditions

e To calculate the transfer function of D(S)y = N(S)u, take the Z transform on both sides

Z(D(S)y) = Z(N(S)u)

Y(z) NG
U(z) ~ D)

G(z) =




Transfer Functions of Common Operators

e Unit Delay: v = Su
Y(z) S
Ul(z)

Pulse Response = Z7'(271) = {0,1,0,0,...}

Y(2) = Z(Su) = u(=1)+ 2z 'U(2), |
e Unit advance: y = S lu
Y(z) =2U0(2) —u(0), Y(2)/U(z) =z
— Non causal. y(k) = u(k +1)

e Difference operator: y(k) = u(k) — u(k — 1)

DN =1, NN =1-\ Tf. =
Impulse Response = {1, —1,0,0,...}

— Causal but not strictly causal



Inverse Z Transform

e Laurent expansion
— Perform long division for rational Y (z)
e Partial fraction expansion followed by look-up table

e Convolution property

Y(z) = Y1(2)Ya(2)
— Y=Y *Y2
e Solve numerically by forming a linear difference equation

N(z™1)

R TE

—> y = pulse response of D(S)y = N(S)u



Partial Fractions

NG N(Y
Y = 5 T T pe U e

contributes to the expansion

e Unrepeated factor 1 — pz~!

A
1 —pzt
e Repeated factor (1 — pz~1)" contributes
Am 4 Am—l 4 4 Al
(I—=pz=t)m (1 —pzmtym™! (1—pz7)

e Unrepeated quadratic factor 1 — 2rz~!cos8 + 22 contributes
A1+ B
1 —2rz=lcos + 272

e Repeated quadratic (1 — 2rz~!cos# + 272)™ factor contributes

Azt + B, P Az + B
(1—=2rz=tcosf+ z=2)m 1 —2rz=1lcosf + 22

e Expand in terms of 27! (not z) in the usual fashion

e Inverse transform each term in the expansion using tables



The s — z Correspondence

e y(t) =e"": Y(s) hasa poleat s =0c
— y(kT) = 7" = (e?1)* = 1*: Y(2) has a pole at z = r = 7%
o y(t) = e”'sinwt: Y(s) has a pole at s = 0 + 1w

— y(kT) = e“* sinwkT = (e?T)*sin k(wT) = r¥sin kB: Y () has poles at z = re*? =

el gl 6(U:|:zw)T

e Suggests the correspondence z = e*! for mapping poles of a s-domain signal to the poles of

its sampled sequence in z-domain
e Where should z poles lie to get good transient behaviour ((, w,)?

— Locate s poles using s domain experience for desired (, w;,

— Map s poles to z poles using z = e*!



Jury’s Test for Stability

1

apz" +a12" "+ +a,12+a,=0, ag >0

— is said to be Hurwitz if all roots lie in the OLHP, Schur if all roots lie in the OUD

n n—1 n—2 .. 2 0

z z z z z z
Qo aj az -+ Gp—2 Ap—-1 0ap
an Qp-1 Qp-2 - a2 aj Qo
bo b1 by o byo by
bn—1 by by—3 --- b1 by
Co 1 Ca - Cp-2
Cn—2 Cpn-3 Cp—yg -+ C
bk:i 1o fn=k , k=0,1,...,n—1, ck:i % b1k ,k=0,1,...,n—2
ao Ap Qg bo n—1 bk

e Stableif ag >0, bg > 0, ¢y > 0, ...



Stability through s — z Transformation

C1+sT2 0 2(2—1)

T o5t T T(r)
OLHP «— open unit disc

imaginary axis «— unit circle

e Given a polynomial p(z),

1+ sT/2 n(s)
p(z) =p (—1 — ST/Q) =)

zeros of p(z) «— zeros of n(s)
e p is Schur iff n is Hurwitz

e Apply Routh-Hurwitz test to n(s)



BIBO Stability of Transfer Functions

e A system given by a transfer function GG(z) is BIBO stable

— if and only if the impulse response ¢ is absolutely summable
— if and only if the impulse response g decays

— if and only if all poles (after cancellation) of G(z) lie in the interior of the unit disc, the
open unit disc (OUD)
{z:]z| < 1}

e We call a transfer function stable if all its poles lie in the OUD



Step Response

Y(2)=G)(1 -2~

e Bounded if (after pole-zero cancellation)

— all poles of G(z) liein {z: |z] <1}

— no repeated poles on the unit circle

—no pole at z =1
e Approaches a limit if

— all poles of G(2) liein {2 : |z| < 1}

Steady state value = kh—{go y(k) = l:rr%(z — 1Y (2) = G(1)

e Decays to zero if

— all poles of G(z) liein {z: |z] <1} and z =1 is a zero, that is, G(1) =0

e For asymptotic tracking of a step input, need stability + G(1) = 1

e For asymptotic rejection of a step disturbance, need stability + G(1) = 0



Harmonic Response of Stable Transfer Functions

u(k) = sin(kwT)

zsinwT 2 lsinwT

22— 2zcoswl +1 (1 —emTz=1)(1 — e=wTz—1)
ay as bl
71 T 1 1
1l —ewiz 1l —e Wiz 1 —pz

a1 = G(2)U(2)(1 — 27 = 2_1]G<GMT) = ire]‘b

=T 2]

