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A simple hybrid finite volume solver for compressible turbulence
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SUMMARY

A simple, explicit, hybrid finite volume method for simulating compressible turbulence is developed
by combining a fourth-order central scheme and a shock-capturing simple low-dissipation advection
upstream splitting method. The total flux on each of the cell faces is computed as a weighted average
of central/nondissipative and upwind/dissipative fluxes. The weights are determined using an unphysical
oscillation sensor in addition to a more traditional discontinuity sensor used in earlier studies. Shocks are
well captured, but overshoots in density are predicted around contact discontinuities that are normal to the
flow. The use of the latter sensor effectively prevents these overshoots from generating spurious oscillations
that travel away from the contact lines. The efficacy of the proposed method for direct or large-eddy
simulations of supersonic turbulence is established using several canonical test problems. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Direct numerical simulation (DNS) and large eddy simulation (LES) have increased the predictabil-
ity of turbulent flows significantly over what is possible with Reynolds averaged approaches. Much
of the work on these approaches has focused on incompressible flows. For such flows, keeping the
dissipation associated with numerics of non-viscous (and in case of LES, non-subgrid) terms mini-
mal is a key requirement. This can be met by using very-high-order upwind-biased schemes that are
slightly dissipative or dispersive central schemes for discretizing the advection terms. The central
schemes were shown to be better especially if the small-scale dynamics are important like in reacting
flows [1]. In fact, schemes that conserve kinetic energy exactly in the inviscid limit have been
developed [2] and extended later for compressible flows [3, 4]. Compact schemes [5] that provide
good resolution over a broad range of scales are alternatives to these schemes, although more recent
upwind versions have some slight amount of dissipation. These schemes or any nondissipative ones
cannot be used for supersonic flows because they generate numerical oscillations around shocks
and contact lines. Numerical dissipation is needed to capture these discontinuities. The numerical
dissipation should be highly localized around discontinuities. Otherwise, it would damp out physical
oscillations needed to model the turbulent energy cascade.

For capturing shocks in turbulence simulations, four approaches are commonly used [6]. The
artificial dissipation approaches based on work by Jameson and coworkers in the context of Euler
and Reynolds averaged Navier–Stokes solvers have now been tailored for use in LES [7–11].
In the context of LES, they are referred to as hyperviscosity approaches. Several hyperviscosity
expressions have been proposed which act selectively in the vicinity of shocks to keep the numerical

*Correspondence to: V. K. Chakravarthy, Defence Research Development Laboratory, Kanchanbagh, Hyderabad 500058,
India.

†E-mail: v_kalyana_chakravarthy@yahoo.co.in

Copyright © 2015 John Wiley & Sons, Ltd.



708 V. K. CHAKRAVARTHY, K. ARORA AND D. CHAKRABORTY

oscillations generated by the baseline nondissipative scheme under check while retaining the
physical turbulent fluctuations intact. Fu and Ma [12] identified nonuniform group veloc-
ity distribution as the origin of these numerical oscillations and proposed appropriately
designed hyperviscosity expressions as a way of controlling it. Their expressions turned out to
be a bit more complex than the ones based on the work of Cook and coworkers, which are
most commonly used [7–11]. The hyperviscosity terms usually have adjustable constants that are
not universal; that is, the adjustable constants may depend on the stencils used for computing
hyperdiffusion terms [10]. These approaches have mostly been implemented using compact
schemes. When using a noncompact baseline scheme, the form of hyperdiffusion terms or at least
the numerical constants in them may need to be modified. Sometimes, an additional filtering step
to remove poorly resolved oscillations away from shocks is also needed [13, 14]. It is to be noted
that parallelization of compact schemes on distributed memory architecture-based machines is not
as straightforward as it is for fully explicit methods.

Flux split schemes whose construction relies on the hyperbolic characteristic nature of Euler
equations are commonly used for capturing shocks effectively. Higher-order extensions to flux split
schemes are achieved mostly using the Monotonic Upstream-centered Scheme for Conservation
Laws (MUSCL), essentially nonoscillatory (ENO) or weighted ENO (WENO) approaches. The
MUSCL approach is relatively simple and generally limited to spatially second order at most. Order
of accuracy as high as seven has been reported for some of the ENO/WENO approaches. Being
only second order accurate, MUSCL-based flux split schemes by themselves are too dissipative and
unsuitable for turbulence computations. WENO schemes are significantly more complex and are
still being refined with choice of interpolation stencils, smoothness indicators being the areas of
focus [15, 16]. WENO schemes have been proposed for use in LES because of their higher-order
nature in smooth regions, but some have argued [6, 11, 17] that they are still too dissipative for LES
in regions away from shocks. They are mostly used in the context of LES as parts of hybrid solvers.
A nondissipative scheme, typically compact, is hybridized with a ENO/WENO scheme to arrive at
a high-resolution LES solver [17–19]. Such solvers are very complex, hard to develop and still not
fully without problems. For example, the nonoscillatory nature of ENO/WENO schemes is generally
based on one-dimensional constructions along grid lines. In multidimensional simulations, however,
oscillations can appear [15] because the multidimensional extensions may not necessarily be
nonoscillatory. With additional complexity, quadrature terms can be added to render multidi-
mensional nonoscillatory nature. Some of the kinetic energy-preserving schemes have also been
hybridized with flux split schemes [20, 21]. The main challenge for hybrid schemes is detection of
shocks and localization of numerical dissipation around them.

