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SECOND-ORDER SYSTEMS WITH SINGULAR MASS MATRIX
AND AN EXTENSION OF GUYAN REDUCTION*

SANJAY P. BHATt AND DENNIS S. BERNSTEINt

Abstract. The set of consistent initial conditions for a second-order system with singular mass
matrix is obtained. In general, such a system can be decomposed (i.e., partitioned) into three coupled
subsystems of which the first is algebraic, the second is a regular system of first-order differential
equations, and the third is a regular system of second-order differential equations. Under specialized
conditions, these subsystems are decoupled. This result provides an extension of Guyan reduction
to include viscous damping.
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Notation.
n (c)

rank A (def A, ind A)
AZ(A) (7(A))
AT
A > (_>)0

real (complex) numbers,
real vectors (matrices) of dimension n (n n),
ijth element of the matrix A,
rank (defect, index) of the matrix A,
nullspace (range) of the matrix A,
transpose of the matrix A,
symmetric positive- (nonnegative-) definite matrix,
subspace S1 orthogonal to the subspace 32,
direct sum of the subspaces S1 and 2,
intersection of the subspaces Sl and $2,
equal by definition.

1. Introduction. Singular linear systems, that is, linear systems of the form
E Ax, where the matrix E is singular, have been studied extensively. Such
systems arise in singular perturbation problems [1], optimal control [2], and large
scale interconnected systems and economics [3].

An interesting property of singular systems is the existence of impulsive behavior
for certain initial conditions. Although for consistent initial conditions the system
behaves like a regular linear system, initial conditions that are not consistent lead
to impulsive behavior by which the state is instantaneously transferred to the set of
consistent initial conditions. A familiar example is the sparking that often occurs
when two electrical subsystems are suddenly connected together.

In the present paper we study the matrix second-order equation M+CO+Kq
0, where M, C, and K denote nonnegative-definite mass, damping, and stiffness
matrices, respectively. This equation represents a special case of a singular system
when the mass matrix M is singular. A second-order system with singular mass
matrix may arise from a singular perturbation problem [4] or may represent a large
scale system with algebraic constraints placed on the state variables of the component
subsystems. Our goal is to investigate the properties of this second-order equation in
the case in which M is singular.
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In applications it is often the case that M is not singular but rather contains
terms that are numerically small. It is then standard engineering practice to as-
sume that these terms are zero, in which case M is singular. However, if the initial
conditions are restricted to lie in the set of consistent initial conditions, then the be-
havior of the system is governed by a regular system of linear differential equations
of reduced dimension. This is the idea behind Guyan reduction [5], which is a model-
reduction technique widely used for analyzing structural vibrations of large undamped
mechanical systems. Certain finite element modeling techniques involving massless
coordinates may also give rise to second-order models with singular mass matrices [6,
pp. 107-109]. Although numerical simulations of such systems can be problematic
because of the impulsive behavior of the model, such problems can be avoided by
restricting the initial conditions appropriately. Singular mass matrices also arise in
nonlinear multi-degree-of-freedom mechanical systems [7].

The purpose of this paper is to determine the set of consistent initial conditions
for matrix second-order systems with nonnegative-definite mass, damping, and stiff-
ness matrices and to construct a reduced model for such systems when the states are
restricted to lie in this set. These results are obtained by specializing known results
relating to singular systems to the second-order case. It is shown that a second-
order system can be decomposed (i.e., partitioned) into three coupled subsystems of
equationsmthe first is algebraic, the second is a regular system of first-order differen-
tial equations, and the third is a regular system of second-order differential equations.
This result is used to obtain an extension of Guyan reduction to include viscous
damping.

2. Preliminaries. We begin by introducing some definitions concerning the lin-
ear system

(1) E(t) Ax(t), x(O) c,

where t >_ 0, x(t) E Tn, E, A E 7n, and where E may be singular. In the
definitions to follow, a solution is assumed to be analytic. In general, the singular
system (1) admits nonanalytic solutions in the form of distributions [8].

A vector c n is a consistent initial condition if the initial value problem (1)
possesses at least one solution. It is easy to see that the set of consistent initial
conditions of (1) is a linear subspace. The system (1) is tractable if the initial value
problem (1) possesses exactly one solution for every consistent initial condition c.
The following proposition, which is stated and proved as Theorem 9.2.1 in [9], gives
a necessary and sufficient condition for (1) to be tractable.

PROPOSITION 1. The system (1) is tractable if and only if there exists C such
that rank(E A) n.

If A (: and rank(AE- A) n, then we define (AE- A)-IE. Recall that
the index of a matrix A, denoted by ind A, is the smallest nonnegative integer k such
that rank Ak rank Ak+l. The^following lemma gives some properties of/ that
are independent of A whenever E is defined. This lemma is stated and proved as
Theorem 9.2.2 in [9].