Y(2)=G(2)U(z) =

1
s = Q] = —2—7“6_‘7¢
J

ay X as
1 — eijZ—l 1 — e—ijZ—l

Yss (k) = a1 (1) + ag(e™1)" = T re?® (™)

Ya(z) =

Ys(k) = rsin(kwT + @), r = |G(e™1)], ¢ = LG(eT)

e Amplification at w is |G(e’*T)|, phase difference is ZG(e™1)

e Frequency response is periodic in frequency



Digital — Analog Conversion

C.
— odIne response at w and W T Wy

— A/D ~ Computer -~ D/IA ——
T
— AD —
r(t) {r(kT)}
Sampler
— D/IA — — — ZOH ——

Zero—Order Hold

o — ZOH —— >~

y




Analysis of Sample-and-Hold Operation

T .
— ZOH |~ -
r(t) {r(kT)} r(®) -

e Let 5(¢) = unit step function, 5(t — kT') = unit step function delayed by kT

r(t) = r(0)[s(t) =5t =T)| +r(T)[s(t = T) —5(t = 2T)] +

= Y r(kT)[s(t — kT) = 5(t — kT — T)]
k=

O

L(3(t)=s""', LGBt —KT))=ste
[Zr (KT)(e™T) k] 1_6_ ]
s
0 -~ /
Grom(s)
Z(R(s)) £ Z(sampled sequence of 7(t))



Sampler as an Impulse Modulator

e Let §(t) = unit impulse in continuous time

LO1) =1, L6t —kT)) = e

=L (ir T)o(t — kT) > L(r*(t))

e Define 6(t) = 3" 3(t — kT)
k=0

— 07 is an impulse train
r(t) = r(t)or(t)

— r* is a modulated impulse train

biparas oty et

0 1(t) r(t)

— ldeal sampler = impulse modulator



An ldeal ZOH

€_ST

1
Gzou(s) = i
= L[5(t) —5(t—1T)]
= L[“impulse” response of ZOH]

— ZOH —

e NOTE: No transfer function possible for a ZOH



Frequency Domain Analysis of an Impulse Train

e §7(t) is a periodic function = expand in a Fourier series

5T<t): Z Cn€‘727mt/T

n=—oo

T/2
1

Cn = 7 / op(t)e 2T gt

~T/2

| =

— Fourier transform of dp(t)

by

3w 2Ws —Ws 0 W 2Wg 3Ws




Frequency Domain Analysis of a Modulated Impulse Train

R(s) = L(r"(t)) = L{r(t)or(t))

r(t)dr(t)e *dt

r(t) Z eIttt

0 n=—00
Z % i /T(t)e_<s_]w5n>tdt
)

T R(s — jwsn)
e Fourier transform R*(jw) is periodic in w with period wy

e R*(jw) obtained by superimposing scaled copies of R(jw) shifted by multiples of wj



Aliasing

- -
- >
| | | |

—_ ] T~ T ~— | |
| | | |
B i i I L
| -7 T~ _0l_ -7 T=~_|_--" I T
-r B ~< SR ~ -
PR PR S e N PR ~ o R
L | P | N Moo ! ! N
| | PN S | |
I P I P . I I
o e h - S I S
7 7 ~ e \\ ~
- A~ - A -~ AT - I - Sk - -
—y 1 1 1 1 -
- L L L L >

e Contributions at w due to R(jw), R(jw £ njws)

e Frequencies w 4 nwjy aliases of w, show up at w after sampling



An Example of Aliasing

=

0.

[ee]

0.

[e)]

0.

I

0.

N

%

-0.

N

-0.

I

-0.

o]

-0.

[oe]

(RHAR
Jll

0

|
=

y1(t) =sint, yo(t) =sinTt, wg =6, T =7/3

?Jl(kT) = yz(/{T> =sin kT’



Anti-Aliasing

' R(jo)| R(jw)
) W m w0 W "W
3 3 R 3 3 Ry 3
/\ A A A XX
=_Z‘)S s 200 ® =_2@3 W | W 2®S=00
20m < Wq 20 > Wg

Nyquist's/Shannon’s Sampling Theorem: A signal can be recovered from its samples if the

sampling frequency is more than twice the highest frequency in the signal
e To minimise the effect of aliasing, sampling is preceded by a low-pass antialias filter

— Eliminates frequencies above the Nyquist frequency



Signal Reconstruction from Samples

e Possible if signal is band limited and wy, < wy/2

e To recover R(jw) from R*(jw), need a filter Lsuch that

R(jw) = L(jw)R* (jw)

1 1

R (w) = 7 R(w) + > R(w — nyw)
n=—00,n#0
frequenags>ws/2

’LO"‘))‘ =T, we [_WS/27WS/2]7

= 0, elsewhere

7

ZL(jw) = 0 everywhere
L(w)




Impulse Response of an Ideal Low-Pass Filter

e Inverse Fourier transform of L(jw)

1 0

l(t) = — L 2 dw
e
1 ws/2
= — Te™ dw
2m —ws/2
I t/2
sin(wyt/2) _ sinc(wyt /2)
wst /2
E :
E ‘
= ]
-05 | | | | | | | | |
%5 4 -3 —2 -1 0 1 2 3 4 5
t/T

e Note: L is a noncausal filter



Reconstruction Using a Low-Pass Filter

(t) = ()
= /_ r(7)or(T)I(t — T)dT

o
0,9)

