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Controllability of Nonlinear Time-Varying Systems:
Applications to Spacecraft Attitude Control

Using Magnetic Actuation
Sanjay P. Bhat

Abstract—Nonlinear controllability theory is applied to the
time-varying attitude dynamics of a magnetically actuated space-
craft in a Keplerian orbit in the geomagnetic field. First, sufficient
conditions for accessibility, strong accessibility and controllability
of a general time-varying system are presented. These conditions
involve application of Lie-algebraic rank conditions to the au-
tonomous extended system obtained by augmenting the state of the
original time-varying system by the time variable, and require the
rank conditions to be checked only on the complement of a finite
union of level sets of a finite number of smooth functions. At each
point of each level set, it is sufficient to verify escape conditions
involving Lie derivatives of the functions defining the level sets
along linear combinations over smooth functions of vector fields
in the accessibility algebra. These sufficient conditions are used
to show that the attitude dynamics of a spacecraft actuated by
three magnetic actuators and subjected to a general time-varying
magnetic field are strongly accessible if the magnetic field and
its time derivative are linearly independent at every instant. In
addition, if the magnetic field is periodic in time, then the attitude
dynamics of the spacecraft are controllable. These results are used
to show that the attitude dynamics of a spacecraft actuated by
three magnetic actuators in a closed Keplerian orbit in a nonro-
tating dipole approximation of the geomagnetic field are strongly
accessible and controllable if the orbital plane does not coincide
with the geomagnetic equatorial plane.

Index Terms—Attitude control, controllability, magnetic actua-
tion, time-varying systems.

I. INTRODUCTION

ATTITUDE control systems of earth satellites often utilize
magnetic actuation, in which the mechanical torque re-

quired for attitude control is generated by the magnetic inter-
action between the geomagnetic field and on board electromag-
nets or magnetic torquers. In the past, magnetic torquers have
mainly been used as secondary control actuators to assist other
primary means of actuation for control and stabilization. Thus,
magnetic torquers have been used for momentum management
of reaction wheels, damping augmentation in gravity gradient
stabilized spacecraft, and reorientation of the spin axis in spin-
stabilized spacecraft. Because of the sharp reduction in the geo-
magnetic field intensity with increasing altitude, the mechanical
torques produced by magnetic torquers are small in magnitude
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and, hence, magnetic torquers are not suitable as primary ac-
tuators in spacecraft that are large or operate at high altitudes.
However, because of their low cost, weight and power require-
ments, magnetic torquers provide an attractive option for very
small satellites operating at low altitudes. It is not surprising,
therefore, that an increasing interest in small satellites has led
to a recent growth of interest in attitude control systems that use
only magnetic actuation; see, for instance, [1]–[6] and the ref-
erences contained therein.

The principal difficulty involved in the use of magnetic
actuation for attitude control is that the mechanical torque
generated by any arrangement of magnetic torquers lies in a
two-dimensional plane orthogonal to the local direction of the
ambient magnetic field. Hence, it is natural to ask whether the
three-dimensional rotational motion of a spacecraft is control-
lable using magnetic actuation. In the case where the inertial
direction of the ambient magnetic field is constant, it is easy to
see that the component of the spacecraft angular momentum
along the direction of the magnetic field remains constant, and
hence the attitude dynamics of the spacecraft are not control-
lable. However, an earth satellite in an inclined orbit in the
geomagnetic field experiences a magnetic field that varies ap-
proximately periodically in time. While the time-varying nature
of the magnetic field along an orbit introduces complications
by making the attitude dynamics time varying, it also leads to
the possibility of full attitude controllability. This possibility
has been explored in recent work by several researchers. For
instance, the authors of [1], [2], [4], and [7] have applied periodic
linear quadratic optimal control to linearized models of the
attitude dynamics by using periodic approximations for the time
variation of the geomagnetic field along the orbit. Additional ref-
erences can be found in [5]. The importance of the time variation
of the magnetic field is highlighted by the results of [6], which
show that the seemingly underactuated attitude dynamics of a
magnetically actuated spacecraft that experiences a sufficiently
rich orbital variation of the geomagnetic field can be almost
globally asymptotically stabilized by continuous time-invariant
state or attitude feedback. In contrast, the attitude dynamics
of a spacecraft that is actuated by two independent actuators
such as reaction thrusters cannot even be locally asymptotically
stabilized by time-invariant static or dynamic feedback [8].

In this paper, we consider the controllability of the attitude dy-
namics of a magnetically actuated spacecraft translating along an
orbit in the geomagnetic field. Previous work on attitude control-
lability includes [9], [10]. Reference [10] considered the control-
lability of the translational and rotational dynamics of a space-
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craft subjected to a gravity gradient torque in a central gravita-
tional field. Reference [9] gives necessary and sufficient condi-
tions for the controllability of the attitude dynamics of a space-
craft using body-fixed gas jet actuators yielding one, two, or three
independent torques, and reaction wheels yielding three inde-
pendent torques. The problem of controllability using magnetic
actuation, however, is very different from the one considered in
[9]. First, in the case of two gas jet actuators, the control torque
is confined to a body-fixed two-dimensional plane. However, in
the case of magnetic actuation, the control torque is confined to
a two-dimensional plane that is determined by the inertial direc-
tion of the local geomagnetic field. Since the attitude dynamical
equations for the angular velocity are usually written in terms
of body-frame components, it follows that the angular velocity
equation for a magnetically actuated spacecraft also involves the
spacecraft attitude. Consequently, the results of [9] cannot be ap-
plied in the case of magnetic actuation. Second, the equations
of motion of a magnetically actuated spacecraft are time varying
due to the time variation of the geomagnetic field along the orbit.
As a result, standard results on controllability of time-invariant
systems do not apply directly.

