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Continuous Finite-Time Stabilization of the Translational
and Rotational Double Integrators

Sanjay P. Bhat and Dennis S. Bernstein

Abstract—A class of bounded continuous time-invariant finite-time
stabilizing feedback laws is given for the double integrator. Lyapunov
theory is used to prove finite-time convergence. For the rotational double
integrator, these controllers are modified to obtain finite-time-stabilizing
feedbacks that avoid “unwinding.”

Index Terms—Finite-time stability, non-Lipschitzian dynamics, stabil-
ity, stabilization.

I. INTRODUCTION

Most of the available techniques for feedback stabilization lead
to closed-loop systems with Lipschitzian dynamics. The convergence
in such systems is at best exponential with infinite settling time. In
other words, none of the solutions starting in an open neighborhood
of the origin converge to the origin in finite time. In fact, finite-
time convergence implies nonuniqueness of solutions (in reverse
time) which is not possible in the presence of Lipschitz-continuous
dynamics.

Our goal is to develop techniques for obtaining continuous finite-
time-stabilizing feedback controllers. The present paper focuses on
the double integrator as an illustrative example of this objective.

Since the double integrator is controllable, open-loop control
strategies can be used to drive the state to the origin in finite
time [1, p. 38]. One such control strategy is the minimum energy
control [2], which transfers the state of the system�x = u from
the initial conditionsx(0) = x0; _x(0) = y0 to the origin in a
given time tf . This control strategy minimizes the control energy
costJ(u) = t

0
(u(t))2 dt and is given by [2, pp. 466–475]

u(x0; y0; t) = �
2

t2f
(3x0 + 2y0tf ) +

6

t3f
(2x0 + y0tf )t:

Similar finite-settling-time open-loop controls for linear systems are
given in [3] and some of the references contained therein. Open-loop
strategies, however, are generally sensitive to system uncertainties
and may perform poorly in the presence of disturbances.

Finite-time-stabilizing feedback laws can be obtained through
optimal synthesis. A well-known example is the bang–bang time-
optimal controller. In [4] and [5], it is shown that the minimization of
certain nonquadratic cost functionals subject to a saturation constraint
on the control input yields finite-time-stabilizing feedback controllers.
In fact, it is shown in [5] that the time-optimal controller for the
double integrator also minimizes a nonquadratic cost functional. This
property of the time-optimal controller is used in [6] to derive a
finite-time-stabilizing feedback controller for uncertain scalar second-
order systems. One drawback of the controllers given in [4]–[6] is
that, like the time-optimal controller, they are discontinuous. For
certain initial conditions, some of the controllers in [4] and [5]
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even yield control functions with a countably infinite number of
discontinuities. In practical implementations, discontinuous feedback
controllers can lead to chattering behavior due to plant uncertainties
or measurement imperfections. Such controllers may also excite
unmodeled high-frequency dynamics when used, for instance, to
control lightly damped structures [7].

The design of continuous time-invariant finite-time-stabilizing
feedback controllers presents a challenge because such controllers
necessarily involve non-Lipschitzian closed-loop dynamics. Conse-
quently, relatively little attention has been paid to such controllers
even though there are indications that finite-time-stable closed-loop
systems might have better robustness and disturbance rejection
properties [8]. While a constructive method for obtaining finite-
time-stabilizing controllers for the double integrator is given in
[9], the applicability of this method is limited by the fact that the
construction involves finding closed-form analytical solutions to
algebraic equations. A class of finite-time-stabilizing controllers
for linear systems appears in [10]. This class of controllers is
limited to systems having as many control inputs as state variables
and hence cannot be applied to the double integrator. A family
of continuous time-invariant finite-time-stabilizing controllers for
the double integrator is proposed in [11]. These controllers are
unbounded, while the proofs use constructions special to the case
of the double integrator.

In Section III of this paper we give a family of continuous
time-invariant finite-time-stabilizing feedback laws for the double
integrator. In contrast to [11], we demonstrate finite-time stabilization
directly by constructing a suitable Lyapunov function. In Section IV
we give a class of globally bounded feedback laws for the finite-time
stabilization of the double integrator. The results are based on the
Lyapunov theory for finite-time differential equations developed in
[12]. This theory is briefly presented in Section II for completeness.

