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Two alternate modifications are proposed to the dissipation term in the mass flux computation of the low
dissipation AUSM scheme (SLAU2) developed recently by Kitamura and Shima [1,2]. These modifications
are required to remove the odd–even type instability that results in lateral oscillations behind oblique
shocks predicted by MUSCL based higher order versions of SLAU2. The first modification involves switch-
ing between the original term in SLAU2 and one similar to corresponding term in AUSM+-up. The second
modification involves use of density gradient aligned velocity instead of total velocity in SLAU2 (or face
normal velocity as in AUSM+-up) in calculation of Mach number that is required for computing this term.
It is observed that the second alternative not only delivers better results but also has a more easily dif-
ferentiable numerical flux that enables easier implicit computations while not altering the simplicity of
original SLAU2. The method also renders SLAU2 with a good balance between shock stability and contact
capturing ability.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The Advection Upstream Splitting Method (AUSM) based on cell
interface advection Mach number is considered to provide, simul-
taneously, the accuracy of flux difference splitting methods and the
robustness of flux vector splitting methods. It was first proposed by
Liou and Steffen [3] and modified several times [4–6] to address
the various pathological problems associated with high speed flow
solvers. A comprehensive review of AUSM related work was done
by Liou [7] and there have also been some more developments
since then [6,8]. To minimize numerical dissipation, Shima and
Kitamura developed a new AUSM version called SLAU (Simple
Low dissipation AUSM) [1,9]. SLAU2 [2] was developed later to deal
with the high speed flows and the shock capturing problem. While
SLAU2 has many advantages and it is quiet stable, its MUSCL based
second order extension predicted saw-tooth type oscillations in
density field behind oblique shock for compression ramp. It
appears that this susceptibility becomes evident only when
numerical shock thickness is low as it is the case in the second
order version. It is also possible that the oscillations result from
the multidimensional implementation or higher order extension
procedure rather than the scheme itself. In a comparative study
of many high resolution schemes, Liska and Wendroff [10] showed
that while Piecewise Parabolic Method (PPM) [11] is one of the
best schemes to capture the fronts in the Woodward–Collela
one-dimensional interacting blast waves test problem, it develops
unphysical wiggles while a simulating circular blast wave (test
case suggested by Toro). Most contact line resolving flux split
schemes like HLLC [12] suffer from the so called odd–even instabil-
ity. EFMO (equilibrium flux method with Osher intermediate
states) scheme [13,14] has been shown to be robust even at Mach
number of 100 for flow around a cylinder [13], it suffers from
odd–even instability [15] in the Quirk test [16]. Shima and
Kitamura [17] showed that SLAU with the van Albada limiter pre-
dicted post shock oscillations for this same problem which were
attributed to pressure difference related damping term becoming
zero in supersonic flows. A Shock Detecting SLAU (SD-SLAU)
scheme was proposed in which SLAU is replaced by LSHUS (low
dissipation simple high resolution upwind scheme) at the shock
front as a fix. Although, multidimensional limiting procedures are
available [18] to overcome problems associated with increasing
spatial order of accuracy, the problem of oscillations in SLAU2 with
higher order accuracy is due to the scheme itself rather than the
MUSCL procedure. In fact, the same MUSCL procedure was adopted
on other schemes to obtain oscillation free solutions.

Several plausible explanations were hypothesized and tested as
to why the oscillations appeared when using SLAU2 scheme in the
present study. In addition to trying out all known second order
TVD limiters, different combination of primitive variables were
considered for interpolation in the MUSCL procedure. Reconstruc-
tion procedure using interpolation of conserved variables, change
in mesh skewness at the corner and a problem with wall boundary
conditions which could propagate along the length of the shock
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were considered. As a simple solution, a damping term that is a
weighted average of the original term in SLAU2 and like one in
AUSM+-up was attempted. This approach is more seamless than
abrupt switching and was deemed more suited for unsteady simu-
lations with moving shocks. Also, the weights are based on a
parameter that characterizes unphysical oscillations rather than a
shock sensor. While this procedure was promising in most of the
test problems considered, it compromised the normal shock
related robustness of the SLAU2 in the Quirk’s test [16]. So, an
alternative procedure which uses density gradient aligned velocity
to calculate Mach number involved in pressure damping term was
constructed and tested.

In the following sections, the SLAU2 scheme and the MUSCL
scheme are explained. The two proposed modifications to prevent
oscillations behind shocks are presented next. The latter modifica-
tion is shown to suppress unphysical oscillations without losing
the established robustness of the SLAU2 scheme. This is demon-
strated through simulations of some standard test problems for
Euler equations.

2. Numerical method

An explicit second order Runge–Kutta scheme (see Appendix A)
was used for temporal integration of the governing equations. For
spatial discretization, the SLAU2 scheme from an earlier study [2]
was chosen. MUSCL procedure with minmod limiter is used for
extension to higher order accuracy in space because it is most
dissipative and thus less likely to amplify oscillations. The multidi-
mensional limiting process [18] is a linear multiple of the minmod
limiter and, therefore, this limiter is more likely to retain multidi-
mensional monotonicity better than any other.