Reference [11] used results on controllability of linear time-
varying systems along with a fixed-point argument to obtain suf-
ficient conditions for the local and global controllability of a
time-varying input-affine system on whose drift vector field
can be expressed as a “linear” system with a time-varying, state-
dependent state dynamics matrix. Motivated by the problem of
rescuing a derelict spacecraft adrift in space, [12] and [13] con-
sidered the controllability of conservative periodic and almost
periodic systems, respectively. Using techniques from topolog-
ical dynamics, it was shown that a control system that has a
compact state space manifold, and that is conservative and ei-
ther periodic or almost periodic in the absence of control is
globally controllable under the assumption of uniform control-
lability. Reference [14] showed that a similar result holds for a
family of conservative uniformly almost periodic vector fields
on a compact manifold if the assumption of uniform control-
lability is replaced by a more easily verifiable assumption in-
volving a Lie-algebraic rank condition on the extended state
space. In this paper, we give sufficient conditions for accessi-
bility, strong accessibility and controllability of a time-varying
nonlinear system using an approach that is closer in spirit to
that of [9] and [15], and apply these conditions to the attitude
dynamics of a magnetically actuated spacecraft.

In Section IV, we present the time-varying attitude dynamics
and attitude kinematics of a magnetically actuated spacecraft
subjected to a time-varying magnetic field. Because of the
time-varying nature of the dynamics, standard results from
nonlinear controllability theory are not directly applicable.
Therefore, in Section III we consider the controllability of a
general time-varying system. The original time-varying system
is extended to a time-invariant system by augmenting the state
with the time variable. We show that accessibility of the extended
system implies accessibility of the original system. We state
sufficient conditions for accessibility and strong accessibility of
the original system, in terms of Lie-algebraic rank conditions
(LARCs) involving the drift and control vector fields of the
extended system. A convenient feature of the results we state

is that they require the LARCs to be checked only on the com-
plement of the union of level sets of a finite number of smooth
functions instead of on the whole extended state–space. At points
on the level set of each function, it is sufficient to check that the
repeated Lie derivative of the function along some of the vector
fields in the module generated by the accessibility algebra is
nonzero, thereby verifying without computing higher order Lie
brackets that it is possible to steer the trajectories of the system
out of the level sets. Since Lie derivatives are easier to compute
than Lie brackets, our results provide modifications of standard
controllability results that are especially convenient to apply in
practical applications where it often happens that the low-order
Lie brackets computed initially satisfy the rank condition only
on an open dense set whose complement is a union of level sets
of smooth functions. We also state a sufficient condition for
controllability of the original system, when the extended system
is accessible. This condition, which requires the drift vector field
of the original system to be time-invariant and weakly positively
Poisson stable, and the control vector fields to be periodic with
a common period, is related to results given in [9], [10], and
[16] for time-invariant systems and results given in [12]–[14]
for time-varying systems.

In Section IV, we apply the results of Section III to the attitude
control of a spacecraft carrying three magnetic torquers in a gen-
eral time-varying magnetic field. We show that if the magnetic
field and its time derivative are linearly independent at every
instant, then the attitude dynamics of the spacecraft are strongly
accessible. In addition, if the magnetic field is periodic in time,
then the attitude dynamics of the spacecraft are controllable. The
controllability analysis presented in Section IV has two salient
features. First, we verify the accessibility rank condition by
computing Lie brackets of vector fields contained in the module
generated by the accessibility algebra rather than vector fields
contained in the accessibility algebra itself. This allows us the
freedom of first simplifying terms in the vector fields before
taking Lie brackets. Second, the vector fields that we compute
satisfy the required rank conditions only on the complement of
the union of level sets of a finite number of functions. While
an application of standard controllability results would have
necessitated computation of higher order Lie brackets, Theorem
3.1 of Section III allows us to conclude strong accessibility and
controllability by simply computing the Lie derivatives of the
functions defining the level sets along the vector fields already
computed.

It should be noted that even though our results assume the
presence of three magnetic torquers, the control system cannot
be considered fully actuated because the resultant torque pro-
duced by the torquers is confined to the two-dimensional plane
that is orthogonal to the instantaneous direction of the local
magnetic field. Indeed, we provide an example in Section IV
to show that, in general, the attitude dynamics of a spacecraft
carrying only two magnetic torquers may not be accessible.