— Z r(kT)sinc(ws(t — kT)/2)

k=—00

e RHS is the unique band limited signal that has

— Wy < wg/2

— Same samples as r
e Reconstruction is noncausal — present value depends on future samples

e Cannot be implemented online, can be used for offline reconstruction



Antialias Filtering

A

Antialias ¢




Frequency Domain Analysis of Zero-Order Hold

Gzon(Jw)

sincx

Magnitude : |Gzon(jw)| =
Phase : ZGzon(jw) =

1 — e—ij
Jw
— josin(w7'/2)
(WT'/2)

= Te T 25inc(wT/2)

Sin x

— y L # 07
x
= 17 Xr = O
T'|sinc(wT/2)|
wT’

5 + 7 at every sign change of sinc



Frequency Response of G7op

| sinc(w T/ 2)| sinc(w T/2)

Phase/ 1t

0.5

10

-0.51

w T/ 21

10



Harmonic Response of Sample and Hold

HR(w))
i W | ® i
e e R g
| | : i e Input sinusoid of frequency
~ ; ; . f - 0
E(J 00)‘ e First harmonic of output has
B magnitude : sinc(wT'/2)
A phase : —wT/2
Sl Cobe "
N N o First harmonic is

First harmonic ~ Imposter sinc(wT'/2) sinw(t — T/2)



Harmonic Response of Sample and Hold: An Example
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Harmonic Response of Sample and Hold: An Example
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Harmonic Response of Sample and Hold: An Example
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Higher-Order Hold Functions

e Interpolation using Taylor series

r(t) =r(nT) 4+ r(nT)(t — nT) + (D)t —nT)* + -+, nT <t < (n+1)T
e /ero-order hold: Truncate at first term

r(t)=r(nT), nT <t<(n+1)T

First-order hold: Truncate at first-order term

r(t) =r(nT)+7rnT)(t—nT), nT <t<(n+1)T

— To find 7(nT), extrapolate to (n — )T <t < (n+ 1)T, putt = (n —1)T

r(nT) —r((n—1)T)
T

r(nT) =



First-Order Hold

A

/
=@

A
/ / Pul se Responst
\\\o\o—o

\ (n—i)T

Pulse Response

Gron(s)

nT

s(t) + %g(t)

_95(t—T) — %(t Vst —T)

1
+5(t = 2T) + (t = 21)s(t = 21).
1 1 1 1
— 29 —sT = 28T —— (1-=2 —sT + —2sT
ST e+ Se + Ts2< e e )

(1 +TT3) (1 _EST)Q




Analysis of a Sampler and First-Order Hold

T
J

r(t)

FOH

T

{r(kT)}

R(s) = R*(s)Grou(s)

S

AN

1G o ()

Magnitude

5
wT/21n
0
_l -
_2 L
[}
@ -3 \
°
a -4 . .
5 H GFOH(J(*)) D GZOH(Jw)
6L I I I I I I I I I ]
0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

w T/21t



Analysis of a Sample, Process and Hold

e(kT)

&(f)
0—/ ————» H ( Z)

S

u(kT)

= U*(S)GZOH(S)

ZOH

U(2)|,—esr Gzom(s)
[H(2)E(2)]] .—sr Gzon(s)
H*(s)E*(s)

L
convolved impulse trains

Gzou(s)

u(t)



/OH Equivalent

u(kT) u() y(t) y(kT)

o—» /OH H—> G(S) ® >

e Transfer Function possible

o Let u(kT) = 0(kT), unit pulse sequence

u(t) = s(t) —s(t—71)

y(t) = w(t) —w(t — 7), w = unit step response of .G(s)
y(kT) = w(kT) —w((k —1)T)

Y(2) = (1—2)W()

W(z) = Z[L7(s7'G(s)] = Z(s'G(s))

Transfer Function = (1 — z_l)Z(S_lG(S)Z
ZOH eaTJivaIent

Y*(5) = V() ooir = (1 = )2 (5™ G(3))],_oer U (5)
Y(s) = G(s)U(s) = G(5)Gzou(s)U*(s)



A Glossary of Notation

Gronfs) = =
o Given U(s)
Z(U(s)) = Z transform of sampled u(t)
U(s) = Z(U(s))|.zest
e Given U(2)
U*(s) = U(z)|,—est
e Given G(s)

def

Gh,(2) = ZOH equivalent of G(s) = (1 — 2z ) Z(s'G(s))



An Example

&(t)

H(2)

u(kT)

ZOH

u(t)

G(s)

y(t)

y(kT)

'

e No transfer function possible between y(t) and e(t)

e Can find Y (s)

e Transfer function possible between y(kT") and e(kT)



An Example

&)

H(2)

u(kT)

ZOH

u(t)

G(s)

y(t)

y(KT)

e No transfer function possible between () and e(t)

e Can find Y (s)

e Transfer function possible between y(kT") and e(kT)

L

Y(s) = G(s)U(s) = G(5)Gzou(s)U*(s) = G(s)Gzoul(s)H*(s)E*(s)



An Example

&)

= H@®

u(kT)

ZOH

u(t)

