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Abstract

This paper studies properties of homogeneous systems in a geometric, coordinate-free setting.

A key contribution of this paper is a result relating regularity properties of a homogeneous function

to its degree of homogeneity and the local behavior of the dilation near the origin. This result makes

it possible to extend previous results on homogeneous systems to the geometric framework. As an

application of our results, we consider finite-time stability of homogeneous systems. The main result

that links homogeneity and finite-time stability is that a homogeneous system is finite-time stable if

and only if it is asymptotically stable and has a negative degree of homogeneity. We also show that

the assumption of homogeneity leads to stronger properties for finite-time stable systems.
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1 Introduction

Homogeneity is the property whereby objects such as functions and vector fields scale in a

consistent fashion with respect to a scaling operation on the underlying space. Geometrically,

a function that is homogeneous with respect to a scaling operation has the property that every

scaled level set of the function is also a level set, while a homogeneous vector field has the

property that every scaled orbit of the vector field is also an orbit.

Homogeneity is defined in relation to a scaling operation or a dilation, which is essentially

an action of the multiplicative group of positive real numbers on the state space. The familiar

operation of scalar multiplication on R
n yields the standard dilation ∆λ(x) = λx, where λ > 0

and x ∈ R
n. Homogeneity with respect to the standard dilation is one of the two axioms

for linearity, the other being additivity. Many familiar properties of linear systems follow,

in fact, from homogeneity alone. Early work on homogeneous systems was restricted to the

standard dilation. For instance, the stability of systems that are homogeneous with respect

to the standard dilation was considered in [C, H1]. More recently, [R5] contains results on the

input-output properties as well as the universal stabilization of such systems. Vector fields

whose components are all homogeneous polynomials of the same degree form an important

subclass of systems that are homogeneous with respect to the standard dilation. References

related to such polynomial systems can be found in [DM, IO].

Recent years have seen increasing interest in systems that are homogeneous with respect

to dilations of the form

∆λ(x) = (λr1x1, . . . , λ
rnxn), λ > 0, x = (x1, . . . , xn) ∈ R

n, (1)

where ri, i = 1, . . . , n, are positive real numbers [H4, H5, H7, H8, HHX, K4, K6, R1, SA1, SA3].

The standard dilation is a special case of (1) with r1 = · · · = rn = 1. Many of the recent

results on homogeneous systems are generalizations of familiar properties of linear systems.

For instance, for a system that is homogeneous with respect to the dilation (1), asymptotic

stability of the origin implies global asymptotic stability as well as the existence of a C1

Lyapunov function that is also homogeneous with respect to the same dilation [R1]. This

property of homogeneous systems is an extension of the familiar fact that an asymptotically
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stable linear system has a quadratic Lyapunov function, both of which are homogeneous with

respect to the standard dilation. The stability of a homogeneous system is determined by

that of its restriction to certain invariant sets [K6] just as the stability of a linear system is

determined by its restriction to its eigenspaces.

An important application of homogeneity is in deducing the stability of a nonlinear system

from the stability of a homogeneous approximation. A general result of this kind, which

appears in [H4], states that if a vector field can be written as the sum of several vector fields,

each of which is homogeneous with respect to a fixed dilation of the form (1), then asymptotic

stability of the lowest degree vector field implies local asymptotic stability of the original

vector field. Similar results can also be found in [H1, §57] for the special case of the standard

dilation. A special case of these results is Lyapunov’s well known first method of stability

analysis, where the Taylor series expansion is used to write a given analytic vector field as a

sum of vector fields homogeneous with respect to the standard dilation, and stability of the

given vector field is deduced from the stability of the lowest degree vector field in the sum,

which is the linearization of the given vector field.

Homogeneous stabilization of homogeneous systems is considered in [K4, K6, SA1], while

connections between stabilizability and homogeneous feedback stabilization are explored in

[H7, SA3]. Dilations of the form (1) play an important role in the theory of nilpotent ap-

proximations of control systems which are useful in studying local controllability properties

of nonlinear control systems. See, for instance, [H5]. Dilations of the form (1) have also

been used for finite-time stabilization using state feedback [BB3, H8, R4] and output feedback

[HHX].

Since the description of dilations of the form (1) clearly involves the use of coordinates,

homogeneity with respect to a given dilation of the form (1) is a coordinate-dependent prop-

erty. Thus a system that is homogeneous in one set of coordinates may not be homoge-

neous in another. A coordinate-free generalization of the notion of homogeneity is proposed

in [K7]. Specifically, it is observed in [K7] that a smooth dilation satisfying the axioms

given in [K7] gives rise to a one-parameter subgroup of diffeomorphisms φ on R
n given by

φt(x) = ∆et(x), t ∈ R, x ∈ R
n, such that the origin is an asymptotically stable equilibrium
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in reverse time under the infinitesimal generator ν of φ. This same idea also appears in [H6]

for the case in which the dilation is of the form (1). Homogeneity has a particularly simple

characterization in terms of the vector field ν. For instance, a smooth vector field f on R
n is

homogeneous of degree m with respect to ∆ if and only if the Lie derivative Lνf of f with

respect to ν satisfies Lνf = mf . Based on these ideas, [K8] develops a geometric notion of

homogeneity in terms of the vector field ν, called the Euler vector field of the dilation ∆.

According to an anonymous reviewer, the main ideas of [K7, K8] were also investigated inde-

pendently in [R2]. A recent treatment of geometric homogeneity may be found in [BR, Ch.

5]. On a related note, [P] gives examples of vector fields that are homogeneous with respect

to a general linear Euler vector field with degrees of homogeneity that are, loosely speaking,

functions of the state.

While [K8] develops a geometric notion of homogeneity, it does not consider extensions to

the geometric framework of previous results on systems that are homogeneous with respect

to dilations of the form (1). Extension of results that involve non-topological properties of

the dilation (1) presents a special challenge, because these results depend explicitly on the

parameters r1, · · · , rn, and the geometric significance of these parameters is not obvious. A

case in point is the main result of [R1], which asserts that an asymptotically stable system

that is homogeneous with respect to a dilation of the form (1) admits a C1 homogeneous

Lyapunov function with a degree of homogeneity that is greater than max{r1, . . . , rn}. A key

contribution of the present paper is to identify the spectral abscissa σ of the linearization of the

Euler vector field at the origin as the correct generalization of the parameter max{r1, . . . , rn},

thus making it possible to fully extend results such as that of [R1] to the geometric framework.

We provide the first such extensions of several results.

The coordinate-free framework that we adopt highlights the distinction between topo-

logical and non-topological aspects of homogeneity. Topologically, homogeneity involves a

continuous Euler vector field that has the origin as an asymptotically stable equilibrium in

reverse time. Functions and vector fields that are homogeneous with respect to such an Eu-

ler vector field possess topological properties such as properness of sign-definite homogeneous

functions, global asymptotic stability of attractive equilibria of homogeneous vector fields, and
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existence of continuous homogeneous Lyapunov functions for asymptotically stable equilibria

of homogeneous vector fields. However, homogeneity as a purely topological property is not

sufficiently strong to obtain results that relate regularity properties of homogeneous objects

to their homogeneity properties. Such results require growth bounds on the trajectories of the

Euler vector field, and are possible in the case where the Euler vector field is C1. A principal

contribution of this paper is to quantify the relationship between the regularity properties of

a homogeneous function, its degree of homogeneity with respect to a C1 Euler vector field,

and the local behavior of the integral curves of the Euler vector field near the origin. A key

parameter in this quantification is the spectral abscissa σ of the linearization of the Euler

vector field at the origin. Proposition 3.1 in §3 relates the local behavior of the integral curves

of the Euler vector field near the origin to the parameter σ.

We consider homogeneous functions and their properties in §4. The main result of this

section, Theorem 4.1, lays out the relationship between the degree of homogeneity of a ho-

mogeneous function, the regularity properties of the function and the parameter σ. A special

case of this result is the observation that the scalar function V (x) = |x|α on R, which is

homogeneous of degree α ≥ 0 with respect to the standard dilation on R with σ = 1, is Hölder

continuous at x = 0 for α > 0, Lipschitz continuous at x = 0 for α ≥ 1 and C1 for α > 1.

Theorem 4.1 plays a crucial role in all subsequent results involving assertions of regularity.

We introduce homogeneous vector fields in §5, and consider the stability of homogeneous

systems in §6. As an improvement over a previous result, we show that an attractive equilib-

rium of a homogeneous system is not merely globally attractive as asserted in [H1, §17] and

[R1], but is, in fact, globally asymptotically stable. We prove a new topological stability result

for homogeneous systems, which states that if all solutions of a homogeneous system that start

in a compact set subsequently remain in the interior of that set, then the origin is a globally

asymptotically stable equilibrium for the system. We give a stronger version of Theorem 5.12

of [BR] (which, according to an anonymous reviewer, appears as Proposition 2 on page 35

of [R2]) giving the existence of homogeneous Lyapunov functions for asymptotically stable

homogeneous systems in a geometric setting. While Theorem 5.12 of [BR] does not address

the regularity of the Lyapunov function at the origin, our result asserts the existence of a
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continuous (C1) Lyapunov function with a continuous Lyapunov derivative for a system that

is homogeneous with respect to a continuous (C1) Euler vector field. The main result of [R1]

asserts stronger regularity properties for the Lyapunov function in the case of dilations of the

form (1). However, unlike the proof given in [R1], which depends on explicit coordinate-based

computations, our proof makes use of Theorem 4.1 to relate the regularity of the Lyapunov

function to the degree of homogeneity of the system and the parameter σ.