2.1. SLAU2 scheme

The properties on left and right sides of the face are denoted
using subscripts ‘‘L’’ and ‘‘R’’ respectively. The pressure on the face
used for computing pressure flux is obtained using the following
equations.

pface ¼
pL þ pR

2
þ fþðMLÞ � f�ðMRÞ

2
ðpL � pRÞ

þ qL þ qR

2
c1=2½fþðMLÞ þ f�ðMRÞ � 1� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KL þ KR

2

r
ð1Þ

f�ðMÞ ¼ ðM � jMjÞ
2M

; if jMjP 1

¼ 1
4
ð2�MÞðM � 1Þ2; otherwise ð2Þ

In above equations, q, p and K denote the density, pressure and spe-
cific kinetic energy respectively. M represents face normal Mach
number computed using velocity normal to the face and c1/2 is
interfacial speed of sound. Kitamura and Shima [2] noted that the
SLAU2 is not very sensitive to the specification of the interfacial
of sound. A simple geometric mean of the values on either sides is
used after verifying the fact that replacing it with more complex
calculation using critical speed of sound (as in AUSM+-up) has
negligible impact on the results. The mass flux across the face is
computed using following equations

bM ¼ min 1;
1
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� v
2

Dp
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Dp represents the jump in pressure across the cell face. Velocity
vector and total specific enthalpy from upstream side along with
mass flux from above equations are used to compute the convective
fluxes.

2.2. MUSCL procedure

To extend the order of accuracy, dependent variable values just
to the left and right of the face are computed using higher order
interpolations. Primitive variables are extrapolated from cell cen-
ters to cells faces. Specifically, velocity components, density and
temperature are chosen. The results remained almost unchanged
when temperature was replaced by pressure. The extrapolation
procedure for the face (i + 1/2, j,k) which separates cells (i, j,k)
and (i + 1, j,k) on an uniform computational mesh is as follows
(indices ‘‘j’’ and ‘‘k’’ are dropped for the sake of clarity).

ULðiþ 1=2Þ ¼ Ui þ
/ðrLÞ

2
½Uiþ1 � Ui� ð10Þ

URðiþ 1=2Þ ¼ Uiþ1 �
/ðrRÞ

2
½Uiþ1 � Ui� ð11Þ

U in above equations represents a primitive variable. rL and rR deter-
mine the monotonicity of the variables on either sides of the face
and are determined using following equations.

rL ¼
Ui � Ui�1

Uiþ1 � Ui
ð12Þ

rR ¼
Uiþ2 � Uiþ1

Uiþ1 � Ui
ð13Þ

Higher order computations of face values lead to non-monotonic
behavior around sharp fronts, so a limiter function, u is used to
lower the order locally. Negative r indicates non-monotone behav-
ior and the limiter function is set to zero preventing higher order
extrapolation. A min-mod limiter which is second-order TVD and
also ensures multi-dimensional monotonicity [18] more than any
other limiter is used here.

/ðrÞ ¼maxð0;minð1; rÞÞ ð14Þ
2.3. Modifications to the damping term in mass flux computation

Stability analyses of shock capturing schemes using simple
cases [15,19,20] were reported in several past studies. While most
offered insights into the problems, some have offered actual pre-
scriptions. For example, Dumbser and coworkers [21] presented a
technique to predict threshold upstream Mach number for trigger-
ing odd–even instability for schemes with differential numerical
fluxes. Their analysis also pointed to shock upstream region as
the origin of the instability thus settling the debate between two
contrary views [22,23]. Pandolfi and Ambrosio [19] analyzed many
Riemann solvers including some from AUSM family and prescribed
how to localize damping to cure carbuncle phenomena. Earlier
work by Gressier et al. [15], using linear stability analysis, has
shown that strict stability and exact contact line resolution are
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incompatible for upwind schemes. One can then infer that mar-
ginal stability may be preferable if a balance is to be struck. Proving
marginal stability itself, however, may not be easy for the non-
differentiable fluxes of the AUSM family.

While pursuit of a perfect Riemann solver based on theoretical
analyses continues, physical intuition, empirical observations and
extensive testing are often the tools adopted to arrive at a robust
scheme. Some standards tests like those designed by Quirk [16],
Emery [24], etc. help in such regard. Based on such testing, some
adhoc fixes are proposed. The fixes [16,19,25,26] mostly involve
either combining a baseline accurate scheme with less accurate
but a more robust scheme to be used in problematic regions or
modifying the dissipation terms. Modification of the internal struc-
ture of the numerically predicted shock has also been found to be
effective especially in case of AUSM based schemes [20]. This is
usually done by appropriate specification of the numerical speed
on sound [27,28,6] on the cell faces of finite volume schemes.