In Section V, we apply the results of Section IV to a spacecraft
actuated by three magnetic torquers and moving along a closed
Keplerian orbit in the geomagnetic field. Following [2], [3], and
[7], we use a constant (nonrotating) dipole approximation for
the geomagnetic field. We show that if the orbital plane of the
spacecraft does not coincide with the geomagnetic equatorial
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plane, then the geomagnetic field and its time derivative along
the orbital motion are linearly independent at every point along
the orbit. Hence, the results of Section IV imply that the attitude
dynamics of a spacecraft actuated by three magnetic torquers in
the geomagnetic field are strongly accessible. The variation of
the geomagnetic field along a closed orbit is periodic in time,
and hence the controllability result from Section IV implies that
the attitude dynamics of such a spacecraft are controllable.

We begin by reviewing the necessary mathematical prelimi-
naries in Section II.

II. PRELIMINARIES

Let be a manifold. We will denote the set of real-
valued functions on by , and the set of vector
fields on by . Recall that is a ring under
pointwise addition and multiplication. Given , ,
we denote the pointwise sum and pointwise product of and

by and , respectively. Given and ,
, we denote the pointwise product of and by

, and the pointwise sum of and by .
is a module over , that is, is closed under linear
combinations formed with functions in as coefficients.
A submodule of is a subset of that is a module
over .

A function is proper if the inverse image of
every compact subset of under is compact.

Given , we let denote the
flow of . The flow is defined on an open subset of
[17, Prop. 2.1.15]. The vector field is complete if its flow is
defined on . If is complete, then is a
diffeomorphism for every .

A complete vector field is weakly positively
Poisson stable if, for every open set and every ,
there exists such that .

Given and , the Lie derivative of
with respect to is the function given

by . If , then we
denote . If , and

, then

(1)

Given vector fields , , their Lie bracket is
the unique vector field satisfying
for every [17, Sec. 2.2]. If , then

(2)

If is an embedded submanifold of a manifold , and
and are extensions to of the vector fields and ,
respectively, then is the restriction of to . In
particular, if for some , then, for every , the
canonical identification between and yields

(3)
The Lie bracket is a skew-symmetric, bilinear operator on

that satisfies the Jacobi identity, thus making a

Lie algebra. A Lie subalgebra of vector fields on is a linear
subspace over of that is closed under the operation of
Lie bracket.

Given a set and , we denote
, where the span is over . The distribu-

tion generated by is the union .
In the sequel, we will require the notion of a Hamiltonian

vector field on a symplectic manifold. Furthermore, we will use
the well known fact that a symplectic manifold carries a natural
volume form which is preserved by the flow of every Hamil-
tonian vector field defined on the manifold. We refer the reader
to [17, Ch. 3] and [18, Ch. 8] for details.

III. CONTROLLABILITY OF TIME-VARYING SYSTEMS

Let be an -dimensional real analytic manifold. Consider
the time-varying control system

(4)

where the drift vector field and the control vector fields
are complete, real-analytic time-varying fields on

the state space . Following [15], we assume that the control
input vector is a piecewise continuous
function of time that has finite right and left limits at every
instant of discontinuity, and that takes values in a connected set

containing 0 in its interior.
Given , and , the reachable set

of (4) from at is the set of all states that can be reached
at time by following solutions of (4) that start at at time .
The reachable set of (4) from starting at is the set of
all states that can be reached by following solutions of (4) that
start at at time , that is, .

The system (4) is accessible at at time if
has a nonempty interior in , and strongly accessible

at at time if has a nonempty interior
in for every . The system (4) is accessible (strongly
accessible) if it is accessible (strongly accessible) at every

for every . Finally, the system (4) is controllable if
for every and every .

In order to study the accessibility and controllability prop-
erties of (4), it is convenient to introduce the extended control
system

(5)

where the drift vector field and the control vector fields
given by and

, , , are complete,
real-analytic time-invariant fields on the -dimensional

real-analytic extended state–space manifold .
The extended system (5), which is autonomous, is obtained
from the original time-varying system (4) by appending the
original state with the time variable and augmenting the
time-varying state–space equation (4) with the equation .

Given and , the reachable set of (5)
from at is the set of all states in that can be reached in
time by following solutions of (5) that start at . The reachable
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set of (5) from is the set of all states in that can
be reached by following solutions of (5) that start at , that is,

. The extended system (5) is accessible
if has a nonempty interior in for every .

It is easy to see that implies that
for every . It is also easy to

see that and
for every and ,

where , , are the projections given by
, .

We denote by the set of vector fields generated by the ex-
tended control system (5), that is, is the set of vector fields on

of the form , where
. The completeness of the drift and control vector fields of (5)

implies that every vector field in is complete. The accessi-
bility algebra of (5) is the smallest subalgebra of vector fields
that contains . The accessibility algebra generates a module

over the ring . Thus, is the set of all linear com-
binations of vector fields in with coefficients from ,
and is the smallest submodule of that contains .

The strong accessibility algebra of (5) is the smallest subal-
gebra of vector fields that contains the control vector fields

and is closed under the operation of Lie bracket with
the drift vector field . We denote by the module gener-
ated by over the ring . Equation (2) can be used to
verify that and are Lie subalgebras. It follows that is the
smallest subalgebra of vector fields that contains and that is
a submodule of .

The distributions and are the accessibility distribu-
tion and the strong accessibility distribution, respectively, of the
system (5). It is easy to see that, for every ,

and . This fact allows us to calculate
the ranks of the accessibility and strong accessibility distribu-
tions by computing vector fields in and , respectively.