G(s)

y(t)

y(KT)

e No transfer function possible between () and e(t)

e Can find Y (s)

e Transfer function possible between y(kT") and e(kT)

o

Y(s) = G(s)U(s) = G(5)Gzou(s)U*(s) = G(s)Gzoul(s)H*(s)E*(s)

>..<

=

(2)

) ()G () = H2)(1 - =) 2(s7Gls)



Block Diagram Manipulation For Sampled Data System: An Example

KT) KT at
i T zon MY g YO

r(t) +% et) @

y u(kT) u(t) -
@ 4><r( D % — C(2) - ZOH - G(9) —/y(t) ——y(> )
ukT)_ o U(t)> &9 y(t)
r(t) 3 y(KT)
—/——W(”)_%)—» C@) |-+ G2 -
Yi(z) _ C(2)Guy(2)

E(z) 14 C(2)Gh(2)

Y(s) = G(s)Gzon(s)U"(s) = G(s)Gron(s)C™(s)(R(s) — Y7(s))



Another Example

1(t) e2(t) , e2(kT) kT g
r(t) ? AU g 2O 2D UKD 0 v
— Y@
rae  + 1(kT
ﬂGl(s) — H(@) = ZOH —= G(s) -~ G D
ri(KT) =

() HEGGE) e (N
Rz~ 11 HEGE ) (Rmz))

Discrete-Time Equi\}//a(lse?n?s%(fs)(%zr?ﬁ Susl}gj*sg— ﬁwig)CBr%{ﬂ:gﬂLrs

Ry (s)

z=eST

fols) =G (s) 7 G (s)f(s)

e Design controller in continuous time
e Numerically implement a discrete-time equivalent

e Example




s y(t) = / fulr) — ay(r)dr
kT

— y(kT)=y(kT —T) + /(k1)T[u(T) — ay(7)|dr

e Each numerical approximation for the integral gives a discrete-time equivalent



Backward Rectangular Rule

kT
/ w(T)dr ~ u(kT)T
(k=1)T

y(kT) = y(hT — T) + / [ulr) — ay(r)ldr

(h—1)T
y(kT) =y(kT —T)+Tu(kT) — aTy(kT)
Y(2) T B 1
Ulz) 1—z1t+al (1—_7{—1) iy

Hy(z) = H(s)|s——.-1)1
1 — 271 1

> T ° 1 — Ts




Stability Regions Under Backward Rule

1'1+T3

T
=l =5 T,

Res<0=|z—1| <3

A Im

Image of OLHP

A

i
-



Forward Rectangular Rule

kT
/ w(T)dr ~uwkT —T)T
(k—1)T

ET

VD) =y =)+ [ i) — an(r)

y(kT)=ykT —T)+TulkT —T) — aTy(kT —T)
Y(2) T B 1
Ulz) z—1+al' (&) +a
Hr(z) = H(‘S)‘s:(z—l)/T
z—1

1+7T
S T’Z +1's




Stability Regions Under Forward Rule

z=141Ts

Res< (0= Rez<1

Re
Image of OLHP



Trapezoidal Rule

kT T
/ u(T)dT ~ E[u(kT —T) 4+ u(kT)]
(k=1)T

VD) =y =)+ [ i) — an(r)

y(KT) = y(kT —T) + (kT — T) + u(kT)] — S y(kT ) + y(kT)

Hr(z) = H(s)| _y; .1 Tustin’s Rule

21—2z71 1+Ts/2
— Z
T1+z7V 1—Ts/2




Stability Regions Under Tustin's Rule

14+Ts/2
z =
1—Ts/2

Res<0=|z| <1

Im




Discrete-Time Equivalent by Impulse Invariance

e Find ﬁ[(z) such that pulse response of ﬁ[(z) is the sampled sequence of the impulse response

of H(s)
i ——— H(9
T He




Discrete-Time Equivalence by Step Invariance

e Find ]/’\](Z) such that step response of f](z) is the sampled sequence of the step response of

H(s)

—  — H@E

I ¢




Equivalence at a Frequency

e When will the steady state response of ﬁ](z) to {cos kwT'} equal the sampled sequence of

the steady state response of H(s) to coswt?

I H(S) -~
N
SAME
~ Vol
. H(2)

e If and only if
H(pw) = H(e*")



Tustin's Rule and Equivalence at a Frequency

a a
H(s) = ’HT(Z):—Zz—l
8‘|‘CL Tz_—i-l—'—a’
1 1
H(ja) = ——, Hrp(e"") =
(7a) 1+ (™) 1+ j2 tan %

e The discrete equivalent does not “match” the original at the corner frequency
e Tustin's rule causes frequency distortion

e Distortion is reduced if aT'/2 << 1



Tustin's Rule with Pre-warping

e Pre-warp the continuous system such that on applying Tustin's rule, matching is obtained at

the selected frequency

e Substitute

— Recover Tustin's rule if b =2/T

— Same as applying Tustin's rule to the “pre-warped” transfer function
Hpre—warped(s) - H(bTS/Q)

e Choose b to get matching at the desired frequency



Pole-Zero Mapping Equivalent

e Map all poles of H(s) according to z = e*!