SLAU being a recent version of AUSM has not yet been subject to
theoretical analysis and difficulties associated with such an
exercise are unknown partly because the term in question is not
differentiable at sonic point making the whole numerical flux
non-differentiable. Schemes with non-differentiable fluxes are
not as easily amenable to the kind of analysis done by Dumbser
et al. [21]. Numerical experiments were the basis of proposals
made here much like in the construction of SLAU and SLAU2 [1,2].

Liou originally argued that pressure jump term in mass flux
computation leads to carbuncle phenomena in AUSM and sug-
gested eliminating it completely [29]. However, this term appears
in AUSM+�up which was developed later. As noted by Dumbser
et al. [21], this conjecture has been refuted in many studies and
it is not surprising that this term appears in SLAU and SLAU2 as
well. In fact, Shima and Kitamura [9] attempted to remove this
term without success and had to retain it. So, no attempt was made
remove this term in present work. Instead, modifications were
attempted based on their observations and suggestion [30,1,17,9]
that dissipation terms along shock normal and parallel direction
may need to be considered separately. Forms designed to address
oscillations in one-dimensional simulations usually ended up
creating problems in multidimensional simulations and vice-versa
[9]. These observations along with numerical experimentation
provided only path forward since other physical explanations for
the odd–even instability have previously been argued to be insuf-
ficient [21].

The damping term in mass flux of AUSM+�up uses the average
face normal Mach number instead of actual Mach number. So, the
damping term can be non-zero even if overall flow is supersonic.
Taking a clue from this, Eqs. (3) and (4) were modified as follows
in order to suppress the post shock oscillations.

M ¼ min 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

L þM2
R

2

s24 35 ð15Þ
v1 ¼ ð1�MÞ2 ð16Þ
2.3.1. SLAU2.1
Post shock oscillations were eliminated by using v1 instead of v

in Eq. (9) but that approach creates problem while simulating
hypersonic flow around bluff bodies as shown later. So, a weighted
average of v and v1 is considered as an option. The present
approach of combining two alternate forms of a single term is lot
simpler than combining two completely different schemes to get
rid of shock instabilities [16,26]. In a way, this approach is similar
to one adopted by Ren [25] where extra dissipation is added
through the rotated flux mechanism. It is to be noted that the
proposed modification adheres to the overall strategy proposed
by Shima and Kitamura [17]. In particular, the difference between
schemes for computing fluxes for near shocks and elsewhere was
to be kept minimal. Here, in fact there is only one scheme. Only
one term is modified as per local requirements.

The weighted average approach rather than abrupt switching is
more seamless and stable as verified through some unsteady flow
simulations. The weight should be biased toward v1 when unphys-
ical oscillations are present. An unphysical oscillation is easily
detected using the values of rL and rR computed in the MUSCL pro-
cedure. If both are negative, there are two neighboring extrema
which constitutes unphysical behavior. So, the weight is defined
as:

x ¼ 1
1þ exp½2:5 maxðrL; rRÞ�

ð17Þ

v0 ¼ xv1 þ ð1�xÞv ð18Þ

v0 in above equation is used to replace v in Eq. (9). For high positive
values of rL and rR, x is negligible, v0 is close to v and the method is
closer to original SLAU2. Near two neighboring extrema, v0 is closer
to v1. This gradual switching technique proved to more stable than
abrupt switching. The weighting function proposed here is much
simpler than a shock sensor based switching function. Quirk [16]
demonstrated the effectiveness of switching techniques using
standard test problems but left out a detailed discussion of shock
sensors. For complex problems, however, the accuracy or robust-
ness may be limited by how shock is detected. Earlier work was
based on Harten switch and Jameson sensor [31] but more recent
work on shock detection (done for combining dissipative and
non-dissipative schemes for performing direct numerical simula-
tions or large eddy simulations of high speed flows) is based on
mostly Ducros sensor [32] and its variant [33] or more recent
alternatives [34,35]. Shock detection does not seem to have been
perfected yet – a fact evident from the tunable parameters in almost
all the sensors. Though this switching/merging function is simpler,
there is a numerical parameter in Eq. (17) whose value was
determined using a series of test problems. Its use goes against
the original SLAU2 design philosophy. But a single value seems to
produce acceptable results for all the test problems. At least, prob-
lem specific adjustment does not seem to be necessary. Genin [36]
combined HLLE [37] and HLLC [12] schemes using switching tech-
nique to capture contact lines while avoiding shock instabilities.
HLLE was used on faces aligned with shock normals while HLLC
was the baseline scheme. This technique was demonstrated using
a Quirk type test involving normal shocks. It is to be noted that
shock normal and parallel directions are obvious in that test (per-
formed using very slightly perturbed but almost cartesian mesh
with the shock). When the same technique was applied to hyper-
sonic flow simulation around a cylinder involving a bow shock,
the results are not as good as those reported by Quirk [16] using
a similar switching technique of resorting to HLLE normal to the
shock. The better results of Quirk are not surprising since the loca-
tions where HLLE is used could be determined a priori based on
knowledge of the nature of desired solution. The adjustable param-
eter in the shock sensor was also chosen through experimentation.
Quirk outlined a procedure for determining the tunable parameter
suggesting that it may depend on pre-shock Mach number. It,
clearly, is not easily applicable to unsteady flows. Genin’s predic-
tions may be improved by using gradual rather than abrupt switch-
ing but that would require characterization of graduation. Distance
from the shock in normal direction seems to be a sensible parame-
ter for this but it may be hard to compute in course of unsteady
simulations.
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2.3.2. SLAU2.2
While the previous modification was able to eliminate oscilla-