LEMMA 1. Suppose 1,2 C satisfy rank(AlE- A) rank(A2E- A) n.
Then ind/1 ind/, and n() n(2), where k ind/.

The following proposition, which follows from Theorem 9.2.3 of [9], characterizes
the set of consistent initial conditions of (1).

PROPOSITION 2. Suppose that (1) is tractable, let C be such that rank(AE
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A) n, and let k ind . Then the set of consistent initial conditions of (1) is

3. Second-order systems with singular mass matrix. In this.section, the
results stated in the previous section are specialized to the matrix second-order system

(2) Mi + Cgt + Kq O,

where q E 7r and M, C, K E Tr denote symmetric nonnegative-definite mass,
damping, and stiffness matrices, respectively. This system can be rewritten in the
first-order form (1) by defining

x=
4 0 M A= -K -C

Note that if the mass matrix M is singular then E is also singular.
Before proceeding further, we state the following useful lemma.
LEMMA 2. Suppose that P, Q r and P >_ 0 and Q >_ O. Then Af(P + Q)

.hf(P) v Af(Q) and

rank(P + Q) rank [ P 1Q

The following theorem is an application of Proposition 1 to (2).
THEOREM 1. The system (2) is tractable if and only if M + C + K > O. In this

case, E- A is invertible.
Proof. Since

)E A -()M + C) I 2M + ,C + K 0 -)I I

it follows that

rank(AE- A) r + rank(/k2M +/kC + K).

If M + C + K > 0, then rank(,k2M + ,kC + K) r for 1. The result now follows
from (3) and Proposition 1.

Conversely, suppose there exists nonzero x 7 such that (M + C + K)x O.
Then, since M, C, and K are nonnegative definite, it follows from Lemma 1 that
Mx Cx Kx 0. Thus (A2M + AC + K)x 0 for every A C. Consequently,
(3) implies that rank(AE- A) < 2r for every A C. It now follows from Proposition
1 that (2) is not tractable, as required.

If M + C + K > 0, then it follows from (3) that rank(E A) r + rank(M +
C + K) 2r so that E- A is invertible.

Since we are interested only in systems possessing unique solutions, we shall
assume that M +C +K > 0 throughout the rest of this paper. In this case, it follows
from Theorem 1 that the matrix E A is invertible. We define 2t?/ M + C+K and

(E- A)-E. Note that

h?/-(M + C) /I/-M ]
_/lr-lK /1/-1M J

The following lemma gives a few properties of/.



652 SANJAY P. BHAT AND DENNIS S. BERNSTEIN

LEMMA 3. The matrix , satisfies rank/)2 rank M + rank(M + C). Further-
more, the llowing statements are valid.

i) ind E <_ 2.
ii) ind , <_ 1 if and only if M + C > O.
iii) ind , 0 if and only if M > O.
Proof. Let

Ykl 1Yk2

and yk+l /)+ly for k 0,1,2, where yl, Yk2 E 7r for k 0,1,2,3.
suppose/)ayo =/)Yl =/)Y Ya O. Then Ey (E- A)ya O, that is,

NOW,

(4) Y2 ----//-I[(M + C)y 4- MyI2] 0

and

My22 MJI-I(-KyI + My12) 0.

Therefore 0 My21-My22 My11. Premultiplying (4) by ylW/Q yields y1TiCy11 0.
Since C is nonnegative definite, it follows that Cy11 0. Using (M + C)y11 0 in
(4) gives My12 O. Thus

My11 Cy11 MyI2 O.

Note that in deriving (6), no use was made of the fact that yl =/y0. Thus it is true
in general that/2y 0 implies

M 0 y 0.

The converse can be easily verified. Thus

[ cM
Hence

rank/2 rank M + rank
C

Since M and C are nonnegative definite, it follows from Lemma 1 that rank/2
rank M + rank(M + C).

To prove i) it suffices to show that Af(/3) c_ Af(/2). Using (6) we compute
ylTlYll yT01 (M 4- C)yl 4- yTo2MyI 0. Since/ is positive definite, it follows
that yll 0. This together with (6) implies that y22 21}/-1(-Ky1 4- My12) 0. It
now follows from (4) that Y2 0. Thus/)3y 0 implies that/)2y 0. This proves
i).

To prove ii) note that the index of is less than 2 if and only if rank/)2 rank
Since rank/92 rank M + rank(M + C) and rank/) rank E rank M + r, it
follows that ind/ < 2 if and only if M 4- C is positive definite.

Finally, ind /) 0 if and only if rank E 2r. Since rank /) rank E
r 4- rank M, it follows that rank E 2r if and only if M is positive definite.
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The following theorem uses Lemma 3 to determine the set of consistent initial
conditions of (2).