The set of vector fields satisfying
is a Lie subalgebra of containing the vector fields

. Moreover, since has the constant value 1
on , every vector field satisfying satisfies

. Thus, the Lie subal-
gebra of vector fields satisfying is
closed under the operation of Lie brackets with , and hence
contains the strong accessibility algebra . Therefore, it fol-
lows that, for every , the maximal integral manifold of

passing through is contained in the level set
of containing .

The following result, which is the main result of this section,
gives sufficient conditions for accessibility, strong accessibility,
and controllability of time-varying systems in terms of rank con-
ditions on the accessibility and strong accessibility distributions
of the extended system (5).

Theorem 3.1: Suppose there exist functions ,
, such that, for every , and every

, there exist an integer and
vector fields in such that .
Then, the following statements hold.

i) If for every satisfying
, , then the time-varying system

(4) as well as the extended system (5) are accessible.

ii) If for every satisfying
, , then (4) is strongly accessible.

iii) If the drift vector field is time invariant and Hamil-
tonian on with a Hamiltonian function that is proper,
the control vector fields , , are periodic in
time with a common period, and
for every satisfying , ,
then the system (4) is controllable.

The proof of Theorem 3.1 depends on the following lemma.
Lemma 3.1: Suppose , and let be an open

neighborhood of . If is a function such that
for every , then, for every integer

and for every choice of vector fields in , it
follows that for every .

Proof: Let be the set of functions that
are identically zero on . Let be the
set of vector fields having the property that
whenever . It is easy to show from the definitions that

for every and every
.

It follows from (1) that is a submodule of .
Since is a vector space under pointwise addition, for
every , , , and every , it fol-
lows that and

. Thus, is a Lie
subalgebra of .

We claim that contains . To see this, consider ,
, and . There exists such that

for every . Since , it follows that
for every . Hence,

for every . Consequently,
. Since was chosen arbitrarily, it follows that

for every . Since and
were chosen arbitrarily, it follows that . Thus,

is a subalgebra containing and, hence, contains . Since
is a submodule of , it follows that . The result

now follows by noting that if , then, for every integer
and for every choice of vector fields from ,

.
Proof of Theorem 3.1: Denote . For each

, denote . Finally,
let , so that is the disjoint
union of the sets .

Consider . Then, for some
, and for every . There

exists an open neighborhood of such that for
every and every . First, consider the
case where . If , then Lemma
3.1 implies that for every choice of

in . However, this contradicts the hypotheses of
Theorem 3.1. Hence, we conclude that contains a
point outside . By our construction of , for

. Hence . Applying the
same arguments as before, it can be shown that contains
a point . Continuing in this way, we
can construct a finite sequence of points such
that and for every

, and so that
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. In the case where ,
trivially.

i) Assume for every .
Then, by [15, Cor. 4.6], [19, Th. 2.2], and [20, Th. 3.9],
it follows that has a nonempty interior in

. However, . Hence it fol-
lows that has a nonempty interior in . Since
projections map open sets to open sets, it follows that

has a nonempty interior in .
Since was chosen arbitrarily, it follows that
the system (5) as well as the system (4) are accessible.

ii) Next, assume that for every
. There exist such that

for every . Thus
, where .

Since is a subalgebra of analytic vector fields, the
strong accessibility distribution has the max-
imal integral manifolds property [21, Cor. 2.1.7],
[22]. Let denote the maximal integral manifold
of through . Let and . Since

, it follows from [15, Lemma
3.5] that is a maximal integral manifold of
through . Since ,
and hence is an -dimensional submanifold
of [22, Th. 4.1]. Moreover, is contained in

. Since
is an -dimensional submanifold of ,

it follows that is an open subset of .
Since [15, Th. 4.5] implies that has a nonempty
interior in , it follows that has a
nonempty interior in . Since the projection

is a diffeomorphism between and ,
it follows that has a
nonempty interior in . Since and
were chosen arbitrarily, it follows that the system (4) is
strongly accessible.

iii) Suppose the drift vector field is time-invariant and
Hamiltonian on with a proper Hamiltonian func-
tion , and the control vector fields ,

, are periodic in time with a common period
. Our assumption implies that the vector field is

time invariant and the vector fields , on
are periodic in the second argument with period .

Let and define the map
by , where we identify with the
unit circle in the complex plane, and . Letting

denote the projection on the first factor,
it follows that .Since the vector fields
and , , are periodic in the second argu-
ment with period , these vector fields “project” onto
well-defined vector fields and , , on
satisfying for every and

. The function maps the reachable
sets of the system (5) to the reachable sets of the system

(6)

on .

Under the assumptions on , Liouville’s Theorem [18, Sec.
38] implies that the flow of preserves volume on . Since
the flow of is given by for every

, it follows that the flow of also pre-
serves volume on . can be written as the union of sets of
the form , , each of which is compact by
properness. Since the Hamiltonian function is constant along
the flow of , each set of the form , ,
is positively invariant under the flow of . Poincaré’s Recur-
rence Theorem [18, Sec. 16] now implies that the vector field

is weakly positively Poisson stable on each set of the form
, , and hence on (see also [10, Th. 2]).