As an extension of these results, we consider a rigid body rotating
under the action of a control torque about a fixed axis. Such a
rigid body has equations of motion that resemble those of a double
integrator. However, since states that differ by integral multiples of
2� in angular position correspond to the same physical configuration
of the body, the state space for thisrotational double integratoris
the two-dimensional cylinderS1

� IR rather thanIR2 [13, p. 419].
Stabilizing control laws developed for the double integrator onIR2

(the translational double integrator) when applied to the rotational
double integrator lead to the “unwinding” phenomenon in which
the body may rotate numerous times before coming to rest, even
if the initial configuration is the same as the final desired one. In
spacecraft applications, such unwinding can lead to the inefficient
use of momentum-management devices and fuel. Hence the design
of controllers that finite-time stabilize the rotational double integrator
without causing unwinding is of special interest. In Section V, we
present such a class of finite-time-stabilizing feedback controllers for
the rotational double integrator.

The results of Sections III–V also appear in [14], which is a
preliminary version of the present paper.

II. FINITE-TIME STABILITY

Consider the system

_y(t) = f(y(t)) (1)

wheref : D ! IRn is continuous on an open neighborhoodD of
the origin andf(0) = 0. A continuously differentiable function
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y: I ! D is said to be asolutionof (1) on the intervalI � IR if y
satisfies (1) for allt 2 I. The continuity off implies that for every
x 2 D, there exist�0 < 0 < �1 and a solutiony(�) of (1) defined on
(�0; �1) such thaty(0) = x [15, pp. 10–11]. We will assume that (1)
possesses unique solutions in forward time for all initial conditions,
except possibly the origin; that is, for everyx 2 Dnf0g there exist
�2 > 0 and a unique solutiony(�) of (1) defined on[0; �2) and
satisfyingy(0) = x. In this case we denote the unique solutiony(�)
of (1) satisfyingy(0) = x 2 Dnf0g by �(�)(x), that is,�t(x) = y(t).

Remark 1: The uniqueness assumption is of more than just aca-
demic interest. Uniqueness in forward time and the continuity off

ensure that solutions are continuous functions of initial conditions
even whenf is not Lipschitz continuous (see [15, Th. 2.1, p. 94]).

Definition: The origin is said to be afinite-time-stable equilibrium
of (1) if there exists an open neighborhoodN � D of the origin and
a functionT : Nnf0g ! (0;1), called thesettling time, such that
the following statements hold.

1) Finite-time convergence: For everyx 2 Nnf0g; �t(x) is
defined fort 2 [0; T (x)); �t(x) 2 Nnf0g; for t 2 [0; T (x));

and limt!T (x) �t(x) = 0.
2) Lyapunov stability: For every open setU" such that0 2 U" �

N , there exists an open setU� such that0 2 U� � N and such
that for everyx 2 U�nf0g; �t(x) 2 U" for t 2 [0; T (x)).

The origin is said to be aglobally finite-time-stable equilibriumif it
is a finite-time-stable equilibrium andD = N = IRn.

Versions of the following result have appeared in [6], [11], and
[12].

Theorem 1: Suppose there exists a continuously differentiable
function V : D ! IR, real numbersk > 0 and � 2 (0; 1), and a
neighborhoodU � D of the origin such thatV is positive definite
on U and _V + kV � is negative semidefinite onU , where _V (x) =
@V

@x
(x)f(x). Then the origin is a finite-time-stable equilibrium of (1).

Moreover, if T is the settling time, thenT (x) � 1

k(1��)
V (x)1��

for all x in some open neighborhood of the origin.