tions behind oblique shocks and worked well for most test cases,
it reduced the robustness of SLAU2 in capturing a normal shock
in the Quirk test [16]). The probable reason is that the proposed
change does not effectively pre-empt the formation of two neigh-
boring extrema. A more effective and, if possible, simpler pressure
jump term that automatically adjusts to the local requirements
(based on shock direction) was sought. Use of Mach number com-
puted using velocity normal to the shock in the damping term is an
obvious choice because the post shock normal Mach number is
always below unity and damping term will be non-zero. That
way, damping term is directionally dependent just as needed and
the robust normal shock capturing ability of SLAU2 could perhaps
be extended to oblique/curved shocks.

Shock normal direction can be detected in several ways. This
information is also needed in construction rotated Riemann solvers
which determine total flux as a combination of a shock-aligned and
tangential fluxes that are computed differently [38,25,26]. Levy
and coworkers [38] investigated three different angles for upwind
differencing. Their first choice is the flow direction, which in the
present instance amounts to using the actual Mach number (based
on total velocity), results in the original SLAU2 scheme. The other
two choices are pressure gradient and velocity magnitude gradient
directions which were shown to be equivalent for detecting shock
waves. They prescribed velocity magnitude gradient direction
because their study was intended to improve accuracy rather than
robustness of shock capturing. This choice was expected to help in
that regard in presence of shear waves. Nishikawa and Kitamura
[26] use the velocity difference (computed from left and right)
vector which also aligns with shock normal and is parallel to shear
but is not really equivalent to using velocity magnitude gradient
vector as claimed by the authors. One of the key goals of the pres-
ent work was to keep SLAU2 intact to the extent possible and that
included keeping unchanged the resolution of shear waves by
SLAU2. Either pressure gradient or density gradient can be used
to detect shock normal direction. The use of latter can be useful
in detecting contact lines in addition to shocks. In anticipation of
problems that may arise in resolving contact lines, density gradient
direction was chosen. Results were found to change insignificantly
in most problems if pressure gradient direction was chosen
instead. Eqs. (3) and (4), respectively, are replaced by the following
equations.

eM ¼ min 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

L;q þM2
R;q

2

s24 35 ð19Þ

v00 ¼ ð1� eMÞ2 ð20Þ

ML,q, MR,q represent the Mach numbers on either sides calculated
using velocities aligned with their respective density gradients
and interfacial speed of sound.

For one-dimensional cases, these equations are equivalent to
Eqs. (3) and (4) respectively. So the results for one-dimensional
Riemann test problems [10] including the 1.5 shock test [1], would
be no different from those obtained using the original SLAU2. Just
as in case of rotated Riemann solvers [25,26], the modification is
intended to deal with multidimensional instabilities.

In the low Mach number limit, the density gradients are
negligible but have non-zero values. The total Mach number and
density aligned Mach number are different. However, both v and
v00 are almost equal and the modified scheme would be very close
to the original SLAU2. For problems involving inclined shocks, the
Mach number based on shock normal velocity is always below
unity behind the shock which implies that v00 is non-zero thus
providing damping to kill transverse oscillations. With minimal
changes to the SLAU2 scheme, there is automatic adjustment to
both shock normal and parallel requirements. This modification
is demonstrated to be better than the previous one in the next sec-
tion. This modification unlike the previous alternative does not
involve a numerical parameter and is, therefore, preferable even
if the two modifications work equally well.

3. Results

In this section, simulations that illustrate the baseline scheme’s
problem with oblique shock predictions including those performed
to rule out any artifacts are presented first. The modifications for
fixing the problem are then tested. Hypersonic flow around circular
cylinder and Double Mach reflection problems are considered for
illustrating the effectiveness of the proposed modifications. These
two of these are standard test cases for carbuncle phenomenon.
While this phenomenon results mostly in unphysical behavior
ahead of the shock, there can also be post shock oscillations along
either directions. Double Mach reflection is a good test case for
checking the so called kinked Mach stem problem that plagues
many Riemann solvers. In addition, it also has a triple point which
may create problem for combined schemes or the weighted
averaging approach in the present work. The Emery test case also
has a triple point, an expansion fan intersecting a shock and two
slip lines. This is a good test case for checking contact line
capturing ability. The modifications did not seem to change the
results in any significant way worth noting for other test problems
considered.