As an application of our results, we consider finite-time stability of homogeneous systems in

§7. Finite-time stability is the property whereby the trajectories of a non-Lipschitzian system

reach a Lyapunov stable equilibrium state in finite time. Classical optimal control theory

provides several examples of systems that exhibit convergence to the equilibrium in finite time

[R3]. A well-known example is the double integrator with time-optimal bang-bang feedback

control. These examples typically involve closed-loop dynamics that are discontinuous. Finite-

settling-time behavior of systems with continuous dynamics is considered in [BB3] and the

references contained therein.

A detailed analysis of continuous, time invariant finite-time-stable systems including Lya-

punov and converse Lyapunov results was given in [BB4]. Differential inequalities provide the

main tool for analyzing finite-time stability of general systems [BB4]. However, differential

inequalities can be difficult to verify in practice, especially for high-dimensional systems. This

dependence on differential inequalities renders the analysis and design of finite-time-stable

systems difficult. To overcome this difficulty, we consider finite-time stability of homogeneous

systems and show that the assumption of homogeneity leads to simpler sufficient conditions

for finite-time stability as well as stronger properties for finite-time-stable systems.

The main result that links homogeneity to finite-time stability is a topological result that

asserts that a homogeneous system is finite-time stable if and only if it is asymptotically

stable and has negative degree of homogeneity. This connection is not surprising in view of

the fact that finite-time stability is an inherently non-Lipschitzian phenomenon. The ideas

involved in the proof of this result were used in constructing finite-time stabilizing controllers

for second-order systems in [BB3, R4]. A proof of this result for dilations of the form (1)

appears in [HHX] and [BR, Corr. 5.4]. This result has also been applied to output-feedback
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finite-time stabilization of second-order systems in [HHX] and, subsequently, to state-feedback

finite-time stabilization of a class of higher-order systems in [H8]. In all these applications,

the dilations involved were of the form (1). In §7, we prove this result in our more general

setting.

In §7, we also show that a finite-time stable system that is homogeneous with respect to

a C1 Euler vector field admits a C1 homogeneous Lyapunov function satisfying a differen-

tial inequality, and the settling time function of such a system is Hölder continuous at the

equilibrium. These results are significant in view of the counterexamples provided in [BB4],

which demonstrate that in the general (nonhomogeneous) case, a finite-time stable system

may not necessarily admit a C1 Lyapunov function satisfying a differential inequality, and the

settling-time function of such a system may not necessarily be continuous. The strengthened

converse Lyapunov result of §7 is used to prove a non-Lipschitzian analog of the result given in

[H4], namely, if a vector field can be written as the sum of several vector fields, each of which

is homogeneous with respect to a given C1 Euler vector field, then finite-time stability of the

lowest (most negative) degree vector field implies finite-time stability of the original vector

field. Finally, we use these results in §8 to demonstrate the existence of a class of finite-time

stabilizing controllers for a chain of integrators and show that every controllable linear system

is finite-time stabilizable through continuous state feedback.

A novel feature of the results that we present is that the spectral abscissa σ ≥ 0 of the

linearization of the Euler vector field at the origin need not be positive, that is, the origin

need not be an exponentially stable equilibrium for the vector field −ν unlike in the case of

dilations of the form (1). Example 5.2 illustrates homogeneity with respect to an Euler vector

field having σ = 0. We also give a scalar example to demonstrate that, while vector fields

having bounded components cannot be homogeneous with respect to dilations of the form

(1), such vector fields can be homogeneous in a geometric sense. The treatment of this paper

thus extends previous work on homogeneous systems and increases the scope of applicability

of techniques that depend on homogeneity by allowing for more general classes of systems and

Euler vector fields.
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2 Preliminaries

Let ‖ · ‖ denote a norm on R
n. The notions of openness, convergence, continuity and

compactness that we use refer to the topology generated on R
n by the norm ‖ · ‖. We use R+

to denote the nonnegative real numbers. Let Ac, A, bd A and int A denote the complement,

closure, boundary and interior of the set A ⊆ R
\, respectively. A set A ⊂ R

n is bounded

if A is compact. We denote the composition of two functions U : A → B and V : B → C

by V ◦ U : A → C. By an open neighborhood of a set K ⊆ R
n, we mean an open set in

R
n containing K. If {xi} is a sequence in R

n and K ⊂ R
n, we write xi → K if, for every

open neighborhood U of K, there exists a positive integer k such that xi ∈ U for all i > k.

In a similar fashion, given a function y : R+ → R
n, we write y(t) → K if, for every open

neighborhood U of K, there exists τ ∈ R+ such that y(t) ∈ U for all t > τ .

Throughout this paper, we let f denote a continuous vector field on R
n with the property

that for every initial condition y(0) ∈ R
n, the system of differential equations

ẏ(t) = f(y(t)) (2)

has a unique right-maximally-defined solution, and this unique solution is defined on [0,∞).

Under these assumptions on f , the solutions of (2) are jointly continuous functions of time

and the initial condition [H3, Thm. V.2.1] and thus define a continuous global semiflow [BH]

ψ : R+ × R → R
n. In particular, ψ satisfies

ψ(0, x) = x, (3)

ψ(t, ψ(h, x)) = ψ(t+ h, x) (4)

for all t, h ∈ R+ and x ∈ R
n. Given t ∈ R+, we denote the map ψ(t, ·) by ψt(·). By the

continuity of ψ, ψt : R
n → R

n is continuous for every t ∈ R+.

Given x ∈ R
n, the integral curve of f starting at x is the continuously differentiable map

ψx(·)
4
= ψ(·, x). The f -orbit, alternatively, the ψ-orbit, of x is the set Ox = ψx(R+).

A set A ⊆ R
n is positively invariant under f if ψt(A) ⊆ A for all t > 0. A set A that is

positively invariant under f is invariant (called weakly invariant in [BH]) or strictly positively

invariant under f if, respectively, ψt(A) = A or ψt(A) ⊂ int A for all t > 0.
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A nonempty set K ⊂ R
n is attractive under f if there exists an open neighborhood V of

K such that ψx(t) → K for all x ∈ V . In this case, the set doa(K) of all points x such that

ψx(t) → K is the domain of attraction of K. If K is attractive with domain of attraction R
n,

then K is globally attractive. The domain of attraction of a nonempty attractive set K is an

open, invariant set containing K [BH, Prop. 8.8], [BS, §V.1].

A nonempty, compact set K ⊂ R
n is Lyapunov stable under f if, for every open neigh-

borhood Uε of K, there exists an open neighborhood Uδ of K such that ψt(Uδ) ⊆ Uε for all

t ∈ R+. K is (globally) asymptotically stable under f if K is Lyapunov stable and (globally)

attractive. Finally, the origin is said to be Lyapunov stable, (globally) attractive or (glob-

ally) asymptotically stable under f if the set {0} is, respectively, Lyapunov stable, (globally)

attractive or (globally) asymptotically stable under f . Note that if a nonempty compact set

K is Lyapunov stable under f , then K is necessarily positively invariant. In particular, if the

origin is Lyapunov stable under f , then ψ0 ≡ 0 and, consequently, f(0) = 0.

It will often be convenient to call a set invariant, attractive or stable under ψ whenever

the set has the respective property under f .

The following result links the concepts of positive invariance and attractiveness.

Lemma 2.1. Let A ⊂ R
n be nonempty, compact and positively invariant under ψ. Then

the largest subset K of A that is invariant under ψ is nonempty, compact and, for every x ∈ A,

ψx(t) → K. In addition, if A is strictly positively invariant under ψ, then K ⊂ int A and K

is asymptotically stable under ψ.

Proof. See Appendix A. 2

Remark 2.1. Given x ∈ R
n, equation (4) implies that Ox is positively invariant under ψ.

Therefore, Ox is positively invariant since, for every t ∈ R+, ψt(Ox) ⊆ ψt(Ox) ⊆ Ox where

the first inclusion follows from the continuity of ψ [M, Thm. 7.1, p. 103] and the second from

the positive invariance of Ox. It can be shown that the largest invariant set contained in Ox

is the positive limit set Ox
+

4
=
⋂

t≥0

ψt(Ox) of x [BH, Ch. 5], [BS, pp. 19-24]. If Ox is bounded,

then Lemma 2.1 with A = Ox yields the familiar result [BH, Thm. 5.5, 5.9], [BS, p. 24], [K9,
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p. 114] that the positive limit set of x is nonempty, compact and ψx(t) → Ox
+. Thus the first

part of Lemma 2.1 is a generalization of well-known results on positive limit sets.

The following technical result will be needed later. The last part of this result also follows

from Theorem V.1.16 in [BS] in the case where solutions of (2) are unique in reverse time as

well.

Lemma 2.2. Suppose K ⊂ R
n is nonempty, compact and attractive under ψ, and let

M ⊂ doa(K) be nonempty and compact. Then ψ(R+ ×M) is bounded. In addition, if K is

asymptotically stable under ψ, then, for every open neighborhood U of K, there exists τ > 0

such that ψt(M) ⊂ U for all t > τ .

Proof. See Appendix A. 2

A function V : R
n → R is proper if the inverse image V −1(M) of M is compact for every

compact set M ⊂ V (Rn). V is radially unbounded if V is proper and V (Rn) is unbounded.

V is positive (negative) definite if V (0) = 0 and V takes only positive (negative) values on

R
n\{0}. Finally, V is sign definite if V is either positive or negative definite.