III. CONTINUOUS FINITE-TIME-STABILIZING CONTROLLERS

In this section, we present a class of continuous time-invariant
feedback controllers that globally finite-time stabilize the double
integrator. By a finite-time-stabilizing feedback law, we mean a
feedback controller that renders the origin of the closed-loop system a
finite-time-stable equilibrium as defined in the previous section. Thus
we seek a continuous feedback law

u =  (x; y) (2)

that finite-time stabilizes the double integrator

_x = y; _y = u: (3)

Proposition 1: The origin of (3) is a globally finite-time-stable
equilibrium under the feedback control law (2) with

 (x; y) = �sign(y)jyj
�
� sign(��(x; y))j��(x; y)j (4)

for every� 2 (0; 1), where��(x; y) x + 1

2��
sign(y)jyj2��.

Proof: Fix � 2 (0; 1). For convenience denote��(x; y) by
�� and consider the continuously differentiable Lyapunov function
candidate

V (x; y) =
2� �

3� �
j��j + sy�� +

r

3� �
jyj

3�� (5)

wherer and s are positive numbers.
Along the closed-loop trajectories, we have

_V (x; y) = �ry
2
� sj��j � jyj

1��
j��j

� s�� sign(y)jyj
�
� (r + s) sign(y��)jyj

2��
j��j

which is continuous everywhere since� 2 (0; 1). It is easy to verify
that, for k > 0 and (x; y) 2 IR2

V (k
2��

x; ky) = k
3��

V (x; y) (6)
_V (k

2��
x; ky) = k

2 _V (x; y): (7)

It can easily be shown that, forr > 1 and s < 1, both
V and � _V take positive values on the setO = f(x; y) :

max(x;y)6=(0;0)fj��j ; jyjg = 1g which is a closed curve
encircling the origin. Since for every(x; y) 2 IR2nf(0;0)g there
existsk > 0 such that(k2��x; ky) 2 O, the homogeneity properties
(6) and (7) imply thatV is positive definite and_V is negative definite.

It also follows from (6) thatV is radially unbounded so that
the setV = f(x; y) : V (x; y) = 1g is compact. Since_V is
continuous, _V achieves its maximum on the compact setV. Define
c = �max(x;y)2V _V (x; y) and note thatc > 0 since� _V is positive
definite and(0; 0) 62 V. The homogeneity properties (6) and (7)
can now be used to show that_V (x; y) � �cfV (x; y)g for all
(x; y) 2 IR2; see, for instance, [6] and [14]. Since� 2 (0; 1) is
equivalent to 2

3��
2 (0; 1), finite-time stability of the origin follows

from [11, Th. 1 in Section I or Proposition 1]. Global stability holds
sinceV is radially unbounded and_V is negative definite.

Remark 2: The closed-loop vector field obtained by using the
feedback control law (4) is locally Lipschitz everywhere except the
x-axis, denotedX , and the zero-level setS = f(x; y) : ��(x; y) =

0g of the function ��. Since the closed-loop vector fieldf� is
transversal toX at every point inXnf(0;0)g, it follows from [16,
Proposition 2.2] or [17, Lemma 2, p. 107] that every initial condition
in Xnf(0;0)g has a unique solution in forward time. The setS is
a positively invariant set for the closed-loop dynamics, that is, every
solution(x(�); y(�)) of the closed-loop system satisfies(x(t); y(t)) 2

S for t � 0 if (x(0); y(0)) 2 S. This follows by noting that along the
closed-loop solutions�� _�� = �jyj1��j��(x; y)j � 0 for every
(x; y) 2 IR2. Moreover, onS, the closed-loop system is given by

_x = �sign(x)[(2� �)jxj]

_y = �sign(y)jyj
�
:

(8)

System (8) is locally Lipschitz everywhere except the origin and
therefore possesses unique solutions in forward time for initial
conditions inSnf(0; 0)g. Thus the closed-loop system satisfies the
uniqueness assumption made in Section I.

Example 1: Fig. 1 shows the phase portrait of the double integra-
tor under the feedback law

 (x; y) = �y � x+
3

5
y (9)

which is obtained from (4) by using� = 1
3

. An interesting feature
of the closed-loop system is that all trajectories converge to the set
S = f(x; y) : x + 3

5
y = 0g in finite time. The setS is positively

invariant and represents what is called aterminal sliding modein
[8]. The term�y in (9) rendersS positively invariant while the
remaining term�(x+ 3

5
y ) in (9) drives states toS in finite-time.