1 1

H
s+a ] —ealy—1

e Map all finite zeros of H(s) by z = 7

(s+a)r—1—e Ty}

e Map zeros at oo to zeros at —1

1 -1
—t—1+z
s

e To get a strictly causal system, map one s~ ! factor to 27!

e Choose gain factor to get matching at a specified frequency
H(jw) = Hyp(e™")

— Usually w = 0, that is, matching at DC



Root Locus

Y

Y

0 ——=K*H(2) ZOH G W

I
+ y(=kT)

J—(%}— K*H(2) Gho(s)

e Root locus = locus of roots of 1 + KH(z)Gpo(z) = 0 as K varies fro 0 to oo

Y

e Plotted in the same way as for continuous-time systems



Mapping Theorem

e Based on Mapping Theorem

— 2 traces a simple closed curve C' clockwise in the complex plane

— The no. clockwise of encirclements of the origin by F'(z) equals

no. of zeros of I enclosed by C' — no of poles of F' enclosed by C
e Application to closed-loop stability analysis

— Choose F'(z) =1+ G(z)H(z) = closed-loop characteristic polynomial

— Choose C' to enclose all possible unstable poles



Nyquist Contour

e Choose C' to enclose the exterior of the open unit disc

e All encirclements are contributed by portion along the unit circle



Nyquist Criterion

G(2) -

H(z) [«

Loop transfer function L(z) = G(2)H(2)
Nyquist Criterion:
Z=N+P

P = no. of unstable open-loop poles (unstable poles of L(z))
Z = no. of closed-loop unstable poles (unstable roots of 1 + L(z) = 0)

N = no. of clockwise encirclements of —1 by L(e*?), w € [0, wy]



Gain and Phase Margins




Frequency Response Analysis with VW-Transform

e Frequency response in terms of Z-transform is

— Periodic in w

— Difficult to draw by hand (s-domain rules do not apply)

e Use VW-transform to map OUD into OLHP using

2(x—1)  1+wT/2
W= ———""t z=— "~
T(z+1) 1 —wT/2

G(w) = G(2)| _isurse

T1wT/2

e Bode plots of @(w) can be drawn using s-domain rules
e Nyquist criterion can be applied to @(w) as in s-domain
e Controller H designed for G can be transformed back and applied to G

e Gand G yield the same gain and phase margins



Closed-Loop Asymptotic Tracking of Reference Inputs

rk) . __ e&k) y(K)
H(2) — G(2) -

E(z) 1
R(z) 1+G(2)H(z)

e Asymptotic Tracking: Want
lim e(k) =0

k—o00
— limy_ e(k) exists if and only if all poles of F(z) lie in the OUD except possibly for one

poleat z =1

— limy . e(k), if it exists, equals lim, .1(z — 1)E(2)



Tracking of Step Inputs

z 1
(z—=1)[1+G(2)H(z)]

E(z) =
e For limy_ ., e(k) to exist, all closed-loop poles must lie in the OUD

lim e(k) = i - :
im e(k) = lim =
k—00 —114+G(2)H(z) 1+1lim,;G(2)H(z)

e For lim; . e(k) =0, the (open) loop transfer function must have a pole at z = 1
e No. of poles of G(2)H(z) at z = 1 is the type of the open-loop system
e Define position error constant

K, =1limG(z)H(2)

z—1

e For perfect tracking, need /|, = oo

For perfectly tracking step inputs, need closed-loop stability + type 1 open-loop system



Tracking of Ramp Inputs

B(z) = Tz 1 B Tz
=121+ G()H(2)] (z=1Dz—14(2—1G(2)H(2)]

e For limy_. e(k) to exist, all closed-loop poles must lie in the OUD, and open-loop system

must be of type 1

, —m Tz _ T
etk = i T G H )]~ (e = DGIH ()

e For limy_,o e(k) = 0, the (open) loop transfer function must have at least two poles at

z=1
e Define velocity error constant

K, =lim(z — 1)G(2)H(2)/T

z—1

e For perfect tracking, need K, = oo

For perfectly tracking ramp inputs, need closed-loop stability + type 2 open-loop system



Tracking of Sinusoidal Inputs

r(k) = Asin(kwT), R(z) has poles at e™*7
e For e(k) to converge to a steady state behavior, closed-loop must be (BIBO) stable

e Steady-state error amplitude
1

"1+ G(erT)H(erT)|

e For limy .. e(k) =0, G(2)H(z) must have at least one pole at z = !

For perfectly tracking {Asin kwT'}, need closed-loop stability + open-loop poles at z = =1



Internal Model Principle

e Requirements for closed-loop tracking

Input to be tracked Requirements for tracking
Input Input poles Open-loop poles Closed-loop poles
Step z=1 z=1 OouD
Ramp z=1,1 z=1,1 OuD

+wT 5 = eiij ouD

Sinusoidal z =€

e Internal Model Principle: A closed-loop system will track an input perfectly asymptotically if

and only if

— The closed-loop system is stable and

— The open-loop system contains a “model” of the input



Continuous-Time LTI State-Space Systems

xr = Ax + Bu, state dynamics

y = Cx+ Du, measurement equation
xr = vector of state/internal variables
y = vector of output measurements
u = vector of inputs

e Linear: A, B, C, D independent of z, y
e [ime Invariant: A, B, C, D independent of time
e To find output, need