A continuous function V : R
n1 → R

n2 is Fréchet differentiable at x with Fréchet derivative

dVx : R
n1 → R

n2 [F2, pp. 264-266], if

lim
z→x

V (z) − V (x) − dVx(z − x)

‖z − x‖
= 0. (5)

V is continuously differentiable, that is, C1, on an open set U ⊆ R
n1 if and only if V is Fréchet

differentiable on U and the map x 7→ dVx ∈ L(Rn1 ,Rn2) is continuous on U , where L(Rn1 ,Rn2)

denotes the set of linear maps from R
n1 to R

n2 with the induced norm ‖ · ‖i. Equivalently,

V is C1 on U if and only if V is Fréchet differentiable on U and, for every v ∈ R
n1 , the map

x 7→ dVx(v) is continuous.

Let ϕ : R
n1 → R

n1 be a C1 diffeomorphism. If V : R
n1 → R

n2 is C1 on an open set

U ⊆ R
n1 , then the function V ◦ ϕ is C1 on the open set ϕ−1(U) and the chain rule holds in

the form

d(V ◦ ϕ)x(v) = dVϕ(x)(dϕx(v)), x ∈ ϕ−1(U), v ∈ R
n1 . (6)
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By letting n1 = n2 and V = ϕ−1 in (6), it is easy to see that dϕx is invertible and (dϕx)
−1 =

(dϕ−1)ϕ(x).

The Lie-derivative of a continuous function V : R
n1 → R with respect to f is given by

LfV (x) = lim
t→0+

1

t
[V (ψt(x)) − V (x)], (7)

whenever the limit exists. If V is C1 on R
n, then LfV is defined and continuous on R

n, and

given by LfV (x) = dVx(f(x)).

The origin is a finite-time-stable equilibrium under f (or ψ) if and only if 0 is Lyapunov

stable under f and there exist an open neighborhood N of 0 that is positively invariant under

f and a positive-definite function T : N → R called the settling-time function such that

ψ(T (x), x) = 0 for all x ∈ N and ψ(t, x) 6= 0 for all x ∈ N\{0}, t < T (x). The origin is a

globally finite-time-stable equilibrium under f (or ψ) if 0 is finite-time stable with N = R
n.

Note that by the uniqueness assumption, it necessarily follows that ψ(T (x) + t, x) = 0 for all

t ∈ R+ and, therefore,

T (x) = min{t ∈ R+ : ψ(t, x) = 0} (8)

for all x ∈ N . Also, finite-time stability of the origin implies asymptotic stability of the

origin. Various properties of the settling-time function are given in [BB4]. Versions of the

following sufficient condition for the origin to be a finite-time-stable equilibrium of f appears

in [BB1, BB3, H2]. A proof as well as a converse is given in [BB4].

Theorem 2.1. Suppose there exists a continuous, positive-definite function V : V → R

defined on an open neighborhood V of the origin such that LfV is defined everywhere on V

and satisfies LfV (·) ≤ −c[V (·)]α on V for some c > 0 and α ∈ (0, 1). Then the origin is

a finite-time-stable equilibrium under f , and the settling-time function is continuous on the

domain of attraction of the origin. In addition, if V = R
n and V is proper, then the origin is

a globally finite-time-stable equilibrium under f .

In the sequel, we will need to consider a complete vector field ν on R
n such that the

solutions of the differential equation ẏ(t) = ν(y(t)) define a continuous global flow φ : R×R
n →

R
n on R

n. For each s ∈ R, the map φs(·) = φ(s, ·) is a homeomorphism and φ−1
s = φ−s.
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Notions of invariance, Lyapunov stability and attractivity are similarly defined for φ in terms

of its restriction to R+×R
n. However, since φs is a bijection for each s ∈ R, it is easy to show

that a set K ⊆ R
n is invariant under φ if and only if there exists ε > 0 such that φs(K) ⊆ K

for all s ∈ (−ε, ε).

In the case where ν is C1, φs is a diffeomorphism and (dφs)x a linear isomorphism for

every s ∈ R and x ∈ R
n. Moreover, for every x ∈ R

n, the function s 7→ (dφ−s)x satisfies the

differential equation
d

ds
(dφ−s)x = −dνφ(−s,x) ◦ (dφ−s)x (9)

on L(Rn,Rn) [H3, Thm. V.3.1]. Also, in this case, we define the Lie derivative of f with

respect to ν to be the vector field Lνf given by

(Lνf)(x)
4
= lim

s→0

1

s
[(dφ−s)φs(x)(f(φs(x))) − f(x)] (10)

wherever the limit exists. Lνf is also the Lie bracket [ν, f ] of the vector fields ν and f .

3 Euler Vector Fields and Dilations

In the sequel, we will assume that the vector field ν is an Euler vector field, that is, the

origin is a globally asymptotically stable equilibrium under −ν. Thus, lim
s→∞

φ(−s, x) = 0 for

all x ∈ R
n. Also, given a bounded open neighborhood U of 0, the continuity of φ implies that,

for every x 6∈ U , there exists s > 0 such that φ−s(x) ∈ bd U , while, for every x ∈ U\{0}, there

exists s > 0 such that φs(x) ∈ bd U . Moreover, {0} is the only nonempty compact set that is

invariant under ν. Since ν defines a global flow on R
n, φ(s, x) = 0, (s, x) ∈ R × R

n, implies

x = 0.

In the case that ν is C1, we let σ denote the spectral abscissa, that is, the largest of the real

parts of the eigenvalues, of the linearization dν0 of ν at 0. Since the origin is asymptotically

stable under −ν, it follows that σ ≥ 0. The following technical result relates the local behavior

near 0 of the integral curves of −ν and the solutions of (9) to the parameter σ, and plays a

key role in the proof of the main result of the next section.
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Proposition 3.1. Suppose ν is C1. Let M be a nonempty compact set such that 0 6∈ M

and let σ > σ. Then the following hold.

i) There exists an open neighborhood U of 0 such that eσsφ−s(x) 6∈ U for all s ∈ R+ and

x ∈ M.

ii) There exists an open neighborhood U of 0 such that eσs(dφ−s)x(v) 6∈ U for all s ∈ R+,

x ∈ M and v ∈ R
n such that ‖v‖ = 1.

Proof. We begin by noting that in this proof, we make explicit use of the identification

between R
n and each of its tangent spaces. Choose σ > σ and denote the vector field x 7→

ν(x)− σx by g. All the eigenvalues of the linearization dg0 at 0 of g have negative real parts.

Hence there exists a C1, positive-definite quadratic Lyapunov function V : R
n → R for the

linear system v̇(t) = dg0(v(t)) such that the quadratic function v 7→ dVv(dg0(v)) is negative

definite.

i) V is also a Lyapunov function locally for the vector field g, that is, there exists an open

neighborhood V of 0 such that LgV takes nonpositive values on V . By Lemma 2.2, there

exists T > 0 such that φ−s(M) ∈ V for all s > T . Let β denote the minimum value attained

by V on the compact set φ([−T, 0] × M). Since φ(s, x) = 0 implies x = 0, 0 6∈ φ(R × M)

and hence β > 0. Now, let x ∈ M and denote y : R+ → R
n by y(s) = eσsφ−s(x) so

that ẏ(s) = −eσsg(φ−s(x)). Note that since V is quadratic, dVy(s) = eσsdVφ
−s(x). Therefore,

d
ds
V ◦ y(s) = dVy(s)(ẏ(s)) = −e2σsLgV (φ−s(x)) ≥ 0 for every s > T . Thus V (eσsφ−s(x)) ≥ β

for all (s, x) ∈ R+ ×M. The result now follows by letting U = V −1([0, β/2)).

ii) Since g is C1, dgx is continuous in x and, therefore, there exists an open neighborhood

V of 0 such that, for every x ∈ V , the quadratic function v 7→ dVv(dgx(v)) is negative definite.

By Lemma 2.2, there exists T > 0 such that φ−s(M) ∈ V for all s > T . Let β denote the

minimum value attained by V on the compact set K = {eσs(dφ−s)x(v) : x ∈ M, v ∈ R
n, ‖v‖ =

1, s ∈ [0, T ]}. Since φ−s is a diffeomorphism for all s ≥ 0, it follows that 0 6∈ K and hence

β > 0. Now, let x ∈ M and v ∈ R
n be such that ‖v‖ = 1. Denote y : R+ → R

n by y(s) =

eσs(dφ−s)x(v). It follows from (9) that ẏ(s) = −eσsdgφ(−s,x) ◦ (dφ−s)x(v) = −dgφ(−s,x)(y(s)).
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We compute d
ds
V ◦ y(s) = dVy(s)(ẏ(s)) = −dVy(s)(dgφ(−s,x)(y(s))) ≥ 0 for all s > T . Thus

V (eσs(dφ−s)x(v)) ≥ β for all s ∈ R+, x ∈ M and v ∈ R
n such that ‖v‖ = 1. The result now

follows by letting U = V −1([0, β/2)). 2

The flow φ induces an action of the multiplicative group of positive real numbers on R
n

given by ∆λ(·) = φln(λ)(·), λ > 0. ∆ is called the dilation associated with the Euler vector

field ν.

The dilations often considered in the literature [DM, H4, H5, H7, K3, K4, K6, R1, SA2]

are of the form

∆λ(x1, . . . , xn) = (λr1x1, . . . , λ
rnxn), (11)

where x1, . . . , xn are suitable coordinates on R
n and r1, · · · , rn are positive real numbers. The

dilation corresponding to r1 = . . . = rn = 1 is the standard dilation on R
n.

The Euler vector field of the dilation (11) is linear and is given by [H6, K6, K8]

ν = r1x1
∂

∂x1

+ · · · + rnxn
∂

∂xn

, (12)

with σ = max{r1, . . . , rn}. The global flow of ν is given by

φs(x1, . . . , xn) = (er1sx1, . . . , e
rnsxn) = ∆es(x1, . . . , xn). (13)

4 Homogeneous Functions

Following [K8], we define a function V : R
n → R to be homogeneous of degree l ∈ R with

respect to ν if

V ◦ φs(x) = elsV (x), s ∈ R, x ∈ R
n. (14)

It necessarily follows from (14) that if V is homogeneous of degree l 6= 0, then V (0) = 0.