The controller (4) is thus an example of sliding mode control without
using discontinuous or high-gain feedback.

IV. BOUNDED CONTINUOUS FINITE-TIME CONTROLLERS

The finite-time-stabilizing controllers developed in the previous
section were unbounded. In this section, we modify the class of
controllers introduced in the last section to obtain a class of bounded
continuous time-invariant feedback controllers that globally finite-
time stabilize the double integrator. The modification consists of
saturating various terms in the controller (4).
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Fig. 1. Double integrator with the controller (4).

Fig. 2. Double integrator with the controller (10).

Given a positive number", define

sat"(y) = y; jyj < "

= " sign(y); jyj � ":

Note thatjsat"(y)j � " for all y 2 IR.
Proposition 2: The origin of (3) is a globally finite-time-stable

equilibrium under the bounded feedback control lawu =  sat(x; y)

with

 sat(x; y) = �sat"fsign(y)jyj
�
g

� sat" sign(��(x; y))j��(x; y)j (10)

for every � 2 (0; 1) and " > 0, where ��(x; y) x +
1

2��
sign(y)jyj2��.
Proof: Let � 2 (0; 1) and " > 0. The boundedness of sat

follows from the triangle inequality. To prove global finite-time

stability, we define the sets

A = f(x; y) : y � "y; ��(x; y) < �"�g

B = f(x; y) : y > "y; ��(x; y) � �"�g

C = f(x; y) : jyj � "y; ��(x; y) > "�g

D = f(x; y) : jyj � "y; j��(x; y)j � "�g

where "y = " and "� = " . Fig. 2 depicts these sets for
clarity. For convenience, denote��(x; y) by �� and @�

@x
(x; y) _x +

@�

@y
(x; y) _y by _��.

The boundary ofD; bdD = f(x; y) 2 D : jyj = "yg [ f(x; y) 2

D : j��j = "�g. It is easy to verify that onf(x; y) 2 D : jyj = "yg;

y _y � 0 while on f(x; y) 2 D : j��j = "�g; �� _�� � 0. It thus
follows that closed-loop solutions cannot leaveD in forward time,
that is,D is positively invariant. However, onD, (4) and (10) are
identical, that is, sat(x; y) =  (x; y) for all (x; y) 2 D. Hence
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it follows from Proposition 1 that the origin is a finite-time-stable
equilibrium.

The proof of global stability consists of showing that all trajectories
starting outsideD enterD after a finite amount of time. It can be
shown that after a finite amount of time (that depends on the initial
condition), every trajectory starting inA (�A) entersB (�B),
every trajectory starting inB (�B) entersC [ D (�C [ �D),
and every trajectory starting inC (�C) entersD, where�A =
f(x; y) : (�x;�y) 2 Ag, etc. The proof, which appears in [14],
is straightforward but tedious and is omitted in the interests of space.
Since every point outsideD lies inA[B [ C [�A[�B [�C, it
follows that the origin is globally finite-time stable.

Example 2: Fig. 2 shows the phase portrait for the double inte-
grator under the bounded feedback control law

 sat(x; y) = �sat1 y � sat1 x+
3

5
y (11)

which is obtained from (10) with� = 1

3
and " = 1. In this case,

as in Example 1, all trajectories converge to the setS defined in
Example 1 above. However, in certain regions of the phase plane,
 sat(x; y) = 0. This constant velocity “coasting” behavior of the
closed-loop system is similar to that of the closed-loop system
obtained by using the fuel-optimal controller for the double integrator
[2, pp. 675–703].

V. THE ROTATIONAL DOUBLE INTEGRATOR

The motion of a rigid body rotating about a fixed axis with unit
moment of inertia is governed by

��(t) = u(t) (12)

where� is the angular displacement from some reference andu is
the control torque. Equation (12) can be rewritten in the form (3)
by substitutingx = � andy = _�. However, for every(x; y) 2 IR2,
the states(x � 2n�; y); n = 0; 1; 2; � � � ; correspond to the same
physical state of the rigid body. The state space for the rotational
double integrator is, therefore, the two-dimensional cylinderS1� IR
rather thanIR2 [13].