— Initial state vector and input



Matrix Exponential

e Given a square matrix A, define
1 1
GAt déf i -+ At -+ 5A2t2 + §A3t3 + -

e Well defined (series converges sufficiently nicely)

e Satisfies
P
d
_eAt _ AeAt _ eAtA
dt
QA7) At AT

(eAt)—l _ e—At

e Note: (eAt)ij Nk



Examples

o j+wly=-1u

0 1

2
—wi 0

A

COS Wyt

—wy SIn wyt

UJ{ o -

1 .
oS wpt

COS wyt



Solution of the State Equation

e State response

¢
£ — At 0 _|_/ A(t—T)B d
x(t) e 'x(0) 0 e u(T)dr

A& 7

Natural Response ~~
Forced Response

eAt — state transition matrix

e Output response

t
t)= Cez(0 +/CA“‘T>B dr + Dul(t
y(1) ez (0) 0 e u(7)dT + Duft)

\ - 4

Natural Response ~~
Forced Response

e Impulse response

g(t) = Ce B + Di(t)

e [ransfer matrix

C(sI —A)'B+D



ZOH Equivalent of a State Space System

KT t t KT
u(kT) 20 u(t) _ State Space y®)  y(kT)
System

u(t) =ulk), t € kT, KT +T)

KT+T
z(k+1) = eTa(k) +/ eAWTHT=T) By (k) dr

T
= eMy(k) + [/ eA(TU)Bdcf] wk), o =1 —kT
0
e Discrete-time state space model of the ZOH equivalent

r(k+1) = dx(k)+ Tu(k)
y(k) = Hx(k)+ Ju(k)

T
d=eT T'= U eA(T“)Bda], H=C,J=D
0



State Space Realizations

o Let Y(2) =U(2)[1+ a1z 4+ +apz"]"", sothat Y(z) = [by+ bz --

e Choose

by + blz_l cee bz

G(z) =

Cl4az 4 Hage

(k) + arg(k = 1) + -+ any(k —n) = u(k)

y(k —n)
y(k —n+1)

gk —1)

, x(k+1) =

yk—n+1)
y(k —n+2)

boy(k) +big(k — 1)+ -+ by(k — n)
bog(k) + blxn(/{) 4 bn.Tl(]f)
(b, — boan)x1(k) + (by—1 — boan_1)x2(k) + -+ 4+ (by — bpay)x, (k) + bou(k)

—apxi(k) — - -

+ bz Y (2)




State Space Realizations (cont'd)

e First companion form

0 1 0 0
0 0 1 0
rk+1) = z(k) +
0 0 0 0
—ap —0p-1 —0p-2 -+ —a] 1
L 5 L L
A B
y(k) = | (b= boan) -+ (b1 = boan) | 2lk) + b

L



Transfer Matrix from State Space Model

e State dynamics equations in Laplace domain
2X(z) — 2zx(0) = AX(2) + BU(2)

X(z) = z(zI — A)"'2(0) + (2] — A)"'BU(z)

g A

TV TV
Natural response Forced response

Y(z) = CX(z)+ DU(2)
= Cz(zI — A)'2(0) + [C(2] — A)"'B+ D] U(s)

\ - o’
~"

Transfer matrix

Transfer matrix = C(2I — A)"'B+ D

e Poles are eigenvalues of A



Transformations of State Space Models

r(k+1) = Ax(k)+ Bu(k)
y(k) = Cz(k) + Du(k)

e State transformation 2 = Sz«

Bk +1) = SAS (k) + 8B u(k)

A B
y(k) = CSLa(k)+ _D_u(k)
c D

e Input-output relation is unchanged

C(zl —A)'B+D=C(zI — A 'B+D

e Two state-space models are equivalent if they yield the same transfer matrix

e Every input-output system has several equivalent state space representations/realizations



State Evolution in Discrete-Time System

Ax(k) + Bu(k)

Az(0) + Bu(0)

A%2(0) + ABu(0) + Bu(1)

A%z(0) + A*Bu(0) + ABu(1) + Bu(2)
k—1

AFz(0)  +) AT Bu(l)

natural response \l:O Y,

~
forced response
k—1

CAF2(0) +) CA™ ' Bu(l) + Du(k)

~"~

natural response J=0 ,
TV

forced response




Impulse Response

e Response to impulse input u(k) = ugd(k)

y(k) = CA" 1 Bug + Dugd(k)

e Impulse response sequence

— {Du07 CBU(), CABU(), .. }

e Impulse response matrix
H(k) = D, k=0
= CA"'B, k>0
e General response
y(k) = CA"2(0) + (H = u)(k)

e Compare with forced response in z-domain

Y(z) =[C(zI — A)7'B + D|U(2)

— ZH)=C(zI —A)'B+D=D+2'CB+2*CAB +---



Reachable Sets

e Which states can be reached from a given initial condition by using all possible inputs?

e Reachable set from x( at step k

R(k,xy) = {states reachable from x; in k steps}

k—1
= {Akxo + Z AL Bu(l) w(0), uw(l), ... ulk — 1) arbitrary}

[=0

e System is controllable if every state can be reached from every other state in a finite (but

possibly large) number of steps

e System is controllable iff R(k, xg) = R" for sufficiently large k



Facts on Reachable Sets

Fact 1: R(k,x) = R(k,0) + AFx

Fact 2: R(n,0) = Range C, C = [B AB A*B --- A" 'B]

o If a € R(n,0), then

a = Bu(n — 1)+ ABu(n —2) 4+ --- + A" 'Bu(0) = C : € Range C

e If a € Range C, then

a=Cb= Bby + ABby + ---+ A" "' Bb, € R(n,0)