Now, suppose for every sat-
isfying , . Then, point i) of Theorem 3.1
implies that the system (5) is accessible on . Since is a local
diffeomorphism that maps the reachable sets of (5) to those of
(6), it follows that the system (6) is accessible on . Theorem
3 of [10] now implies that the system (6) is controllable on .

Consider , and let . Letting
denote the reachable set of the system (6) from , it follows
from the controllability of (6) that .
Now

. Since was chosen arbitrarily, it
follows that the system (4) is controllable on .

Remark 3.1: It is well known that in the case of analytic sys-
tems, accessibility implies that the accessibility rank condition
in i) of Theorem 3.1 holds everywhere. See, for instance, [15,
Cor. 4.6]. Hence, from a theoretical point of view, Theorem 3.1
is equivalent to standard results on (global) controllability of
nonlinear systems which require verifying rank conditions on
the accessibility and strong accessibility distributions at every
state. However, applications of these standard results may re-
quire computing as many Lie brackets as necessary to verify the
rank conditions at every point, while, in practice, only a small
number of Lie brackets can be conveniently computed. It often
happens in practical applications of controllability theory that
the low order Lie brackets which are computed initially satisfy
the rank conditions only on an open dense set having a nonempty
complement. Typically, the complement is a union of level sets
of smooth functions. While an application of standard results
would require a tedious computation of additional higher order
Lie brackets, Theorem 3.1 simply requires showing the exis-
tence of nonzero Lie derivatives of the functions defining the
level sets along vector fields in the submodule generated by the
Lie brackets already computed. The existence of nonzero Lie
derivatives verifies “escape” conditions guaranteeing that the
trajectories of the system can be steered away from the level
sets where the rank condition has not been verified. Since Lie
derivatives of scalar functions are easier to compute than Lie
brackets of vector fields, Theorem 3.1 provides an extension of
standard controllability results that proves more convenient in
applications. The convenience provided by Theorem 3.1 is il-
lustrated by our application of Theorem 3.1 to the problem of
attitude controllability of a magnetically actuated spacecraft in
the next section.

Remark 3.2: Statement i) of Theorem 3.1 asserts the acces-
sibility of the autonomous extension of a time-varying system.
However, the proof of the statement does not rely on the special
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structure of the extended system or of the extended state space.
Hence, i) of Theorem 3.1 applies to any general autonomous
system. A similar remark applies to Lemma 3.1.

IV. ATTITUDE CONTROLLABILITY IN A TIME-VARYING

MAGNETIC FIELD

In this section, we apply the results of the previous section
to the attitude dynamics of a magnetically actuated spacecraft
subjected to a time-varying external magnetic field. We begin
by giving the equations of motion governing the attitude dy-
namics of a rigid spacecraft carrying magnetic actuators in a
time-varying magnetic field.

We describe the attitude of the spacecraft using a matrix
such that the multiplication of the body components of a

vector by gives the components of that vector with respect to
a reference inertial frame. The attitude kinematics of the space-
craft are then described by the equation

(7)

where denotes the instantaneous body-frame com-
ponents of the angular velocity of the spacecraft relative to the
reference inertial frame, and, for every

(8)

is the matrix representation of the linear map with
and denoting the familiar operation of cross product

on .
The attitude dynamics of the spacecraft are governed by

Euler’s equation

(9)

where is the symmetric positive–definite moment-of-
inertia matrix of the spacecraft with respect to its body frame,
and is the vector of instantaneous body-frame com-
ponents of the external torque acting on the spacecraft.

In the case of magnetic actuation, the external torque is the re-
sult of the magnetic interaction between on-board magnetic tor-
quers and an external magnetic field. Letting denote
the vector of instantaneous components of the external magnetic
field with respect to the reference inertial frame, the instanta-
neous body-frame components of the resultant external torque
due to the interaction between magnetic torquers and the ex-
ternal magnetic field is given by

(10)

where, for every , is the magnitude of
the instantaneous magnetic dipole moment of the th magnetic
torquer, and is the vector of body-frame components of the
unit vector along the dipole moment of the th magnetic torquer.
In this paper, we consider a spacecraft carrying three magnetic

torquers that generate linearly independent magnetic dipole mo-
ment vectors, that is, we take and assume , and to
be linearly independent. In this case, the equations (7), (9) and
(10) describing the attitude motion give rise to the time-varying
control system

(11)

on the 6-dimensional manifold , with the
time-invariant drift vector field and the time-varying control
vector fields , , given by

(12)

(13)

We assume the time variation of the magnetic field to be real
analytic and bounded. Then, the drift vector fields , and
are real analytic and complete. The drift vector field , which is
clearly analytic, represents the torque-free dynamics of a rigid
body, and is known to be complete.

The time-varying control system (11) gives rise to the time-
invariant extended control system

(14)

on the seven-dimensional extended state space
.

In this section, we apply Theorem 3.1 to the vector fields
of the control system (14) to deduce the controllability of the
system (11). For this purpose, we treat the vector fields ,
and as vector fields on and use (3) to compute
several Lie brackets involving the vector fields , and .
An alternative approach to computing Lie brackets on vector
bundles over is described in [10] and [23].