Equation (14) is equivalent to

φs(V
−1(M)) = V −1(elsM), M ⊆ R, s ∈ R. (15)

In particular, the image under φs of a level set of a homogeneous function V is a level set of

V .
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If V is a continuous homogeneous function of degree l > 0, then LνV is defined everywhere

and satisfies

LνV = lV. (16)

Equation (16) is easily verified by using (14) in (7). See also [K3, K8, SA2]. In the case that

ν is the Euler vector field of the standard dilation on R
n and V is C1, equation (16) yields

the so called Euler identity
∂V

∂x1

+ . . .+
∂V

∂xn

= lV.

It is often convenient to call functions that are homogeneous with respect to ν as homoge-

neous with respect to the corresponding dilation ∆. Using (11) and (13) in (14), it is easy to

see that a function V : R
n → R is homogeneous of degree l with respect to the dilation (11)

if and only if

V (λr1x1, . . . , λ
rnxn) = λlV (x1, . . . , xn), k > 0. (17)

Homogeneous polynomial functions of n variables form a common example of homogeneous

functions. The dilation in this case is the standard dilation on R
n. Positive-definite functions

homogeneous of degree 1 are usually referred to as homogeneous norms [K6, MM].

The following proposition is the main result of this section, and relates the regularity prop-

erties of a homogeneous function to its homogeneity properties. The result is a generalization

of the simple observation that the scalar function V (x) = |x|α on R, which is homogeneous of

degree α ≥ 0 with respect to the standard dilation on R, is Hölder continuous at 0 for α > 0,

Lipschitz continuous at 0 for α ≥ 1 and C1 for α > 1. Recall that a function V : R
n → R

is Hölder continuous with exponent α > 0 at x ∈ R
n if there exist k > 0 and an open

neighborhood U of x such that

|V (x) − V (z)| ≤ k‖x− z‖α, z ∈ U . (18)

V is simply said to be Hölder continuous at x if V is Hölder continuous at x with some

exponent α > 0. Note that Hölder continuity at x implies continuity at x and that Lipschitz

continuity is the same as Hölder continuity with exponent α ≥ 1.
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Theorem 4.1. Suppose V : R
n → R is continuous on R

n\{0} and homogeneous of degree

l with respect to ν. Then statements i), ii) and iii) below hold. If, in addition, ν is C1, then

the statements iv), v), and vi) below hold.

i) If l < 0, then V is continuous on R
n if and only if V ≡ 0.

ii) If l = 0, then V is continuous on R
n if and only if V ≡ V (0).

iii) If l > 0, then V is continuous on R
n.

iv) If l > 0, then, for every σ > σ, V is Hölder continuous at 0 with exponent l/σ.

v) If l > σ, then V is Fréchet differentiable at 0 and dV0 ≡ 0.

vi) If l > σ and V is C1 on R
n\{0}, then

dVx(v) = e−lsdVφs(x)((dφs)x(v)), (s, x) ∈ R × R
n, v ∈ R

n, (19)

and V is C1 on R
n.

Proof. First note that continuity on R
n and homogeneity imply

V (0) = V
(

lim
s→∞

φ(−s, x)
)

= lim
s→∞

V (φ(−s, x)) = lim
s→∞

e−lsV (x), x ∈ R
n. (20)

i) Clearly, V ≡ 0 implies continuity on R
n. Now, let l < 0 and suppose V is continuous on

R
n. If V (z) 6= 0 for some z ∈ R

n, then the limit in (20) does not exist for x = z, which

contradicts continuity. Therefore, we conclude that V ≡ 0.

ii) Clearly, V ≡ V (0) implies continuity on R
n. On the other hand, if l = 0 and V is

continuous on R
n, then (20) yields V (0) = V (x) for all x ∈ R

n.

iii) Let l > 0 and consider ε > 0. Let V be a bounded open neighborhood of 0 and denote

L = maxx∈bd V |V (x)|. Choose T > 0 such that Le−ls < ε for all s > T . The set

M = φ([−T, 0] × bd V) is compact and does not contain 0. Hence there exists an open

neighborhood Uδ ⊂ V of 0 such that Uδ ∩M = ∅. Consider x ∈ Uδ\{0}. There exists
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z ∈ bd V and s ∈ R+ such that x = φ−s(z). By construction, s > T . Therefore,

|V (x)− V (0)| = |V (x)| = e−ls|V (z)| < Le−ls < ε. Thus |V (x)− V (0)| < ε for all x ∈ Uδ

and hence V is continuous at 0.

iv) Choose σ > σ and let V be a bounded open neighborhood of 0. Denote K = {eσsφ−s(x) :

s ∈ R+, x ∈ bd V}. By Proposition 3.1 i), there exists a bounded open neighborhood

U ⊂ V such that U ∩K = ∅. Let L1 = maxx∈bd V |V (x)| and L2 = infz 6∈U ‖z‖. Consider

x ∈ U\{0} and let z ∈ bd V and s ∈ R+ be such that x = φ−s(z). By construction,

eσsx 6∈ U . Therefore,
|V (x)|

‖x‖l/σ
=

|V (z)|

‖eσsx‖l/σ
<

L1

L
l/σ
2

.

Thus V (x)/‖x‖l/σ is uniformly bounded for x ∈ U\{0} and V is Hölder continuous at 0

with exponent l/σ.

v) Let l > σ and choose σ ∈ (σ, l). By iv), there exist an open neighborhood U of 0 and

k > 0 such that for all x ∈ U\{0}, |V (x)|/‖x‖
l

σ ≤ k. Therefore, for every x ∈ U\{0},

|V (x) − V (0)|

‖x− 0‖
≤ k‖x‖

l

σ
−1. (21)

Since, l
σ
− 1 > 0, ‖x‖

l

σ
−1 → 0 as x → 0, so that (21) implies that V is Fréchet

differentiable at 0 and dV0 ≡ 0.

vi) Let l > σ. By v), V is Fréchet differentiable at 0 and dV0 ≡ 0. Now, suppose V is C1 on

R
n\{0}. Equation (19) clearly holds for x = 0. For x 6= 0, equation (19) follows from

(6) and (14) with ϕ = φs and U = φ−s(U) = R
n\{0}. To prove that V is C1 on R

n, it

suffices to show that, for every v ∈ R
n, dVx(v) → dV0(v) = 0 as x→ 0.

Choose σ ∈ (σ, l) and let V be a bounded open neighborhood of 0. By Proposition 3.1,

there exists an open neighborhood U ⊂ V such that eσsφ−s(z) 6∈ U and eσs(dφ−s)z(v) 6∈ U

for all s ≥ 0, z ∈ bd V and v ∈ R
n such that ‖v‖ = 1. Let L1 = max

z∈bd V
‖dVz‖i

and L2 = inf
z 6∈U

‖z‖ > 0. Now consider v ∈ R
n, x ∈ U\{0} and let z ∈ bd V and

s ≥ 0 be such that x = φ−s(z). By construction, ‖eσsx‖ ≥ L2. Also, eσs‖v‖ =
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eσs‖(dφ−s)z ◦ (dφs)x(v)‖ ≥ L2‖(dφs)x(v)‖, that is, ‖(dφs)x(v)‖ ≤ eσs‖v‖/L2. Now, using

(19) we compute

|dVx(v)|

‖x‖
l

σ
−1

=
|dVφ(−s,z) ◦ (dφ−s)z ◦ (dφs)x(v)|

‖x‖
l

σ
−1

=
e−ls|dVz((dφs)x(v))|

‖x‖
l

σ
−1

≤
L1e

−ls‖(dφs)x(v)‖

‖x‖
l

σ
−1

≤
L1‖v‖

L2‖eσsx‖
l

σ
−1

≤
L1‖v‖

L
l/σ
2

. (22)

It follows from the inequality (22) that, for every v ∈ R
n, dVx(v) → 0 = dV0(v) as

x→ 0. Thus V is C1 on R
n. 2

The following lemma asserts that sign-definite, homogeneous functions are radially un-

bounded.

Lemma 4.1. Suppose V : R
n → R is continuous and homogeneous with respect to ν.

i) If V is sign definite, then V is radially unbounded.

ii) If n > 1 and V is proper, then V is sign definite.

Proof. See Appendix A 2

It is interesting to note that the second part of Lemma 4.1 is false if n = 1. The function

V (x) = x, x ∈ R, provides a counterexample since V is proper and homogeneous of degree 1

with respect to the standard dilation on R, but not sign definite.

The following lemma provides a useful comparison between homogeneous functions.

Lemma 4.2. Suppose V1 and V2 are continuous real-valued functions on R
n, homoge-

neous with respect to ν of degrees l1 > 0 and l2 > 0, respectively, and V1 is positive definite.

Then, for every x ∈ R
n,

[

min
{z:V1(z)=1}

V2(z)

]

[V1(x)]
l2
l1 ≤ V2(x) ≤

[

max
{z:V1(z)=1}

V2(z)

]

[V1(x)]
l2
l1 . (23)
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Proof. Since l1, l2 > 0, V1(0) = V2(0) = 0 and equation (23) holds for x = 0. Therefore,

suppose x 6= 0 and let s = − 1
l1

ln[V1(x)]. Then, by homogeneity, V1(φs(x)) = 1 so that

min
{z:V1(z)=1}

V2(z) ≤ V2(φs(x)) ≤ max
{z:V1(z)=1}

V2(z). (24)

Note that by Lemma 4.1, V1 is proper, so that V −1
1 ({1}) is compact and the minimum and

the maximum in (24) are well defined. Equation (23) now follows from (24) by noting that

since V2 is homogeneous of degree l2, V2(φs(x)) = el2sV2(x) = [V1(x)]
−

l2
l1 [V2(x)]. 2

It is interesting to note that if we let V1 denote the square of the Euclidean norm on R
n

and V2 a quadratic form on R
n, then (23) yields the well known Rayleigh-Ritz inequality for

quadratic forms [HJ, p. 176].