Some applications might require that a particular angular position,
say� = 0, of the rigid body be rendered finite-time stable. In terms
of (3), this requirement means that each of the physically identical
states(�2n�; 0); n = 0; 1; 2; � � � in IR2 has to be a finite-time-
stable equilibrium. The feedback controller (4) given in Proposition 1,
however, finite-time stabilizes only the origin. This feedback law, if
applied to the rotational double integrator, leads to theunwinding
phenomenon. Unwinding can be understood by considering the initial
condition (4�; 0). This initial condition coincides with the desired
final angular position of the rigid body and no further control action
is needed. However, the feedback controller (4) takes the state(x; y)
from (4�; 0) to (0; 0), causing the rigid body to rotate at least
twice before coming to rest in the configuration it started in. For
spacecraft applications, unwinding is highly undesirable from the
point of view of vibration suppression and fuel consumption. Hence,
feedback controllers developed for the translational double integrator
are not always suitable for the rotational double integrator so that
finite-time stabilization of the rotational double integrator deserves
special consideration.

From the preceding discussion, it is clear that a feedback controller
for the rotational double integrator will not lead to the unwinding
phenomenon if it is periodic inx with period2�. One such feedback
law can be obtained by modifying (4) to

 rot(x; y) = �sign(y)jyj�

� sign(sin(��(x; y)))j sin(��(x; y))j (13)

Fig. 3. Rotational double integrator with the controller (13).

where��(x; y) is as given in Proposition 1. The phase portrait for the
closed-loop system (3) with the feedbacku =  rot(x; y) is shown
in Fig. 3 for � = 1

3
.

The phase portrait in Fig. 3 reveals several interesting features
of the closed-loop system. The closed-loop system has equilib-
rium points at sn = (2n�; 0); un = ((2n + 1)�; 0); n =
� � � ;�1; 0; 1; � � � : Of these, the equilibrium pointssn are (locally)
finite-time stable in forward time, while the pointsun are finite-
time saddles, that is, for everyn there exist solutions that converge
to un in finite time in forward time and solutions that do likewise
in reverse time. For a given� 2 (0; 1), the setDn = f(x; y) :
(2n � 1)� < ��(x; y) < (2n + 1)�g is the domain of attraction
of the equilibrium pointsn. The shaded region in Fig. 3 represents
a portion ofD0. The setsUn�1 and Un, whereUn = f(x; y) :
��(x; y) = (2n+ 1)�g; n = � � � ;�1; 0; 1; � � � ; form the boundary
of Dn and are the stable manifolds of the equilibrium pointsun�1

andun, respectively. All trajectories starting in the setDn converge
in finite time to the setSn = f(x; y) : ��(x; y) = 2n�g in forward
time and to the setUn�1[Un in reverse time. Moreover, the setsSn
are positively invariant, while the setsUn are negatively invariant.
The setsS0; U�1; andU1 are labeled in Fig. 3 for clarity.

A novel feature of the closed-loop system is the extreme
nonuniqueness of solutions to initial conditions lying in any of the
setsUn; n = � � � ;�1; 0; 1; � � � : For any given initial condition in
the setUn and for every� > 0, there exist two closed-loop solutions
starting from that initial condition such that both stay inUn until
exactly time� , and then one enters the setDn and the other enters
the setDn+1. One such initial condition is the equilibrium pointun.
Every solution starting fromun corresponds to the rigid body resting
in an unstable configuration and then spontaneously begins to move
clockwise or counterclockwise. There exists a solution exhibiting
every given departure time. Departure from an unstable equilibrium
is a feature unique to non-Lipschitzian systems. Lipschitzian systems
do not possess solutions that depart from an equilibrium.