We begin with the Lie brackets

(15)

(16)

where , , and
. Strictly speaking, , and are -valued

functions on . However, we will suppress the arguments of
these functions for notational convenience.

Define by and
, ,2, by and

, , where
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. It can be verified by direct substitution that,
, , for every

. For every , let

(17)

(18)

and define and . Then
and . Since the vector

fields and are contained in the strong accessibility algebra
of the system (14), it follows that , .

Next, we compute

(19)

where ,

and define . Then
, and thus .

Define functions , , by

, ,

and for every
. It can be verified by direct substitution and al-

gebraic manipulation that the smooth functions , ,
satisfy

(20)
for every . Define

, , ,

, and
. Since for , it follows that

and . On noting that
for , it follows from (2) that and are linear

combinations over of the vector fields , , ,
, , , and , , each of which

is in . Hence, it follows that , .
To obtain expressions for and , we use (20) to write

, where, for every
, ,

,
, and . Direct computation

shows that , for every
, , , and for , while

for every and . Hence, it follows
that

(21)

(22)

for every .
In the proof of the theorem that we present later, we will re-

quire an explicit computation of the quantity and
the function . To perform the necessary computations, we re-
call that if , and is a symmetric invertible
matrix, then ,

, and . The second
identity shown previously follows from properties of the scalar
triple product on , while the third follows from an identity
given in [23]. Using these identities, the expressions for

and can be simplified to yield

(23)

Our next two results give sufficient conditions for strong ac-
cessibility and controllability of (11). Based on the vector fields
computed previously, we show that the accessibility and strong
accessibility distributions satisfy the required rank conditions
on the complement of a finite union of level sets of functions.
While an application of standard sufficient conditions for global
accessibility and strong accessibility would require computation
of additional vector fields in the accessibility and strong acces-
sibility algebras, Theorem 3.1 allows us to deduce accessibility
and strong accessibility after merely computing Lie derivatives
of the functions defining the level sets along some of the vector
fields computed previously.

Theorem 4.1: Suppose the magnetic field satisfies

(24)

Then, the attitude dynamics described by (11) are strongly ac-
cessible on .

Proof: We begin by recalling the function
and introducing the function given by

, , where is
the function given by .

Consider satisfying
and . Note that implies that

. Equation (23) implies that the
vectors , , and are linearly independent. Also, if

, then the
vector is parallel to the vector

, which contradicts (24). Hence,
at least one of and is
nonzero.

The facts that and , ,
are linearly independent can be used to show that, if

, then the vectors , ,
, , and , and hence the vectors ,
, , , and are linearly indepen-

dent. Similarly, if , then the vectors
, , , , and are linearly

independent.
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It now follows that, for every satisfying
, there exist six vector fields in that are linearly

independent at , that is, .
We note that the vector fields , , , and are all

zero on . Consequently, the rank of the strong accessi-
bility distribution at points in cannot be ascertained from
the vector fields considered so far. Instead of computing higher
order Lie brackets to ascertain the rank, we will next compute
Lie derivatives of the functions and , and show that the
escape conditions of Theorem 3.1 are satisfied at points on the
level sets of and .

Consider such that
. It is easy to compute

and
, . The

vectors , , are orthogonal to the vector
, and two of them are linearly independent since , and
are linearly independent. Now, if for every

, then the vectors , , are also
orthogonal to the vector . Thus,

for every implies that the vectors and
are parallel, which implies that . However, this

contradicts the fact that is a positive-definite matrix. Hence we
conclude that for some .

The Lie derivatives of the function along the vector fields
and are given by and

.
Consider such that . Then

satisfies

(25)

Equation (25) implies that is along a principal axis of in-
ertia, and the corresponding principal moment of inertia is

. Letting and denote the other two principal
moments of inertia so that , it follows
from that . Since and are
positive, it follows that is an unrepeated eigenvalue of . Let

and be linearly independent vectors orthog-
onal to the eigenvector of corresponding to the eigenvalue .
Define and by ,

, . It is clear from the above dis-
cussion that for every satisfying

. For every , an easy computation
yields and .
Now, consider such that and

. Then, implies
that the vectors , and are linearly dependent so
that . However, it can be shown after
algebraic manipulation that

(26)

which is nonzero. It follows that at least one of and
is nonzero. Consequently, at least one of

and is nonzero.
Identical arguments can be used to show that at least one of
the Lie derivatives and is nonzero for every

such that and .

Next, we consider such that
, , and .

Since , it follows that . If
and , then the expressions for

and along with imply that
, which contradicts (26). It follows

that at least one of and and, hence, at
least one of and is nonzero. Thus, we have
shown the following.

i) For every such that and ,
it follows that .

ii) For every such that , at least one of
the Lie derivatives , , is nonzero.

iii) For every and every , such that
and , at least one of the Lie derivatives

and is nonzero.
iv) For every such that , ,

and , at least one of the Lie deriva-
tives and is nonzero.