5 Homogeneous Vector Fields

Following [K7, K8], we define the vector field f to be homogeneous of degree m ∈ R with

respect to ν if, for every t ∈ R+ and s ∈ R,

ψt ◦ φs = φs ◦ ψemst. (25)

Geometrically, homogeneity of f implies that the image under φs of the ψ-orbit of x ∈ R
n is

the ψ-orbit of the image under φs of x. Equation (25) implies that if K is (positively) invariant

under f , then so is φs(K) for every s ∈ R since ψt (φs(K)) = φs (ψemst(K)) (⊆) = φs(K) for

all t ∈ R+ and s ∈ R. In addition, if V : R
n → R is a homogeneous function of degree l such

that LfV is defined everywhere, then LfV is a homogeneous function of degree l +m. This

fact follows easily by using equations (14) for V and (25) for f in (7) to verify equation (14)

for LfV . See also, [H4, H6, K7, K8].

In the case that ν is a smooth vector field, equation (25) is equivalent to

f (φs(x)) = ems(dφs)x(f(x)), s ∈ R, x ∈ R
n. (26)

In this case, if f is homogeneous of degree m with respect to ν, then equation (26) implies

that the limit in (10) exists for all x ∈ R
n. Consequently, Lνf is defined everywhere and
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satisfies

Lνf = mf. (27)

Using (13) in (26), it is easy to see that the vector field f is homogeneous of degree m with

respect to the dilation (11) if and only if the ith component fi is a homogeneous function of

degree m+ ri with respect to ∆, that is,

fi(λ
r1x1, . . . , λ

rnxn) = λm+rifi(x1, . . . , xn), λ > 0, i = 1, . . . , n. (28)

It is clear from (28) that, a continuous, non-constant vector field that is homogeneous

with respect to a dilation of the form (11) cannot have bounded components. The following

example demonstrates that it is possible for vector fields having bounded components to be

homogeneous in the generalized sense that we consider, and thus opens up the possibility of

applying homogeneity techniques to control systems involving, for instance, input saturation.

Example 5.1. Consider the continuous vector field f(x) = −sat(x1/3) ∂
∂x

on R, where

sat(x) = x if |x| ≤ 1 and sat(x) = sign(x) if |x| > 1. The vector field f is homogeneous of

degree −2
3

with respect to the continuous Euler vector field ν(x) = g(x) ∂
∂x

, where g : R → R

is the continuous, piecewise linear function given by

g(x) = x, |x| ≤ 1,

= 1
3
(sign(x) + 2x), |x| > 1.

Note that ν is C1 on R\{−1, 1}, while f is C1 on R\{−1, 0, 1}. Equation (27) can easily be

verified to hold with m = −2/3 at every point where f and ν are differentiable. Homogeneity

can be rigorously established by using the flows of the vector fields f and ν to show that (25)

holds with m = −2/3. Note that unlike vector fields that are homogeneous with respect to

dilations of the form (11), the vector field f considered in this example is globally bounded.

Our next example involves an Euler vector field whose linearization at the origin is zero.

Example 5.2. Let m > 0, and consider the vector field f(x) = h(x) ∂
∂x

, where the function
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h : R → R is given by

h(x) = 0, x = 0,

= −x3e−
m

2
(x−2−1), 0 < |x| ≤ 1,

= −sign(x)|3x− 2sign(x)|(1+
m

3
), |x| > 1.

It is easy to verify that f is C1 on R\{−1, 1}. Furthermore, f is homogeneous of degree m

with respect to the C1 Euler vector field ν(x) = g(x) ∂
∂x

, where the function g : R → R is given

by

g(x) = x3, |x| ≤ 1,

= 3x− 2sign(x), |x| > 1.

Equation (27) can easily be verified to hold with at every point where f is differentiable. Ho-

mogeneity can be rigorously established by using the flow of ν to verify (26). Note that unlike

the Euler vector fields of dilations of the form (11), the spectral abscissa of the linearization

at x = 0 of the Euler vector field in this example is zero, that is, x = 0 is a non-hyperbolic,

non-exponentially stable equilibrium for the vector field −ν.

Remark 5.1. Equation (25) appears in [K7, K8] while (26) appears in [H6]. According

to an anonymous reviewer, equations (25)-(27) also appear in [R2]. Equation (27), which is

also given in [K7, K8], is adopted as the definition of a homogeneous vector field in [H6].

However, the degree of homogeneity of a vector field f satisfying (27) is defined to be m + 1

in [H6]. A similar convention is adopted in [H1] for the case of the standard dilation. Thus

a linear vector field, which is homogeneous of degree 0 with respect to the standard dilation

by our definition, is homogeneous of degree 1 according to [H1, H6]. As argued in [K8], the

definition given in [K8] and adopted here is more appropriate as it leads to a consistent notion

of homogeneity for scalar functions, vector fields and other objects. This consistency becomes

evident, for instance, on comparing equations (16) and (27).

6 Stability of Homogeneous Systems

In this section we re-derive in a more general setting some stability results that appear in

the literature for the special case of systems that are homogeneous with respect to dilations
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of the form (11). We also prove a new stability result involving strictly positively invariant

sets.

The following result is a stronger version of a result given in [H1, §17] and [R1].

Proposition 6.1. Let f be homogeneous with respect to ν and suppose 0 is an attractive

equilibrium under f . Then, 0 is a globally asymptotically stable equilibrium under f .

Proof. Suppose 0 is attractive under f and let A denote the domain of attraction of 0

under f . Let Uε be an open neighborhood of 0 and consider a bounded open neighborhood V

of 0 such that V ⊂ A. The first part of Lemma 2.2 implies that the set M = ψ(R+ × V) is

compact. Hence, by the second part of Lemma 2.2, there exists τ2 > 0 such that φ−τ2(M) ⊂ Uε.

Now, the set Uδ = φ−τ2(V) ⊂ Uε is open and, for every t > 0, equation (25) implies that

ψt(Uδ) = φ−τ2(ψe−mτ2 t(V)) ⊂ φ−τ2(M) ⊂ Uε, where m is the degree of homogeneity of f .

Thus, 0 is Lyapunov stable under f .

Next, consider x ∈ R
n. Since A is an open neighborhood of 0, there exists s > 0 such that

z = φ−s(x) ∈ A. Equation (25) implies that ψx(t) → {0} if and only if ψφ
−s(x)(t) = ψz(t) →

{0}. It follows that x ∈ A and hence A = R
n. Global asymptotic stability now follows. 2

Standard converse Lyapunov results for asymptotic stability imply that if the origin is

an asymptotically stable equilibrium under f , then the origin is contained in a compact set

that is strictly positively invariant with respect to f , since a sufficiently small sublevel set

of a Lyapunov function is compact and strictly positively invariant. The next result shows

that under the assumption of homogeneity, the reverse implication is also valid, that is, the

existence of a nonempty compact set that is strictly positively invariant with respect to f

is sufficient to conclude asymptotic stability of the origin. Interestingly, the proof does not

involve the construction of a Lyapunov function.

Theorem 6.1. Suppose the vector field f is homogeneous with respect to ν. If A ⊂ R
n

is a bounded open set that contains 0 and is positively invariant under f , then 0 is Lyapunov

stable under f . If A ⊂ R
n is compact and strictly positively invariant under f , then 0 ∈ A

and 0 is globally asymptotically stable under f .
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Proof. Suppose A is bounded, open, positively invariant under f and contains 0, and let Uε

be an open neighborhood of 0. Since the origin is asymptotically stable under −ν, by Lemma

2.2, there exists s > 0 such that Uδ = φ−s(A) ⊂ Uε. Uδ is open since φ−s is a homeomorphism

and positively invariant under f by homogeneity. Moreover, 0 = φ−s(0) ∈ φ−s(A) = Uδ.

Therefore, for every t ≥ 0, ψt(Uδ) ⊆ Uδ ⊂ Uε, thus proving Lyapunov stability.

Now, suppose A is compact and strictly positively invariant under f and let K denote

the largest subset of A that is invariant under f . By Lemma 2.1, K is nonempty, compact,

contained in int A and asymptotically stable under f . Since K is compact, K ⊂ int A and

φ is continuous, there exists ε > 0 such that φs(K) ⊂ A for all |s| ≤ ε. By homogeneity,

φs(K) is invariant under f for every s ∈ (−ε, ε). However, K is the largest subset of A that is

invariant under f , so that φs(K) ⊆ K for all s ∈ (−ε, ε), that is, K is invariant under φ. Since

the only compact, nonempty set that is invariant under φ is {0}, we conclude that K = {0}.

Thus 0 ∈ A and 0 is asymptotically stable under f . Global asymptotic stability follows from

Proposition 6.1. 2

Our next result asserts that an asymptotically stable homogeneous system admits a ho-

mogeneous Lyapunov function. The well known result from [R1] is a stronger version of our

result for the special case of dilations of the form (11). Theorem 5.12 of [BR] extends the

result of [R1] to more general dilations. However, the extension in [BR] is only partial because,

unlike [R1], the result from [BR] does not address the regularity of the Lyapunov function at

the origin. Our result below makes use of Theorem 4.1 and strengthens the result from [BR]

by giving sufficient conditions on the degree of homogeneity of the Lyapunov function for the

Lyapunov function to be continuous or C1 at the origin.