Several other problems were also considered for testing the pro-
posed modifications but are not discussed here. The list included
the Rankine vortex problem [17,9], circular blast wave, Quirk test
problem, Emery test problem and other two-dimensional Riemann
problems [10].

The results obtained with SLAU2.1 were almost identical to
those of original SLAU2. The differences arise only when unphysi-
cal oscillations are detected. Otherwise, the first proposed modifi-
cation is of no consequence. SLAU2.2, on the other hand, may
actually produce different results from SLAU2 for problems where
the pressure difference related damping terms in the two are dif-
ferent. No differences are expected at contact lines. If the contact
line is normal to the flow (like in shock tube type problems), the
velocity is fully aligned with the density gradient everywhere
and both schemes have the same damping terms. Besides there
is no pressure jump across a contact line and so the pressure differ-
ence term is also minimal. For this reason, there will no difference
even when the contact lines is along the flow direction (i.e., the last
term in Eq. (9) is negligible because Dp is small). By this logic, it
can be concluded that the differences will arise in flows which
have zones where (i) there are pressure gradients and (ii) density
gradients are not aligned with the flow direction. One such prob-
lem involving a non-aligned shear wave was used previously as a
test case for the rotated Riemann solver [26]. The mixing between
the two streams involves both density and pressure gradients that
are not aligned to the flow directions. Unequal velocities lead to
shear as well. The rotated Riemann solver of Nishikawa and Kitam-
ura [26] uses direction sensor that is sensitive to shear unlike in
SLAU2 where flow alignment with density gradient is more rele-
vant. This problem actually can be used to study both effects of
shear as well as density gradient. Another problem with such con-
ditions is a stationary compressible vortex where pressure gradient
balances the centrifugal force. The flow is along tangential direc-
tion while pressure and density gradients are along the radial
direction. Solutions for these two problems are computed with
proposed modifications and compared to baseline SLAU2 and the
rotated HLL solver [26].



Fig. 2. Density isolevels predicted by SLAU2 scheme for Mach 3.0 flow through a
bent channel with post shock oscillations suppressed close to the wall.

Fig. 3. Density isolevels predicted by SLAU2 scheme for Mach 3.0 flow through a
channel with inflow entering at an angle.
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3.1. Flow around corners

A test case involving both convex and concave corners was cho-
sen instead of a simple flow over a ramp. This is a slight variation of
the test problem chosen by Levy et al. [38] for testing their rotated
Riemann solvers. A straight channel was bent at an angle of
tan�1(0.2) to create these corners at a fixed axial location. The
inflow Mach number was set to 3.0. The expansion fan and shock
generated at these corners respectively intersect away from the
wall. Some solvers that capture oblique shocks accurately might
predict oscillations if the shock happens to intersect an expansion
fan [39]. Fig. 1 shows the density isolevels predicted by second
order version of SLAU2 using a 240 � 100 mesh. The grid is carte-
sian upstream of the corner and is skewed downstream. Post shock
oscillations along the direction of the shock are clearly evident. v is
zero everywhere in the flow in this simulation. Since a finite vol-
ume scheme was used here, the pressure boundary conditions
are prescribed at face centers.

Since boundary curvature is zero at all cell faces of the mesh,
zero gradient boundary conditions is used for pressure. There is
usually no problem with this approach. Still, to ensure that the
oscillations are not a result of a problem that originates at the cor-
ner and propagates along the length of the shock, v is the replaced
by v1 while computing transverse fluxes on the first 20 faces close
to the lower wall. Results from this exercise are shown in Fig. 2.
This change supresses the oscillations near the wall but further
away, where the original SLAU2 scheme is retained, oscillations
are generated. So, the instability problem seems inherent to the
SLAU2 scheme. To also prove that the oscillations do not result
from sudden change in the mesh metrics at the corner, the problem
is simulated in a different way. Supersonic inflow at a non-zero
angle was prescribed as boundary condition to a constant area
channel. At one corner of the inflow boundary, a shock is generated
while an expansion fan is generated at the other. In this case also,
but with a perfectly cartesian mesh, the post shock oscillations
were generated as shown in Fig. 3. It is not clear that these oscilla-
tions are related to odd–even instability. The odd–even instability
is considered a failing of the baseline scheme and not a result of the
procedure for attaining higher order accuracy. Here, of course,
baseline first order code does not have this problem. It is to be
noted in this context that thicker numerically predicted shocks
are generally less susceptible to multidimensional instabilities
(flux difference splitting schemes which produce much crisper
shocks are much more susceptible to shock instabilities compared
to flux vector splitting schemes that produce thicker shocks). So, it
is not surprising that the oscillations appear only when higher
order extension is attempted in order to thin down the numerical
shock thickness.