Hence applying ii) of Theorem 3.1 with , ,
, and , it follows that the attitude dynamics

described by (11) are strongly accessible on .
It is interesting to note that the attitude dynamics are not ac-

cessible if (24) is violated on . Indeed, if
for all , then the unit vector along the magnetic field is
a constant vector . Since all inertial torques are orthog-
onal to , the angular momentum of the spacecraft along is
constant. In other words, the function defined by

, , is constant along the
solutions of (11). The level sets of have an empty interior in

. Consequently, the attitude dynamics of the spacecraft are
not accessible.

Remark 4.1: It can easily be shown that (24) implies that the
matrix

considered in [6] is positive definite. Thus, our sufficient con-
dition (24) for strong accessibility implies the sufficient condi-
tion of [6] for stabilizability. The sufficient condition of [6] is
weaker, because the matrix is positive definite if and only if
(24) holds on an open (and possibly strict) subset of .

Theorem 4.2: Suppose the magnetic field satisfies (24) and,
in addition, is periodic. Then, the attitude dynamics described
by (11) are controllable on .

Proof: Consider the functions , , intro-
duced in the proof of Theorem 4.1. In the proof of Theorem
4.1, it was shown that six of the seven vector fields , , ,

, , and from are linearly independent at
every point satisfying . Since the
third component of each of the vector fields listed before is zero
while the third component of the vector field is 1, it fol-
lows that, for every satisfying ,
seven of the eight vector fields , , , , , , , and

from are linearly independent at , that is,
. It was also shown in the proof of Theorem 4.1

that, for every such that , at least one of the



BHAT: CONTROLLABILITY OF NONLINEAR TIME-VARYING SYSTEMS 1733

Lie derivatives , , is nonzero, for every
such that and ,

at least one of the Lie derivatives and
is nonzero while, for every such

that , , , and , at least
one of the Lie derivatives and is nonzero.

Now suppose the magnetic field is periodic in time. Then it
follows that the control vector fields , and in (11) are
periodic in time with a common period. The time-invariant drift
vector field in (11) represents the torque-free motion of a rigid
body, and is known to be Hamiltonian on with
the Hamiltonian equal to the rotational
kinetic energy of the rigid body. Since the kinetic energy is pos-
itive-definite and quadratic in the angular velocity, and is
compact, it follows that the Hamiltonian function is proper.
It now follows from iii) of Theorem 3.1 that the system (11) is
controllable on .

Theorem 4.1 holds for a spacecraft carrying three magnetic
torquers acting along three linearly independent axes. However,
the Lie brackets used to verify the accessibility rank conditions
in the proof of Theorem 4.1 involved only two of the three con-
trol vector fields. The third control vector field was only used
to verify one of the escape conditions. This might suggest that
accessibility may hold even in the case of a spacecraft carrying
two magnetic torquers. Our example below demonstrates that
the attitude dynamics of a spacecraft carrying two magnetic tor-
quers may fail to be accessible even if (24) holds.

Example 4.1: Consider a spacecraft carrying two magnetic
torquers in a time-varying magnetic field that satisfies (24) but
is confined to lie in a two-dimensional stationary plane. Such a
magnetic field would be experienced, for instance, by a space-
craft moving along an orbit in the magnetic field of a non-
rotating dipole whose axis lies in the orbital plane. The atti-
tude dynamics of such a spacecraft are described by (14) on

with . Moreover, there exists a
constant vector such that for all .

Let , , denote unit vectors along the body-fixed
principal axes of inertia of the spacecraft. The vectors ,
and are mutually orthogonal eigenvectors of the moment-of-
inertia matrix of the spacecraft. Assume that the unit vectors

and defining the axes of the two magnetic torquers lie in
the principal plane of inertia formed by and .

Define functions and by
and , where and

. Consider . The equalities
, , imply that the principal plane of inertia

formed by vectors and coincides with the plane in which
the magnetic field is confined, that is, the principal axis along

is parallel to the vector . The equalities ,
, imply that the angular velocity vector coincides with the

principal axis along . In particular, , implies

that the vectors and are parallel. Thus,
is the set of all extended states in

in which the spacecraft is rotating about the principal axis
of inertia along with the principal plane of inertia containing
the axes of the magnetic torquers coinciding with the plane to
which the magnetic field is confined.

It can be shown that the functions and , , have
linearly independent differentials at every . Hence, it fol-
lows that is a three-dimensional submanifold of . More-
over, the tangent space to at every consists of tangent
vectors to along which the differentials at of each and

, , are zero. Since the functions , , , are in-
dependent of time, the manifold is of the form ,
where is a two-dimensional submanifold of .

Next, consider . On noting that the vectors
, , and are all parallel, it follows that

and for
. The Lie derivatives are clearly zero for ,
. On noting that the vectors , , , , and
are all contained in the same two-dimensional plane,

it follows that for ,
. Since was chosen arbitrarily, it follows that the

vector fields , and are tangent to the submanifold .
It now follows that every vector field in is also tangent to the
submanifold , that is, for every , is contained
in the tangent space to at . Consequently, the maximal in-
tegral manifold of containing is contained in .
Given and such that ,
the reachable set which
has an empty interior in . Thus the attitude dynamics of the
spacecraft are not accessible at states contained in .