Theorem 6.2. Suppose f is homogeneous of degree m with respect to ν and 0 is an

asymptotically stable equilibrium under f . Then, for every l > max{−m, 0}, there exists a

continuous, positive-definite function V : R
n → R that is homogeneous of degree l with respect

to ν, C1 on R
n\{0}, and such that LfV is continuous and negative definite. Furthermore, if

ν is C1, then, for every l > max{−m,σ}, there exists a positive-definite function V : R
n → R

that is homogeneous of degree l with respect to ν, C1 on R
n and such that LfV is continuous
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and negative definite.

Proof. Fix l > max{−m, 0}. Theorem 5.12 of [BR] implies that there exists a continuous,

positive-definite function V : R
n → R that is homogeneous of degree l with respect to ν, C1 on

R
n\{0}, and such that LfV is negative definite. It follows that LfV is continuous on R

n\{0}

and homogeneous of degree l + m > 0 with respect to ν. Hence iii) of Theorem 4.1 implies

that LfV is continuous. If, in addition, ν is C1 and l > σ, then vi) of Theorem 4.1 implies

that V is C1 on R
n. 2

Remark 6.1. For the case where ν is the Euler vector field of a dilation of the form

(11), Theorem 6.2 was first proved in [R1]. In the case of a dilation of the form (11), two

main simplifications occur in the proof of Theorem 6.2. First, the dilation (11) is specially

adapted to the usual coordinates on R
n. As a result, the partial derivatives of a homogeneous

function along the coordinate directions are also homogeneous. This property makes it possible

to prove regularity by simply computing the partial derivatives and using homogeneity to

check continuity of the partial derivatives. In the more general setting that we consider, this

simplification is not possible. Instead, our proof of Theorem 6.2 makes use of Theorem 4.1

to prove regularity of the candidate Lyapunov function. Indeed, equation (19) in Theorem

4.1 is a generalization of the fact that the partial derivatives of a function homogeneous with

respect to the dilation (11) are also homogeneous. The second simplification is related to

the fact that the relationship between the regularity properties of a homogeneous function

and its degree of homogeneity depend on the Euler vector field. In the case of dilations of

the form (11), the Euler vector field is characterized by the n parameters r1, . . . , rn, and the

dependence of regularity properties of a homogeneous function on these parameters is easy

to see. In the general case that we consider, the dependence of the regularity properties of

a homogeneous function on the Euler vector field is not straightforward. The latter part of

Theorem 4.1, which depends very crucially on Proposition 3.1, makes this dependence precise

with the help of the parameter σ. While it is possible to assert the existence of a continuous

(but not necessarily C1) homogeneous Lyapunov function without using Theorem 4.1 (see,

for instance, Theorem 5.12 of [BR]), a complete extension of the main result of [R1] to our
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general setting is possible only by using Theorem 4.1.

Remark 6.2. The vector field −ν is easily seen to be homogeneous of degree 0 with

respect to ν. Furthermore, the origin is asymptotically stable under −ν. Therefore, Theorem

6.2 implies that, for every l > 0, there exists a continuous, positive-definite function that is

homogeneous of degree l with respect to ν and C1 on R\{0}. Moreover, if ν is C1, then for

every l > σ, there exists a positive-definite function that is homogeneous of degree l with

respect to ν and C1 on R
n.

7 Finite-Time Stability of Homogeneous Systems

It is instructive to first study the finite-time stability of a scalar homogeneous system. For

α > 0, the scalar system

ẋ = −ksign(x)|x|α (29)

represents a continuous vector field on R that is homogeneous of degree α − 1 with respect

to the standard dilation ∆λ(x) = λx. Equation (29) can be readily integrated to obtain the

semiflow of (29) as

µ(t, x) = sign(x)
(

1
|x|α−1 + k(α− 1)t

)− 1

α−1

, α > 1,

= e−ktx, α = 1,

= sign(x)(|x|1−α − k(1 − α)t)
1

1−α , 0 ≤ t < |x|1−α

k(1−α)
, α < 1,

= 0, t ≥ |x|1−α

k(1−α)
, α < 1.

(30)

It is clear from (30) that the origin is asymptotically stable under (29) if and only if k > 0

and finite-time stable if and only if k > 0 and α < 1. In other words, the origin is finite-time

stable under (29) if and only if the origin is asymptotically stable under (29) and the degree of

homogeneity of (29) is negative. Moreover, in the case that k > 0 and α < 1, the settling-time

function is given by T (x) = 1
k(1−α)

|x|1−α, which is easily seen to be Hölder continuous at the

origin and homogeneous of degree 1 − α. This section contains extensions of these simple

observations to multi-dimensional homogeneous systems. The following result represents the

main application of homogeneity to finite-time stability and finite-time stabilization.
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Theorem 7.1. Suppose f is homogeneous of degree m with respect to ν. Then the origin

is a finite-time-stable equilibrium under f if and only if the origin is an asymptotically stable

equilibrium under f and m < 0.

Proof. As noted in §2, finite-time stability of the origin implies asymptotic stability.

Therefore, it suffices to prove that if the origin is an asymptotically stable equilibrium under

f , then the origin is a finite-time-stable equilibrium under f if and only if m < 0.

Suppose the origin is an asymptotically stable equilibrium of f and let l > max{−m, 0}.

By Theorem 6.2, there exists a continuous, positive-definite function V : R
n → R that is ho-

mogeneous of degree l and is such that LfV is continuous, negative definite, and homogeneous

of degree l +m. Applying Lemma 4.2 with V1 = V and V2 = LfV , we get

−c1[V (x)]
l+m

l ≤ LfV (x) ≤ −c2[V (x)]
l+m

l , x ∈ R
n, (31)

where c1 = −min{z:V (z)=1} LfV (z) and c2 = −max{z:V (z)=1} LfV (z). Note that both c1 and

c2 are positive since LfV is negative definite.

Now, if m ≥ 0 and 0 6= x ∈ R
n, then applying the comparison principle [K1, §5.2], [K9,

§2.5], [RHL, ch. IX], [Y, §4] to the first inequality in (31) yields V (ψ(t, x)) ≥ µ(t, V (x)) where

µ is given by (30) with k = c1 > 0 and α = l+m
l

≥ 1. Since, in this case, µ(t, V (x)) > 0 for all

t ≥ 0, we conclude that ψ(t, x) 6= 0 for every t ≥ 0, that is, the origin is not a finite-time-stable

equilibrium under f . Thus finite-time stability of the origin implies m < 0.

Conversely, if m < 0, then the second inequality in (31) implies that the hypotheses of

Theorem 2.1 hold with c = c2 > 0 and 0 < α = l+m
l
< 1. Thus, by Theorem 2.1, the origin is

a finite-time-stable equilibrium under f . 2

Remark 7.1. The proof of Theorem 7.1 involves constructing a homogeneous Lyapunov

function, applying Lemma 4.2 to the Lyapunov function and its derivative to obtain a dif-

ferential inequality for the Lyapunov function, and then applying Theorem 2.1 to conclude

finite-time stability. Any application of Theorem 7.1 to finite-time stabilization involves the

additional step of rendering the closed-loop system asymptotically stable and homogeneous

with negative degree. References [BB3, R4] achieved finite-time stabilization of second-order
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systems by explicitly carrying out the steps listed above including the construction of a ho-

mogeneous Lyapunov function. Theorem 7.1 first appears as a result in [BB2] and has been

proven in the case of dilations of the form (11) in [HHX] and as Corollary 5.4 in [BR]. The

result has been applied to output-feedback finite-time stabilization of second-order systems

in [HHX] and, subsequently, to state-feedback finite-time stabilization of a class of higher-

order systems in [H8]. In all these applications, the dilations involved were of the form (11).

A crucial step in the extension of these ideas to our general setting is the construction of

a homogeneous Lyapunov function using Theorem 6.2. As explained in Remark 6.1, this

construction depends very strongly on Propositions 3.1 and Theorem 4.1, both of which are

relatively straightforward in the case of dilations of the form (11). Thus Theorem 7.1 represent

a nontrivial extension of ideas used in [BB3, H8, HHX, R4] to our more general setting.

Reference [BB4] contains a converse Lyapunov result for finite-time stability. A stronger

version of the same result is provided by the following theorem under the assumption of

homogeneity.

Theorem 7.2. Suppose f is homogeneous of degree m with respect to ν and let α ∈

(0, 1). If the origin is a finite-time-stable equilibrium under f , then there exist c > 0 and

a continuous, positive-definite function V : R
n → R that is C1 on R

n\{0}, homogeneous of

degree l = −m/(1 − α) and is such that LfV is continuous on R
n and satisfies

LfV (x) ≤ −c[V (x)]α, x ∈ R
n. (32)

In addition, if ν is C1, then, for every α ∈ (0, 1) such that σ +m < σα, the above assertion

holds with V a C1 function on R
n.

Proof. Fix α ∈ (0, 1). By Theorem 7.1, m < 0 and 0 is an asymptotically stable

equilibrium for f . By Theorem 6.2, there exists a continuous, positive-definite function V :

R
n → R that is C1 on R

n\{0} and homogeneous of degree l = −m/(1 − α) > −m > 0 with

respect to ν and is such that LfV is continuous and negative definite on R
n. Moreover, LfV

is homogeneous of degree l + m > 0 with respect to ν. Therefore, Lemma 4.2 applies with
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V1 = V , V2 = LfV and l2
l1

= l+m
l

= α and equation (32) follows from equation (23) with

c = −max{z:V (z)=1} LfV (z) > 0.