Facts on Reachable Sets (cont'd)

Fact 3: R(k,0) = R(n,0), k>n
e Clearly R(n,0) C R(k,0)
e For k > n, an element of R(k,0) is of the form

Bu(k—1)+ -+ A" 'Bu(k —n) + A"Bu(k —n +1) + --- + A*" 1 Bu(0)

e By Cayley-Hamilton theorem, powers of A higher than n — 1 can be written as combinations

of powers of A upton — 1

e Elements of R(k,0) are contained in R(n,0)

System is controllable iff rank C = n



Unobservable Sets

e Can we guess the initial state by observing only the output?
yi(k) = CA%y + (H + u)(k)
yo(k) = CA 2o + (H *u)(k)

e Can distinguish z; from xy iff C A¥z; # C A¥z, for some k

e Unobservable set from x at step k
U(k,zy) = {states that yield the same output as z( upto step k — 1}
= {x:CA'v=CA'ng, i=0,1,---,k—1}
e System is observable if every state can be distinguished from every other state in a finite

(but possibly large) number of steps

e System is observable iff U(k, z¢) = {zo} for sufficiently large k



Facts on Unobservable

Sets

Fact 1
Fact 2

Fact 3

: U(k,$0> :U(/ﬂ,O) + X

: Uk, 0) =U(n,0), k>n
C
CA
. U(n,0) = kernel O, O =
CAn—l

System is observable iff rank O =n




Hautus Test for Controllability

e Eigenvalue \ € C of A is controllable if
rank (Al — A B] =n
e Fact: System is controllable iff every eigenvalue of A is controllable
e If )\ is not controllable, then there exists x € C" such that
TFA=\t* 1" B=0=1"A'B=0=2"C=0=rank C < n
e Controllability remains invariant under state transformation
e Uncontrollable eigenvalues are unaffected by control

— If X is an uncontrollable eigenvalue, and the feedback u = Kx is used, then X\ also

appears as a closed-loop eigenvalue



Hautus Test for Observability

e Eigenvalue \ € C of A is unobservable if

rank =n

e Fact: System is observable iff every eigenvalue of A is observable

e If )\ is not observable, then there exists 2 € C" such that

Ar =X 2,Cx=0= CAr=0= Oz =0=rank O < n

e Observability remains unchanged under state transformations

e Unobservable eigenvalues cannot be detected through the output



A Two-Dimensional Example

0 A O 5 by
0 N | by
c - o]
_ _ —1
b VT G N
u y
_] +
= b2 =(Z?\Z) = C2

e By the Hautus test, need b; # 0 # by for controllability and ¢; # 0 # ¢, for observability



Kalman Decomposition Theorem

e Fact: Every state space system can be transformed into

_ As A A13 ] Lo
33(/6 + 1) — 0 Aco A23 Lo
0 0 A@ SU@(:IC) 0

MM:[OGmQJM@+DM@

G(s)=C(zI — A)'B+D = Cy(2] — Aey) 'Beo + D

e The controllable and observable part yields a smaller realization

e Eigenvalues that are either unobservable or uncontrollable are not poles



Minimal Realizations

e A minimal realization is one having the least no. of states
— Desirable for implementation

e A minimal realization has as many states as the number of poles
e A realization is minimal iff it is controllable and observable

e All minimal realizations are equivalent



Jordan Form

e Every matrix can be reduced to its Jordan form through a similarity transformation

(M, 1 000000 0]
0 M 100000 0
0 0XMO0OO0O0O0 0 0
000X 1000 0
000 0XMNOO0D0 0
00000 X0 0 0
000000 X0 0
000000 0 A 0
0000000 0 A

characteristic polynomial = (z — A\1)*(z — X\2)(2 — A3)%(2 — \4)
e )\ and )4 have 1 eigenvector each, Ay and A3 have 2 eigenvectors each

e \3 and \; are semisimple, \; is simple



Internal Stability

e Internal stability refers to the natural response of state (internal) variables
e A state space system is (internally)

— Lyapunov stable if every initial condition response is bounded
— Asymptotically stable if every initial condition response decays to zero

— Unstable if it is not Lyapunov stable

x(k) = A*z(0) = TJ*T'x(0), J = Jordan form

e Stability depends on the elements of J*



Powers of Jordan Blocks

A0 L | AR O
J = — J" =

0 A 0 M\
A

. ch _ )\k k}\k—l

1
J:
0 A 0 M\

(A 10 BN Ct=bUey
J=lox1|=J'=]0 AN  gA!
00 A 0 0 AF

e System is Lyapunov stable iff

— All eigenvalues € CUD and

— All eigenvalues of unit magnitude are semisimple

e System is asymptotically stable iff all eigenvalues € OUD



BIBO Stability and Internal Stability

e System is BIBO stable iff every input vector with bounded components gives

an output vector with bounded components

e System is BIBO stable if and only if every pole € OUD
(internal) asymptotic stability = BIBO stability

e Converse does not hold in general
e Fact: A controllable, observable, BIBO stable system is asymptotically stable

e Fact: A system is BIBO stable iff every minimal realization is asymptotically

stable



Positive-Definite Matrices

o P € R™" symmetric, is positive-definite (P > 0) if x* Pz > 0 for every x € C", 2 # 0
e A symmetric positive-definite matrix has real eigenvalues that are positive

e Every symmetric positive-definite matrix gives rise to the quadratic function Vp(z) = 2! Px

o If P > 0, then the level sets of Vp are hyper-ellipsoids, eg. P =

— N

1
1
2

~

Level curves of VP



Lyapunov Function

e How does a given quadratic function change along the natural state response?
) = Ax(k)