V. ATTITUDE CONTROLLABILITY IN THE GEOMAGNETIC FIELD

In the previous section, we have shown that the attitude dy-
namics of a spacecraft carrying three independent magnetic tor-
quers in a magnetic field are strongly accessible and controllable
if the ambient magnetic field and its time derivative are linearly
independent at every instant, and the magnetic field varies pe-
riodically in time. In this section, we show that the time varia-
tion of a constant dipole approximation of the geomagnetic field
along a closed Keplerian orbit satisfies the conditions mentioned
previously if the orbital plane does not coincide with the geo-
magnetic equatorial plane. Therefore, the attitude dynamics of
a spacecraft moving along such a closed Keplerian orbit in the
geomagnetic field are strongly accessible and controllable.

At low altitudes, the geomagnetic field can be approximated
by the magnetic field of a dipole. Assuming the geomagnetic
field to be generated by a magnetic dipole of dipole moment

that coincides with earth’s axis of rotation, the vector
of inertial components of the geomagnetic field at a point

having the geocentric position vector is given by

(27)

where and is the dipole strength [24, p. 783].
Consider a spacecraft moving along a closed Keplerian orbit

in the magnetic field (27). The geocentric position vector of such
a spacecraft satisfies for all , where is the con-
stant specific angular momentum of the spacecraft [25, Ch. 2].
We will assume that since corresponds to degen-
erate straight line orbits which have no practical utility. The orbit
lies in a stationary two-dimensional plane that is orthogonal to

. The orbital plane contains the geomagnetic poles if and only
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if , while the orbital plane coincides with the geomag-
netic equatorial plane if and only if for
every .

Differentiating (27) along the translational motion of the
spacecraft yields

(28)

where we have suppressed the time dependence of for con-
venience and denoted . After some simplifica-
tion, (27) and (28) yield

(29)

First, assume that the spacecraft orbital plane contains nei-
ther the geomagnetic equator nor the geomagnetic poles. The
second assumption implies that the three vectors , and

appearing in (29) are linearly independent at every point in the
orbit. The first assumption implies that if at a point
in the orbit, then, at the same point, the coefficient
of the vector in (29) equals . Thus, at every
point on the orbit, at least one of the coefficients of the linearly
independent vectors , and in (29) is nonzero. It follows
that (24) holds at every point along the orbit.

Next, assume that the spacecraft orbital plane contains the ge-
omagnetic poles. Then the vector is orthogonal to the or-
bital plane and hence parallel to the specific angular momentum

. Therefore, . Moreover,
. Thus, (29) reduces to

(30)
The quantity is zero only if is parallel to the ge-
omagnetic polar axis, while the quantity is zero only if
lies in the geomagnetic equatorial plane. Since , it follows
from (30) that (24) holds at every point along the orbit.

The previous arguments show that (24) holds along every
orbit that does not lie in the geomagnetic equatorial plane. In ad-
dition, the variation of the geomagnetic field (27) along a closed
orbit is clearly periodic with period equal to the orbital period.
Theorems 4.1 and 4.2 now lead to the following result.

Theorem 5.1: Assume that the geomagnetic field is given by
(27). Then the attitude dynamics of a spacecraft in a closed Kep-
lerian orbit that does not lie in the geomagnetic equatorial plane
are strongly accessible and controllable.

Remark 5.1: Equation (27) gives an axisymmetric, nonro-
tating approximation for the geomagnetic field. In reality, the
geomagnetic field involves higher order terms that are not ax-
isymmetric [24]. In addition, the polar axis of the geomagnetic
field does not coincide with the axis of rotation of the earth.
These facts imply that any point fixed in a geocentric nonro-
tating frame experiences a periodic variation in the geomagnetic
field due to the rotation of the earth. Thus, in general, a space-
craft in a closed Keplerian orbit would experience an almost

periodic (but not necessarily periodic) magnetic field variation
resulting from the periodic orbital motion of the satellite and the
periodic rotation of the geomagnetic field. The analysis of [14]
suggests that iii) of Theorem 3.1 and, hence, Theorem 4.2 ex-
tends to the almost periodic case. However, the analysis used in
this section to show that (24) holds does not extend directly to
more realistic models of the geomagnetic field. Thus the con-
trollability of the attitude dynamics of a spacecraft in a Keple-
rian orbit under a more realistic model of the geomagnetic field
remains open.

VI. CONCLUSION

We have given sufficient conditions for accessibility, strong
accessibility, and controllability of a time-varying control
system in terms of the drift and control vector fields of the
corresponding time-invariant extended system. Our conditions
require the rank conditions to be checked only on the com-
plement of a finite union of level sets of a finite number of
smooth functions. At each point of each level set, it is sufficient
to verify escape conditions involving Lie derivatives of the
functions defining the level sets along linear combinations over
smooth functions of vector fields in the accessibility algebra.
These conditions have been used to show that the attitude
dynamics of a spacecraft actuated by three magnetic torquers
and subjected to a time-varying magnetic field are strongly ac-
cessible if the magnetic field and its time derivative are linearly
independent at every instant, and controllable if, in addition,
the magnetic field is periodic in time. The time variation of a
constant dipole approximation of the geomagnetic field along
a closed Keplerian orbit has been shown to possess both these
properties in the case where the orbital plane does not coincide
with the geomagnetic equatorial plane.
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