It should be pointed out that the desired final configuration is
not globally stable because of the presence of an unstable equi-
librium configuration at� = � corresponding to the saddle points
un; n = � � � ;�1; 0; 1; � � � : This defect, however, is shared by every
continuous controller that stabilizes the rotational double integrator
without causing unwinding. This is because the desired configuration
corresponds to multiple equilibria in the phase plane, and thus
every controller that stabilizes the desired configuration stabilizes
each of these equilibria. Stability, continuous dependence on initial
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conditions, and uniqueness of solutions imply that the domains of
attraction of any two distinct equilibrium points in the plane are
nonempty, open and disjoint. SinceIR2 cannot be written as the
union of a collection of disjoint open sets, it follows that there exist
initial conditions in the plane that do not converge to any of the
equilibria corresponding to the desired configuration. In the case of
(13), these initial conditions make up the stable manifold of the
unstable configuration.

The controller (13) has the advantage that the non-Lipschitzian
character of the resulting closed-loop system makes the unstable
configuration extremely sensitive to perturbations. This sensitivity is
brought out by the fact that the closed-loop system admits solutions
that depart spontaneously from the unstable configuration, even in
the absence of external perturbations. Unlike in the Lipschitzian case
where solutions starting sufficiently close to an unstable equilibrium
stay in a given neighborhood of the equilibrium for arbitrarily
long periods of time, solutions of the non-Lipschitzian closed-loop
system that depart from the unstable equilibrium leave every small
neighborhood of the unstable equilibrium and converge to the stable
configuration in a bounded amount of time. Thus the non-Lipschitzian
nature of the closed-loop system renders the state of rest at the
desired configuration a globally stable equilibrium for all practical
purposes.
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Comments on “An Algorithm for Real-Time
Failure Detection in Kalman Filters”

Thomas H. Kerr

Abstract—In the above-mentioned paper,1 we object to claims made of
providing simpler implementation complexity or computational burden
without an explicit mechanization for obtaining a solution ever actually
being offered (and operations counts being tallied).

Index Terms—Constrained optimization, ellipsoid confidence region
CR2 overlap test, failure detection, Kalman filter, RAIM.

We have provided frequent up-to-date surveys of the status of
failure detection technology (elucidating the various emerging ap-
proaches) on seven previous occasions [1]–[5], [7], [8] in keeping
abreast of this fast changing area. We have developed first hand,
identified, specified, or recommended preferred implementations for
particular application situations or scenarios, including that of de-
tecting anomalous behavior of new navigation systems introduced
on SSBN submarines [10]–[17] and for a multisensor navigation
filter and failure detection, identification, and reconfiguration (FDIR)
strategy in the advanced tactical fighter (ATF) involving multiple
simultaneous navaids such as the joint tactical information and
distribution system (JTIDS) and global positioning system (GPS) and
the standard onboard Inertial navigation system (INS) [2], [3], [9].

Zolghadri claims [19, p. 1538, col. 2, par. 1] that the method
in [15] leads to anunconstrainedoptimization problem that is
complex to implement. We object on two points: first, [15] is a
constrainedoptimization problem and, second, whose solution only
requires finding the appropriate scalar Lagrange multiplier for a full
solution in just five evaluation steps [15, p. 523, Fig. 7]. We specify
the successive approximations iteration equation for it and prove
convergence as a contraction mapping (with geometric convergence
rate) and implement it in real-time in [10]–[12], as reported in
sanitized (unclassified) form in [14]–[17].

The assertion in [19, p. 1539, col. 1, step ii] is that Zolghadri has
a technique of lower computational burden than the earlier scalar
iteration equation of [15, p. 519, eq. 34], shown in (1) at the top of
the next page, for fixedw(k) [x̂1(k)� x̂2(k)] and fixed time-step
k in the above, starting with an initial guess of 0.75 for convenience
to be iterated onn to convergence for obtaining the scalar Lagrange
multiplier ��, but Zolghadri does not give a method for specifying
or solving for his corresponding optimal�0 to substantiate his claim
of offering a reduced computational burden (even though Zolghadri
asserts that the “dichotomy method allows one to approach rapidly
the negative root ofF (�)” in [19, p. 1539, col. 1, pt. ii], there is
not enough detail presented there or in [18] to allow a confirmation).
Initial indications are, even without Zolghadri explicitly specifying an
iteration equation (since his corresponding equations ([19, p. 1539,
step ii]) are

F (�) = 

T
(�)P

�1

2 (k)
(�)� � (2)
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