If, in addition, ν is C1 and σ+m < σα, then l = −m/(1−α) > σ and vi) of Theorem 4.1

implies that V is C1 on R
n. 2

Examples given in [BB4] show that finite-time stability implies neither Hölder continuity

nor continuity of the settling-time function. The following result shows that these regularity

properties of the settling-time function follow under the additional assumption of homogeneity.

Theorem 7.3. Let f be homogeneous of degree m with respect to ν. Suppose the origin

is a finite-time-stable equilibrium under f and let T denote the settling-time function. Then

the origin is a globally finite-time-stable equilibrium under f , T is homogeneous of degree −m

with respect to ν and T is continuous on R
n. If, in addition, ν is C1, then, for every σ > σ,

T is Hölder continuous at the origin with exponent −m/σ.

Proof. Let N denote the domain of definition of T as given by (8). By finite-time stability,

N contains an open neighborhood of the origin. Let x ∈ R
n. Since the origin is a globally

asymptotically stable equilibrium under −ν, there exists s > 0 such that z = φ−s(x) ∈ N .

Equation (25) implies that ψ(t, x) = ψ(t, φs(z)) = φs(ψ(emst, z)) so that ψ(t, x) = 0 if and

only if ψ(emst, z) = 0. It now follows from (8) that T (x) is defined, that is, x ∈ N , and

T (φ−s(x)) = T (z) = emsT (x). (33)

Thus N = R
n and the origin is a globally finite-time-stable equilibrium under f . On comparing

(33) and (14), it follows that T is homogeneous with respect to ν with degree −m. By Theorem

7.2, there exists a Lyapunov function satisfying the hypotheses of Theorem 2.1. Therefore, by

Theorem 2.1, T is continuous on R
n. By Theorem 7.1, −m > 0. Hence, in the case that ν is

C1, the assertion about Hölder continuity follows from vi) of Theorem 4.1. 2

It was shown in [BB4] that finite-time stability does not imply the existence of a C1 function

satisfying equation (32), while the settling-time function of a system with a finite-time-stable

equilibrium may not be Hölder continuous or even continuous at the origin. Theorems 7.2

and 7.3 show that stronger results hold under the assumption of homogeneity and are thus

significant.
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It has been shown in [H4, H6, R1] that if a vector field can be written as a sum of several

vector fields, each homogeneous with respect to a certain fixed dilation, then the given vector

field is asymptotically stable if the homogeneous vector field having the lowest degree of

homogeneity is. The following theorem provides an analogous result for finite-time stability.

Theorem 7.4. Let ν be C1 and suppose f = g1 + · · · + gk, where, for each i = 1, . . . , k,

the vector field gi is continuous, homogeneous of degree mi with respect to ν and m1 <

m2 < · · · < mk. If the origin is a finite-time-stable equilibrium under g1, then the origin is a

finite-time-stable equilibrium under f .

Proof. Suppose ν is C1 and let the origin be a finite-time-stable equilibrium under g1.

Choose l > max{−m1, σ}. By Theorem 6.2, there exists a positive-definite, C1 function

V : R
n → R that is homogeneous of degree l and is such that Lg1

V is negative definite. For

each i = 1, . . . , k, Lgi
V is continuous and homogeneous of degree l +mi > 0 with respect to

ν. By Lemma 4.2, there exist c1 > 0 and c2, . . . , ck ∈ R such that

Lgi
V (x) ≤ −ci[V (x)]

l+mi

l , x ∈ R
n, i = 1, . . . , k. (34)

Therefore, for every x ∈ R
n,

LfV (x) ≤ −c1[V (x)]
l+m1

l − . . .− ck[V (x)]
l+mk

l = [V (x)]
l+m1

l [−c1 + U(x)] , (35)

where U(x) = −c2(V (x))
m2−m1

l − . . .− ck(V (x))
mk−m1

l . Since mi −m1 > 0 for every i > 1, it

follows that the function U , which takes the value 0 at the origin, is continuous. Therefore,

there exists an open neighborhood V of the origin such that U(x) < c1/2 for all x ∈ V .

Equation (35) now yields

LfV (x) ≤ −
c1
2

[V (x)]
l+m1

l , x ∈ V . (36)

By Theorem 7.1, m1 < 0, so that the hypotheses of Theorem 2.1 are satisfied with c = c1/2

and α = l+m1

l
∈ (0, 1). Hence, by Theorem 2.1, the origin is a finite-time-stable equilibrium

under f . 2
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8 Finite-Time Stabilization of Linear Control Systems

The following proposition proves the existence of a continuous finite-time-stabilizing feed-

back controller for a chain of integrators by giving an explicit construction involving a small

parameter. The controller renders the closed-loop system asymptotically stable and homoge-

neous of negative degree with respect to a suitable dilation so that finite-time stability follows

by Theorem 7.1. Theorem 6.1 plays a key role in the proof of asymptotic stability along with

a continuity argument.

Proposition 8.1. Let k1, . . . , kn > 0 be such that the polynomial sn + kns
n−1 + · · · +

k2s+ k1 is Hurwitz, and consider the system

ẋ1 = x2,
...

ẋn−1 = xn,

ẋn = u.

(37)

There exists ε ∈ (0, 1) such that, for every α ∈ (1 − ε, 1), the origin is a globally finite-time-

stable equilibrium for the system (37) under the feedback

u = χα(x1, . . . , xn) = −k1signx1|x1|
α1 − · · · − knsignxn|xn|

αn , (38)

where α1, . . . , αn satisfy

αi−1 =
αiαi+1

2αi+1 − αi

, i = 2, . . . , n, (39)

with αn+1 = 1 and αn = α.

Proof. Let k1, . . . , kn > 0 be chosen as in the proposition and, for each α > 0, let fα

denote the closed-loop vector field obtained by using the feedback (38) in (37). For each α > 0,

the vector field fα is continuous. It is also easy to verify that, for each α > 0, the vector field

fα is homogeneous of degree (α− 1)/α with respect to the Euler vector field

να =
1

α1

x1
∂

∂x1

+ · · · +
1

αn

xn
∂

∂xn

, (40)
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where αn = α and α1, · · · , αn−1 satisfy (39). Moreover, the vector field f1 is linear with the

Hurwitz characteristic polynomial sn + kns
n−1 + · · · + k2s + k1. Therefore, by Theorem 6.2,

there exists a positive-definite, radially unbounded, Lyapunov function V : R
n → R such that

Lf1
V is continuous and negative definite. Let A = V −1([0, 1]) and S = bd A = V −1({1}).

Then A and S are compact since V is proper and 0 6∈ S since V is positive definite. Define

ϕ : (0, 1] × S → R by ϕ(α, z) = Lfα
V (z). Then ϕ is continuous and satisfies ϕ(1, z) < 0 for

all z ∈ S, that is, ϕ({1} × S) ⊂ (−∞, 0). Since S is compact, it follows from Lemma 5.8 in

[M, p. 169] that there exists ε > 0 such that ϕ((1 − ε, 1] × S) ⊂ (−∞, 0). It follows that for

α ∈ (1 − ε, 1], Lfα
V takes negative values on S. Thus A is strictly positively invariant under

fα for every α ∈ (1 − ε, 1]. By Theorem 6.1, the origin is a globally asymptotically stable

equilibrium under fα for every α ∈ (1 − ε, 1]. The result now follows from theorems 7.1 and

7.3 by noting that, for every α ∈ (1 − ε, 1), the degree of homogeneity of fα with respect to

να is negative. 2

Remark 8.1. Since the results of this paper were derived under the assumption of forward

uniqueness, a final remark on the uniqueness of solutions for the various systems considered

in the proof of Proposition 8.1 is in order. Each of the vector fields considered in Proposition

8.1 is locally Lipschitz everywhere except on a finite collection of submanifolds. Moreover, in

each case, the vector field is transverse to each such submanifold everywhere except at the

origin. Hence forward uniqueness for all initial conditions except the origin follows from [F1,

Lem. 2, p. 107], [K2, Prop. 4.1] or [K5, Prop. 2.2], while forward uniqueness at the origin

follows from Lyapunov stability.

Figure 1 shows an initial condition response along with the corresponding control input for

the triple integrator plant ẋ1 = x2, ẋ2 = x3, ẋ3 = u under the feedback u = −sign(x1)|x1|
1/2−

1.5sign(x2)|x2|
3/5 − 1.5sign(x3)|x3|

3/4, which is obtained from (38) with n = 3, k1 = 1, k2 =

k3 = 1.5 and α = 3/4. Note that for this example, Proposition 8.1 does not guarantee finite-

time stability specifically for α = 3/4. Instead, stability has to be inferred from Figure 1.
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Figure 1: Initial Condition Response of a Finite-Time-Stabilized Triple Integrator

The following result uses the controller described in Proposition 8.1 to show that every

controllable linear system is finite-time stabilizable through continuous state feedback. It

should be pointed out that Theorem 8.1 is not a new result and has been included here only

for completeness. For instance, it has been shown in [GKS, K10] that every controllable

linear system can be finite-time stabilized using bounded, continuous feedback control while

[H8] proves the following result using an alternative construction of a finite-time stabilizing

controller for a chain of integrators.

Theorem 8.1. Every controllable linear control system on R
n is globally finite-time sta-

bilizable through continuous state feedback.

Proof. Every controllable linear system is feedback equivalent to a linear system in

Brunovsky canonical form which is simply a collection of decoupled, independently controlled

chains of integrators [S, §4.2]. The result now follows by noting that Proposition 8.1 can be

used to finite-time stabilize each chain of integrators in the Brunovsky canonical form. 2
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A Appendix

First we recall a consequence of compactness. If {Mt}t≥0 is a collection of nonempty, compact

sets that are nested in the sense that Mt2 ⊆ Mt1 for every t2 ≥ t1, then
⋂

t≥0

Mt is nonempty

[M, Thm. 5.9, p. 170].