THEOREM 2. The set of consistent initial conditions of (2) is given by T().
Furthermore, ifM+C > O, then the set of consistent initial conditions of (2) is given

Proof. The results follow from Proposition 2 and Lemma 3. [:1

The second part of Theorem 2 is a special case of Proposition 8.2.1 in [10].
COROLLARY 1. The dimension of the subspace of consistent initial conditions of

(2) is rank M + rank(M + C).
Proof. The result follows from Theorem 2 and Lemma 3.

4. Model reduction. In this section it is shown that the second-order system
(2) can be decomposed into a system of algebraic equations, a regular first-order
system of differential equations, and a regular second-order system of differential
equations. It is also shown that under special assumptions the algebraic subsystem
can be eliminated to obtain a regular second-order system having fewer degrees of
freedom.

A
def(M + C), r2 def M rl,For convenience, define r and r3 rank M.

Note that rl + r2 -+-r3 r. It can be seen from Corollary 1 that the subspace of
consistent initial conditions has dimension 2r3 + r2. In this section we assume that
M is singular but nonzero, in which case r + r2 > 0 and r3 > 0.

Then there exists anTHEOREM 3. i) Suppose def M > def(M + C) > 0.
orthogonal matrix U E T4rr such that

UTMU 0 0 0 UTCU 0 62 C23
oo

UTKU
K1 K2 KI3 ]K K2 K23
KI K3 K3

where M3 74TM, C2 72, and K T are positive definite. Further-
more, K2 O, K2 O, and K23 0 if and only if Af(M + C) _l_ Af(M + K) and
Af(M) Af(M + C) @ Af(M + K).

ii) Suppose def M def(M + C) > 0. Then there exists an orthogonal matrix
U T such that

(8) UTMU
0 M2 0 C2

UTKU

where M2 TTMr and K1 E T2r xr are positive definite.
iii) Suppose def M > def(M + C) O. Then there exists an orthogonal matrix

U T4rr such that

(9) uTMu
0 M2 C2 C2

where M2 TTM x ra and C1 r2 x r2 are positive definite.
Proof. i) In this case, rl > 0 and r2 > 0. Let Xl, x2,..., xr be an or-

thonormal basis for 7 such that xl, x2,..., xl+, is an orthonormal basis for
Af(M) and Xl, x2,..., xrl is an orthonormal basis for Af(M + C). Let U
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Xl x2 xr ]. Then it can easily be verified that UTu I. Note that for
every matrix P, (uTpu)ij xPxj. The sizes and placement of the zero subblocks
in UTMU and uTCU now follow from the choice of the vectors xl, x2,..., xr.
Since M3, C2, and K1 are principal submatrices of the nonnegative-definite matrices
UTMU, uTCU, and UTKU, respectively, it follows that M3, C2, and K1 are non-
negative definite. Now rank M3 rank M r3, which is also the dimension of M3.
Hence M3 > 0. To show that C2 > 0, suppose that C2y2 0 for some y2 E r2. Then
T

Y2 C2Y2 zWCz 0, where z U[ 0 y2
w 0 iT. The nonnegative definiteness of C

leads to Cz O. Also UTMz O. Thus (M -+-C)z O. By construction, every vector
inAf(M/C) is of the form U[ yW 0 0 ]W, whereyl E T1. Therefore, Y2 0
and hence C2 > 0. Finally, K1 is a principal submatrix of the positive-definite matrix
Uw(M + C + K)U and hence positive definite. This proves the first part of i).

If Af(M + C) _1_ Af(M + K) and Af(M) Af(M + C) @ Af(M + K), then the
vectors x1+1, x+2,..., x+r2 form a basis for Af(M + K). By Lemma 1, these
vectors also lie in Af(K). Since every element of K12, K2, and K23 is of the form
xTKxj, where either rl -- 1 _< i _< rl + r2 or rl + 1 _< j < rl + r2, it follows that
K12 =0, K2 =0, andK23 =0. If K12 =0, K2 =0, andK23 =0, then sinceM3
and K1 are positive definite, it follows that Af(M + K) consists of vectors of the form
z U[ 0 y2

T 0 IT, wherey2 e 74. Thus the vectors x+l, x+2,..., xl+r.
form a basis for A/’(M + K) and the result follows.

The proofs of ii) and iii) are similar.
Theorem 3 gives conditions under which M, C, and K may be assumed without

loss of generality to be of the form given by (7). Note that the first rl equations
are algebraic while the remaining equations represent a regular first-order system of
dimension r2 coupled with a regular r3-degree-of-freedom second-order system. The
following corollary shows that under special assumptions the algebraic equations can
be eliminated to obtain a regular second-order system with a reduced number of
degrees of freedom.

COROLLARY 2. Suppose def M > def(M +C) > 0 and assume that Af(M +C) _l_

A/’(M + K) and Af(M) Af(M + C) @ Af(M + K). Then there exists a matrix
S 7r such that STMS > O, sTcs >_ O, and STKS >_ O.