Fig. 4(a) and (b) show the density isolevels predicted using the
two modifications proposed here. The post shock oscillations are
effectively supressed by using either of the two. If v1 is used to
calculate the damping term instead of the weighted average, no
oscillations appear behind the shock. But that results in unphysical
oscillations in case of hypersonic flow around a circular cylinder.
Fig. 1. Density isolevels predicted by SLAU2 scheme for Mach 3.0 flow through a
bent channel.
The other drawback is that the damping term based on face nor-
mal Mach number may change abruptly depending on the mesh
orientation. The contour levels of v1 are shown in Fig. 5. When
the mesh orientation changes at the corner, there is an abrupt
change in damping term when there are no gradients in the flow.
Such abrupt changes in mesh metrics are detrimental toward accu-
racy but are sometimes unavoidable in flow geometries of engi-
neering interest. This sudden change in damping might lead to
some numerical artifacts when the flow, unlike in present case, is
non-uniform.
3.2. Hypersonic flow around a cylinder

Fig. 6(a) shows the density isolevels for Mach 10 flow around a
circular cylinder predicted by SLAU2 using a 80 � 120 mesh and v1
to compute the pressure jump related damping term. Unphysical
oscillations around the stagnation streamline are clearly evident.
Instead of replacing v altogether, if the weighted expression based
on unphysical oscillation detector proposed in Eq. (18) is used,
proper solution as in Fig. 6(b) on par with one obtained using
original SLAU2 is obtained. When density gradient aligned Mach
number is used instead of the weighted average, there is very slight
improvement in the solution which is plotted in Fig. 6(c). Also, the
temperature contours (not shown here) were better predicted
when compared to the combined HLLC/E scheme with a shock
sensor developed by Genin [36]. Density profiles along the radial
line and the surface predicted using SLAU2.2 are compared to cor-
responding solutions of SLAU2 in Figs. 7 and 8 respectively. The
predictions of SLAU2.1 are completely indistinguishable from
those of SLAU2 and are, therefore, left out. The predictions in both
plots differ by less 0.4%. SLAU2 and SLAU2.2 underpredict the stag-
nation density by about 0.7% and 0.9% respectively when compared
to a theoretical estimate. The errors are of the same order as 1%
error reported for SLAU [9] at Mach 8 for this problem.

One concern about compound schemes (including rotated solv-
ers) is the convergence to steady state. The residuals tend to level
off with iterations and do not fall as rapidly as in case of individual
schemes [38,26]. So, the direction vectors used to combine the two
schemes are frozen after the residual falls below a chosen value to
accelerate further decrease. Nishikawa and Kitamura [26] argue
that this is of not of much concern in unsteady flows. However,
residuals leveling off at rather high values indicate the presence
of oscillations in time. To rule out such a possibility, the residuals



Fig. 4. Density isolevels for Mach 3.0 flow through a bent channel (a) SLAU2.1 scheme and (b) SLAU2.2 scheme.

Fig. 5. Distribution of v
1

in the pressure jump damping term on transverse faces for
Mach 3.0 flow through a bent channel.

Fig. 7. Density variation along the stagnation stream for Mach 10 flow around a
cylinder.

Fig. 8. Density variation on the surface as function of angle for Mach 10 flow over a
circular cylinder. 0� corresponds to the stagnation point.
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are plotted for all three version of the SLAU2 scheme in Fig. 9.
Residuals level off at much lower values with the suggested mod-
ifications. Robustness is achieved here by introducing additional
damping as needed just as in case of rotated Riemann solvers. So,
better convergence is to be expected. It is somewhat unclear why
this is not the case with rotated Riemann solvers.

3.3. Double Mach reflection

This test is intended to check if solvers create a kinked Mach
stem, an unphysical artifact that appears due to insufficient trans-
verse dissipation [15]. A Mach 5.5 shock wave moves up a ramp of
30� creating a double Mach stem with a shock triple point. At the
foot of the shock on the inclined surface, some solvers [15,16] cre-
ate an unphysical triple point supposedly resulting from a jet of
fluid hitting it from the upstream side [9]. The density isolevels
predicted by the original SLAU2 scheme and the second modified
version proposed here are shown in Fig. 10(a) and (b) respectively.
No kinked Mach stem or a hint of it is seen in both the results. A
180 x 100 mesh, roughly the same as 200 � 100 mesh used by
Gressier et al. [15] in their comparative study, was used for the
simulations. Unlike the results using EFM in that study, there is a
hint of a jet hitting the shock on the inclined wall. So, SLAU2 is
accurate enough for shear waves to capture this feature.