Proof of Lemma 2.1. Since A is positively invariant, ψh(ψt(A)) = ψt(ψh(A)) ⊆ ψt(A)

for every t, h ∈ R+ so that ψt(A) is positively invariant for every t ∈ R+. By the compact-

ness of A and the continuity of ψ, ψt(A) is compact for every t ∈ R+. Thus {ψh(A)}h≥0

is a collection of nested nonempty compact sets and hence K
4
=
⋂

h≥0 ψh(A) is nonempty

and compact. K is also the intersection of positively invariant sets and hence positively

invariant [BH, Lem. 3.3], [BS, Thm. II.1.2]. Therefore, to show that K is invariant, it

suffices to show that K ⊆ ψh(K) for all h ∈ R+. Let h > 0 and consider x ∈ K. Then

x ∈ ψh+t(A) = ψh(ψt(A)) for every t ∈ R+, so that ψ−1
h ({x})

⋂

ψt(A) is nonempty for every

t ∈ R+. Moreover, ψ−1
h ({x}) is closed by continuity, so that ψ−1

h ({x})
⋂

ψt(A) is compact for

every t ∈ R+. Thus {ψ−1
h ({x})

⋂

ψt(A)}t≥0 is a collection of nested nonempty compact sets

and hence
⋂

t≥0[ψ
−1
h ({x}) ∩ ψt(A)] = ψ−1

h ({x})
⋂

K is nonempty. It follows that x ∈ ψh(K)

and K is invariant.

If C ⊂ A is invariant under ψ, then C = ψt(C) ⊆ ψt(A) for every t ≥ 0, so that C ⊆ K.

Thus K is the largest subset of A that is invariant under ψ.

Let U be an open neighborhood of K. To show that ψx(t) → K for all x ∈ A, it suffices

to show that there exists τ > 0 such that ψt(A) ⊂ U for all t > τ . The sets {ψt(A)
⋂

U c}t≥0

form a collection of nested compact sets. If ψt(A)
⋂

U c is nonempty for every t ∈ R+, then

by compactness, ∅ 6=
⋂

t≥0 [ψt(A) ∩ U c] = [∩t≥0ψt(A)]
⋂

U c = K
⋂

U c = ∅ which is a contra-

diction. Therefore, there exists τ ∈ R+ such that ψτ (A)
⋂

U c is empty, that is, ψτ (A) ⊂ U .

By the positive invariance of ψτ (A), ψt(A) = ψt−τ (ψτ (A)) ⊆ ψτ (A) ⊂ U for all t > τ . Thus

ψx(t) → K for all x ∈ A.

Now, suppose A is strictly positively invariant. Then, for a given t > 0, K ⊆ ψt(A) ⊂ int A.

Also, K is attractive since K ⊂ int A and ψx(t) → K for all x ∈ int A.

If K is not Lyapunov stable, then there exists an open neighborhood U of K and a sequence
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{(ti, xi)} in R+ × R
n such that xi → K and ψ(ti, xi) 6∈ U for i = 1, 2, . . .. However, as

shown above, there exists a τ > 0 such that ψt(A) ⊂ U for all t > τ . This implies that

ti ≤ τ for all i = 1, 2, . . . . Therefore, without any loss of generality, we may assume that

ti → t ∈ R+. Also, since A is compact, we may assume that xi → x ∈ K. Then, by

continuity, ψ(ti, xi) → ψ(t, x). However, ψ(t, x) ∈ K ⊂ U by invariance while ψ(ti, xi) 6∈ U by

construction. This contradiction proves that K is Lyapunov stable. Attractivity and Lyapunov

stability imply asymptotic stability. 2

Proof of Lemma 2.2. Let V be a bounded open neighborhood of K, and let S =

M∪ bd V . Then S is compact. Define T : doa(K) → R+ by T (x) = inf{t ∈ R+ : ψt(x) ∈ V}.

We claim that T is upper semicontinuous. To see this, consider x ∈ doa(K) and let {xi}

be a sequence in doa(K) converging to x. Choose ε > 0. There exists t ≤ T (x) + ε such that

ψt(x) ∈ V . By continuity of ψ, there exists M such that ψt(xi) ∈ V for every i > M . It

follows that, for every i > M , T (xi) ≤ T (x) + ε. Since ε was chosen arbitrarily, it follows that

lim supi→∞ T (xi) ≤ T (x). Thus T is upper semicontinuous.

The upper semicontinuous function T is bounded above on the compact set S. Let τ =

supx∈S T (x). Consider x ∈ M. For every t ≤ τ , ψ(t, x) ∈ ψ([0, τ ]×M). Let t > τ . We claim

that ψ(t, x) ∈ ψ([0, τ ] × V). Indeed, this is trivially true if ψ(t, x) ∈ V . Hence consider the

case where ψ(t, x) /∈ V . Since t > τ ≥ T (x), there exists s ≤ t such that ψ(s, x) ∈ V . By the

continuity of ψ, it follows that there exists h ≥ 0 such that ψ(h, x) ∈ bd V and ψ(s, z) /∈ V for

every s ∈ (h, t]. It follows by our definition of T that t−h ≤ T (ψ(h, x)) ≤ τ . Hence ψ(t, x) =

ψt−h(ψ(h, x)) ⊆ ψ([0, τ ]×V). Thus, for every x ∈ M and t ≥ 0, ψ(t, x) ∈ ψ([0, τ ]× (M∪V)),

that is, ψ(R+×M) ⊆ ψ([0, τ ]×(M∪V)). Since the set ψ([0, τ ]×(M∪V)) is clearly compact,

it follows that ψ(R+ ×M) is bounded.

Next, assume that K is asymptotically stable under ψ, and let U be an open neighborhood

of K. By Lyapunov stability, there exists an open neighborhood V of K such that ψt(V) ⊆ U

for all t ∈ R+. Consider the collection of nested sets {Mt}t>0 where Mt = {x ∈ M : ψh(x) 6∈

V , h ∈ [0, t]} = M
⋂

(

⋃

h∈[0,t]

ψ−1
h (V)

)c

, t > 0. For each t > 0, Mt is a compact set. Therefore,

if Mt is nonempty for each t > 0, then there exists x ∈
⋂

t>0

Mt, that is, there exists x ∈ M
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such that ψt(x) 6∈ V for all t > 0, which contradicts the assumption that M ⊂ doa(K). Thus

there exists τ > 0 such that Mτ = ∅, that is, M ⊂
⋃

h∈[0,τ ]

ψ−1
h (V). Therefore, for every

t > τ , ψt(M) ⊂
⋃

h∈[0,τ ]

ψt

(

ψ−1
h (V)

)

=
⋃

h∈[0,τ ]

ψt−h(V) ⊆ U , where the last inclusion follows from

Lyapunov stability. 2

Proof of Lemma 4.1. i) Suppose V is sign definite. Then V (0) = 0, while i) and ii)

of Theorem 4.1 imply that the degree of homogeneity l of V is positive. Without any loss

of generality, we may assume that V is positive definite. Let K ⊂ R
n be a bounded open

neighborhood of 0 and let β = minz∈bd K V (z) > 0. Now, suppose x 6∈ K, and let s > 0 be

such that z = φ−s(x) ∈ bd K. Then, homogeneity implies that V (x) = elsV (z) > V (z) ≥ β.

Thus, V −1([0, β]), which is closed by continuity, is contained in the compact set K and hence

compact. Now, given γ ∈ V (Rn), equation (15) implies that V −1([0, γ]) = V −1([0, elsβ]) =

φs(V
−1([0, β])) for s = 1

l
(ln γ − ln β), so that by the continuity of φs, V

−1([0, γ]) is compact.

Since every compact set M in V (Rn) is contained in an interval of the form [0, γ], it follows

that V is proper. Radial unboundedness follows from equation (14) by letting s→ ∞.

ii) Let n > 1 and suppose V is proper so that S = V −1({0}) is compact. If l ≤ 0, then

it follows from i), ii) of Theorem 4.1 that V −1 ({V (0)}) = R
n, which contradicts properness.

Therefore, l > 0 and by (14), V (0) = 0 so that S is nonempty. Applying equation (15) with

M = {0} ⊂ R yields φs(S) = S for all s ∈ R, that is, S is invariant under ν. Since the only

compact, nonempty set that is invariant under ν is {0}, it follows that S = {0}. Also, R
n\{0}

is connected. Since V is continuous and S = {0}, it follows that V (Rn\{0}) = V (Rn\S) is a

connected subset of R that does not contain 0, and hence V is sign definite. 2

References

[BR] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory,

Springer-Verlag, London, 2001.

[BB1] S. P. Bhat and D. S. Bernstein, Lyapunov analysis of finite-time differential equations,

Proc. American Control Conference, Seattle, WA, June 1995, 1831–1832.

34



[BB2] S. P. Bhat and D. S. Bernstein, Finite-time stability of homogeneous systems, Proc.

American Control Conference, Albuquerque, NM, June 1997, 2513–2514.

[BB3] S. P. Bhat and D. S. Bernstein, Continuous, finite-time stabilization of the translational

and rotational double integrators, IEEE Transactions on Automatic Control, 43 (1998),

678–682.

[BB4] S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems,

SIAM Journal of Control and Optimization, 38 (2000), 751–766.

[BH] N. P. Bhatia and O. Hajek, Local Semi-Dynamical Systems, Lecture Notes in Mathe-

matics, vol. 90, Springer-Verlag, Berlin, 1969.
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