) = x'(k)Px(k)
) = 2 (k+1)Px(k+1) =2 (k)A* PAz(k)
) = 2'(k)[A'PA — Plx(k)

e |dea: If P is positive definite and Vp(x(k)) decreases with k, then z(k) — 0

— Such a Vp is called a Lyapunov function

— Want P > 0and A'PA — P = —Q, where Q >0



Lyapunov Equation

e Fact: If there exist P > 0 and () > 0 satisfying the Lyapunov equation below, then system

is asymptotically stable
ATPA—P=—-Q

e Fact: System is asymptotically stable iff for every () > 0, there exists a positive-definite

solution P to the Lyapunov equation
— For an asymptotically stable system, the solution P is unique

e To prove stability or instability, pick @ > 0 (eg. @ = I), solve for P and check sign

definiteness of P

e OR check the feasibility of the linear matrix inequalities (LMIs)

—ATPA+P > 0
P >0

— Can be done using efficient numerical algorithms



Full-State Feedback

r(k+1) = Ax(k) + Bu(k) Open — loop system
ulk) = —Kx(k) +r(k) Full — state feedback
z(k+1) = (A— BK)x(k)+ Br(k) Closed — loop system

e Pole-placement problem Can we design a gain matrix K such that A — BK has desired

eigenvalues?
e Fact: Every uncontrollable open-loop eigenvalue is a closed-loop eigenvalue
e Assume

— Complete controllability

— Single input



Pole Placement using Companion Form

e |dea: Use state transformation 2 = Sz such that

0 1 0 0 0
0 0 1 0 0
A=SAS'= .B=SB=
0 0 0 1 0
—Qp —Gp-1 —Qp—2 " —a 1
) ] comtrollr comomieal fom —
e Use feedback u = — K = —[l%n ko oy - /2:1]92'
i 0 0 0
0 1 0
A—BEK =
0 0 1
—an iﬂn p—1 iﬂn—l —p—2 — kp_2 —a1 — /%1




Pole Placement using Companion Form (cont'd)

e Characteristic polynomial of A and A

1

a2+ +ay,

e Characteristic polynomial of A - BK

A

Pt (a+ k)2 (an + k)

e Desired characteristic polynomial

1

o+t

e Choose K = |a, —a, a1 — ap1 -+ aq — aq)

e Feedback in terms of original states

AN

u:—f(i’:—Kl;Sx

e Ackermann’s Formula:
K=¢eC A" + oy A" T 4 4 1]

el =100 .- 1]

n



Proof of Ackermann’s Formula

e Define s; = ¢C™!, and consider

S1
8114

sy An1
e Claim: SA = AS
e Claim: S is invertible
e Claim: SB= DB

— S vyields the transformation to the controller canonical form
e K=KS yields Ackermann’s formula
e Multi-input case: redundant degrees of freedom in choosing K

— Can be used to assign eigenstructure



Estimation /Observation

e Online reconstruction of state vector from the output

r(k+1)
y(k)

output injection
A\

Az(k) + Bu(k) 3k 4 1) = AZ(k) + Bulk) + Ty(k) — §(k))

Cx(k)

)

, y(k) = Cu(k)

Observable single—output system

e Error dynamics

-~

\ 7

Vv
Luenberger observer

Y
>
o
Y
@]
|




Observer Design by Pole Placement

e Can we choose observer gain matrix L such that A — LC'is Schur?

e Yes, if the system is observable

— (A, Q) is observable iff (A1, C") is controllable

— There exists a gain matrix K such that AT — C'' K has desired eigenvalues
K=e,[Ct CTA" ... CTA A 4 g AT 4]
— Letting L = K', A — LC has desired eigenvalues

L=[A"+a A" -+ 0, 1|0 e,



Dynamic Output-Feedback Compensation

e |dea: In a full-state feedback controller, use state estimate generated by an observer in place

of the actual state

r u X
— - A B i=(; y
> K = y T
e
- AB - C
A
L

Dynamic output—feedback controller



Seperation Principle

vk +1) = Ax(k)+ Bu(k) Z(k+1) = AZ(k) + Bu(k) + L(y(k) — CZ(k))

y(k) = Cuzx(k) uk) = —Kz(k) + r(k)
kE+1 A —BK k B
f( )| _ f( . ()
Bk + 1) LC A—LC - BK | | (k) B
h Closed—lggp system g
e Choose state vector as [z1 el]t, e=2—7
k+1 A— BK BK k B
sk+1) ] 0] [5],0
e(k +1) 0 A-LC e(k) 0

e Seperation Principle: Output-feedback controller can be obtained by combining an indepen-

dently designed

— Regulator that uses full state feedback with

— An observer