The original SLAU2 predicts some post shock tranverse oscilla-
tions that the modified version does not. Such oscillations were
also reported earlier by Shima and Kitamura [9] although their
simulations were done with a Mach number of 10 and with much
greater resolution, both of which, would make a shock more sus-
ceptible to instabilities, if any. In fact, the double Mach reflection
case was simulated with a shock moving at Mach number of 1.7
to compare with high resolution WAF-HLLC results reported in lit-
erature. No unphysical oscillations were observed in the original
SLAU2 predictions for this case.
Fig. 6. Density isolevels for hypersonic flow in front of a circular cylinder (a) SLAU2 usin
3.4. Shear wave problem

This problem involves steady flow from left to right through a
square domain of unit size. The inflow conditions for top and
bottom halves are specified as follows.

ðq;u; v; pÞtop ¼ ð0:25;4:0;0;0:25Þ ð21Þ

ðq;u; v; pÞbottom ¼ ð1:0;2:4;0;0:5Þ ð22Þ
g v
1

to compute pressure jump related damping term, (b) SLAU2.1 and (c) SLAU2.2.



Fig. 9. Convergence of various schemes.

Fig. 11. Density isolevels for shear wave problem.

Fig. 12. Density profiles at the exit for the shear wave problem.
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Zero gradient conditions are used at upper and lower boundaries
while simple extrapolation is used at the right boundary. The mix-
ing between the two streams involves both density and pressure
gradients that are not aligned to the flow directions. Unequal veloc-
ities lead to shear as well. The rotated Riemann solver of Nishikawa
and Kitamura [26] uses direction sensor that is sensitive to shear
unlike in SLAU2 where flow alignment with density gradient is
more relevant. This problem actually can be used to study both
effects of shear as well as density gradient. The solutions are
computed using baseline SLAU2 and the two proposed modified
versions along with the RHLL solver [26] on a 100 � 100 mesh. Nis-
hikawa and Kitamura [26] used double the resolution and first
order schemes for computing the reported solutions. The present
study is based completely on second order schemes and direct com-
parison with their predictions is not possible. Solution computed
using a second order version of RHLL is used here instead. The solu-
tion contains a contact line in the middle of the domain that is
slightly misaligned with the abscissa and two inclined shocks orig-
inating at the same point on the left boundary. Density isolevel plot
made from solution of SLUA2.2 scheme is shown in Fig. 11. This plot
is indistinguishable from one made using SLAU2. The shocks facili-
tate equilibration of pressure around the contact line with imposed
pressures of top and bottom boundaries. The density variations
along the vertical line at the exit are plotted in Fig. 12. SLAU2.1
results are once again left out since they coincide with those of
SLAU2. The results of SLAU2 and SLAU2.2 appear to be very similar
at this scale. Density and pressure gradients exist only near shocks
just as in previous problems. At least, this test case helps establish
that the SLAU2.2 does not generate any unphysical behavior at the
triple point. Both SLAU2 and SLAU2.2 capture contact line as well as
the rotated solver although the latter captures shocks are crisply.
Numerical shock thickness is known to be slightly higher in case
of SLAU2 when compared to flux difference splitting schemes and
other AUSM versions and the same is true with its modified
versions as well.
Fig. 10. Density isolevels for Mach 5.5 shock travel
3.5. Effect of modifications on numerical dissipation

Low dissipation is a key desirable feature of SLAU schemes.
Specifically, it does not suffer from the D’Alemdert paradox
(non-zero drag prediction for circular cylinder in low speed invis-
cid flow). As argued previously, in the limit of zero Mach number,
the modifications proposed here are inconsequential. The numeri-
cal dissipation of both SLAU2.1 and SLAU2.2 would be same as in
original SLAU2 and much lower than other shock capturing
schemes. This is demonstrated by simulating the Taylor Green
vortex problem. Low dissipation of SLAU2 has already been
established using other problems but this problem is particularly
relevant if SLAU2 is to be considered for large eddy simulations
where numerical viscosity should be kept minimal. Later, a highly
compressible test case is presented, where SLAU2.2 has different
dissipation characteristics is discussed.

3.5.1. Low Mach number test case: Taylor Green Vortex
The numerical viscosities associated with different scheme have

been estimated using the Taylor Green vortex problem by fitting
the functional forms of viscous solutions to inviscid numerical
ing up a 30� ramp (a) SLAU2 and (b) SLAU2.2.



Fig. 14. Radial density profiles for the compressible vortex problem with various
schemes.
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solutions. The computed numerical viscosities (m) for three differ-
ent grid resolutions (N) are compared with those of RHLL scheme
[26] in Fig. 13. It is clear from the figure that numerical dissipation
of SLAU2.2 is order of magnitudes lower than those of RHLL. The
results of SLAU2.1 and original SLAU2 are indistinguishable from
those from SLAU2.2.