Proof. Under the stated assumptions, there exists a matrix U 7 such that
UTMU, UTCU, and UTKU are given by (7) with K12 0, K2 0, and K23 0.
Define S e r by

S=U
_K{-1K13 1I

Then ’TMq M3 is positive definite by Theorem 3, and STCS and ’TKq are
nonnegative definite since C and K are nonnegative definite, l:]

The following corollary gives another case in which a reduction in the number of
degrees of freedom can be achieved.

COROLLARY 3. Suppose def M def(M + C) > 0. Then there exists a matrix
S T3 such that STMS > O, sTcs >_ O, and STKS >_ O.

Proof. Since def M def(M + C) > 0, there exists a matrix U 7rr such that
UTMU, uTCU and UTKU are as given by (8). Define S rx3 by

S=U
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Then STMq M2 is positive definite by ii) of Theorem 3. Finally, STcs and ’TK’
are nonnegative definite since C and K are nonnegative definite. .El

Remark. The matrix S in Corollaries 2 and 3 gives the transformationthat reduces
the r-degree-of-freedom system (2) to a regular second-order system having fewer (r3)
degrees of freedom. It is worth pointing out that if the conditions of Corollary 2
are satisfied, then the dimension of the state-space of the reduced system (2r3) is
less than the dimension of the subspace of consistent initial conditions (2r3 A- r2). In
this case, the reduced system does not give solutions to all possible consistent initial
conditions of the full system (2). However, it is often the case in applications that
only the response of the reduced system is of interest. This response is completely
determined by the initial conditions in the reduced state-space. This point will be
illustrated in the examples. Finally, it should be noted that if C 0, then Corollary
3 reduces to the well-known Guyan reduction.

5. Examples. In this section, we present two examples to illustrate Theorem 3
and Corollary 2.

Example 1. To illustrate Theorem 3, consider Figure 1, which shows a uniform
rod of length 2 units having mass m and moment of inertia J about its center of
mass. The motion of the rod takes place under the action of linear springs with
positive spring constants kl, k2, and k3 and a linear viscous damper with positive
damping coefficient c as shown. Assuming small motions, the unforced motion of this
system is governed by (2) with

0 0 0 0 c -c 0 c
0 m 0 0 -c c 0 -cM= ,C=0 0 0 0 0 0 0 0
0 0 0 J c -c 0 c
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kl 0 0 0
0 k. -k. ke
0 -k2 k2Wk3 -k2
0 k -ke k

and q ql q2 q3 q4 IT. For this system M + C + K > 0, rl r2 1, and r3 2.
Letting U be given by

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

so that uTu I, it follows that

UTMU
0 0 0
0 0 0
OOm
0 0 0

0 0 0
0 0 c
0

UTCU
0 -c

J 0 c

0
c
c

UTKU
k2+k3 0 -k2 -k2

0 kl 0 0
-k 0 k k.
-k 0 k ke

This decomposition illustrates i) in Theorem 3.

02
2

FIG. 2.

m

q3
Example 2. Consider the lumped-parameter system shown in Figure 2 consisting

of a mass m with displacement q3, linear springs with positive spring constants k
and k2, and linear viscous dampers with positive damping coefficients Cl and c2. The
massless joint between the dampers c and c2 has a displacement q, while the massless
joint between the springs k and k2 has a displacement q2. The equations of motion
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for this system can be written in the form (2) with

0 0 0 C= 0 cl+c. -c2
0 0 rn 0 -c2 c2

K= 0 0 0 q= q2

-k2 0 k2 q3

It can easily be verified that Af(M) span{[1 0 0] T, [0 1 0IT}, Af(M + C)
span{J1 0 0IT}, and Af(M + K) span{J0 1 0]T}. Thus the hypotheses of Corollary
2 are satisfied. The matrix S in Corollary 2 is given by S k2 c2 1 IT.klWk2
The transformation q S reduces (2) to

cc2 . kk2+ + o,
Cl + c2 kl + k2

whose coefficients are consistent with the well-known formulas for series combinations
of springs and dashpots. For this example, the subspace of consistent initial conditions
has dimension 3. This follows from Corollary 1 by noting that rank M 1 and
rank(M + C) 2. Thus only three independent quantities need to be specified at the
initial instant, specifically, either q2, q3, and (3 or q2, 2, and q3. However, q3(t) (t)
satisfies the reduced order equation (10) and is completely determined by the initial
values of q3 and 3. Consequently, q3(t) is independent of the initial value of q2. In
physical applications, the displacement of the mass is of primary interest. In such
cases, the reduction procedure automatically eliminates the unwanted variable q2.

This illustrates the extension of Guyan reduction to systems with damping.
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