3.5.2. High Mach number test case: Stationary compressible isentropic
vortex

This test case which has a steady state analytical solution [40] is
often used to verify the high resolution capability of weighted
essentially oscillatory (WENO) or other schemes intended for tur-
bulence computations. This case is more relevant for present study
than the Rankine vortex problem that was used earlier to establish
low dissipation nature of SLAU2. That is because, the damping term
in SLAU2 and SLAU2.2 become identical in the limit of zero Mach
number. Differences would appear only at high subsonic Mach
numbers. The following equations constitute a steady state solu-
tion for this problem.

u ¼ eseað1�s2Þ sin h ð23Þ

v ¼ �eseað1�s2Þ cos h ð24Þ

T ¼ �ðc� 1Þe2e2að1�s2Þ

4ac
ð25Þ

where s is the distance from the center of the vortex non-
dimensionalized by the critical radius of the vortex (=0.05). The
parameters a = 0.204 and e = 0.8 quantify the radial spread and
intensity of the vortex. Density and pressure are computed using
isentropic flow relations. The flow is in tangential direction while
density and pressure gradient are along radial direction. So v00

would be unity everywhere. The intensity of the vortex is increased
(compared to previous studies on high resolution scheme and
shock-vortex interactions where e has a much lower value) to make
the flow highly compressible and bring out the differences between
predictions of SLAU2.2 and the original SLAU2. The peak Mach
number is roughly around 0.8. v, which is used to compute pressure
difference related damping term approaches zero. The differences in
solutions result mainly from differences in values of v00 (used in
SLAU2.2) and v (used in SLAU2). To have quantitative comparison
of numerical dissipation of various schemes, the radial profiles of
density on a uniform 100 � 100 mesh at time of 10 is presented
in Fig. 14. At this time, there is significant decay of the vortex due
to numerics. The decay rate associated with RHLL is much higher
than any of the SLAU2 versions. Unlike in case of Rankine vortex
simulations reported earlier [9], where a Roe scheme destroyed
Fig. 13. Comparison of numerical viscosities of RHLL and SLAU2.2.
the axisymmetric nature of the solution, all schemes here including
RHLL retain it. At first glance, SLAU2.2 seems to predict faster decay
than SLAU2 but that is only in the core region dominated by rigid
body type rotation. Beyond the core (critical radius), the decay
seems actually lower in SLAU2.2 predictions. This, however, does
not necessarily imply less numerical dissipation of SLAU2.2 in this
region. Once the vortex starts to decay, initial balance between
the pressure gradient and centrifugal force is lost and velocity fields
develop a small radial component. The initial difference between
SLAU2.2 and SLAU2 is due to the damping term but the subsequent
divergence may depend on the inherent dynamics of the flow. Also,
the decay in case of both SLAU2 versions is likely due to the limita-
tions of the MUSCL approach. Combining SLAU2 schemes with a
higher order interpolation schemes for computing face values
may actually lower dissipation to levels acceptable for turbulence
computations.
4. Conclusions

Two modifications were proposed to the SLAU2 scheme in order
to eliminate transverse post shock oscillations under certain condi-
tions. The first was arrived at using an idea borrowed from the
AUSM+-up scheme while the second was motivated by a sugges-
tion from original developers of SLAU2 scheme that different
damping treatments are needed along shock normal and parallel
directions. This has been achieved by an automatic adjustment of
a single term rather than using two different schemes like in case
of SD-SLAU [17] or rotated Riemann solvers [38,26]. The more
robust latter modification depends on density gradient as a mea-
sure of how a face aligns with a shock rather than adjustable
parameter dependent complex shock sensors in combined
schemes of the past. No unphysical behavior was predicted while
using this approach at intersection points of multiple shocks. There
is no hint of carbuncle phenomena, kinked Mach stems or other
pathological problems associated with Riemann solvers. SLAU2.2
proposed here is mostly designed to fix the problem of oscillations
behind oblique shocks. In some canonical test problems (like dou-
ble Mach reflection test case), however, there is no sign of instabil-
ity behind normal shocks.

The low numerical dissipation of SLAU2 scheme makes it good
choice for large eddy simulations of supersonic flows. The numeric
caused decay in the compressible vortex problem could possibly be
reduced by replacing MUSCL approach with a higher order interpo-
lation scheme like PPM, an adaptive limiter [41] or a WENO
scheme. For this, hybridization with a non-dissipative higher order
scheme or adaptive limiters [41] are needed. Work in this direction
is being pursued and will be reported in the future. The contact
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resolving ability of the scheme is also expected to be useful for
modelling mixing and flames in combustors.

Appendix A

The second order Runge Kutta method used for time integration
is this work for a set of differential equations dy/dt = f(y) is summa-
rized as follows.

y� ¼ yn þ dt f ðynÞ

ynþ1 ¼ ðyn þ y�Þ=2þ dt f ðy�Þ=2

where ‘‘n’’ and ‘‘n + 1’’ denote current and next time steps and ‘‘dt’’
is the time step.
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