Another approach for high-speed LES is based on explicit filtering pioneered by Adam, Stolz, and
their coworkers [22–25], which seeks to filter solutions obtained using higher-order central schemes
to get rid of oscillations they generate around shocks. An integrated approach where such filtering,
in addition, would account for the effect of unresolved subgrid scales was also developed and used
to perform LES of several supersonic flows. This is facilitated by the fact that lack of sufficient
resolution to resolve dissipation range of scales results in high-wavenumber oscillations similar to
ones created when using nondissipative schemes to capture shocks. However, two filters are needed
in this approach, and local adaptation of the secondary filter was found to be necessary for capturing
shock turbulence interactions accurately [24]. Integrated modeling of shocks and subgrid effects is
not unique to filtering approaches. It is also performed using hyperdiffusivity approaches described
earlier, but this has been questioned recently in the context of high Reynolds flows [26], and the
methodology continues to be refined [27, 28].

Recent approaches based on characteristic filtering [14, 29, 30], which do not depend on WENO
schemes, seem very promising for LES and are becoming increasingly popular. They, however, still
rely on compact schemes for baseline solvers. Numerical oscillations that are generated far from
shocks have to be controlled by biasing the compact scheme [29, 30] or by using an additional
low-pass filtering step [14].

It is clear that additional care is needed to suppress numerical oscillations away from disconti-
nuities in all types except pure WENO methods. In this paper, a simple explicit (i.e., noncompact)
hybrid scheme with such a feature is presented. A spatially fourth-order-accurate MacCormack

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 77:707–731
DOI: 10.1002/fld



A HYBRID FINITE VOLUME SOLVER 709

scheme and a SLAU2 scheme [31–34] extended to a higher order using the MUSCL approach are
used as components. The hybridization procedure is based on a discontinuity sensor proposed by
Genin [35] and a newly devised Gibbs phenomenon detector. In the rest of this paper, the hybridiza-
tion procedure is first explained and then validated using a variety of canonical problems that have
been proposed for testing solvers intended for supersonic turbulence.

2. HYBRID SOLVER

An explicit, second-order Runge–Kutta scheme is used for temporal integration of the governing
equations. Second-order temporal accuracy is generally considered adequate for LES. Temporal
accuracy can easily be extended to higher orders if needed later.

A cell-centered finite volume scheme is used to spatially discretize the governing equations. The
desirable spectral characteristics of the scheme depend on how the inviscid fluxes at the cell face
centers are constructed using dependent variables (conservative variables in the present case) at
cell centers.

The following expression is used to compute the flux at cell faces:

Fh D �Fc C .1 � �/Fu (1)

Fc and Fu are the centered and upwind fluxes computed, respectively, using fourth-order
MacCormack and second-order modified SLAU2 schemes. The MacCormack scheme is a good
choice because it is perhaps the simplest nondissipative scheme that does not need artificial
dissipation for stability or special care like the Rhie–Chow correction [36] for preventing
checkerboard-type oscillations on nonstaggered meshes. It was spatially second order accurate
originally, but fourth-order versions have been developed later [35, 37, 38]. The spatial stencil
proposed by Genin [35], which minimizes the numerical oscillations, is used for interpolation of
variables from cell centers to cell faces. Like in the original MacCormack scheme, fluxes in the
present work are computed at cell centers and interpolated to the cell faces rather than interpolation
of conserved variables to the cell faces and construction of fluxes based on them.

Prior to hybridization, the central scheme has been independently checked for its spatial order
of accuracy using the Taylor–Green vortex problem. The details of the scheme and results for this
problem are included in Appendix A. Two-dimensional laminar flow in a lid-driven cavity [39]
has also been simulated in order to check if grid independence is reached at 80 � 80 resolution as
observed in many previous studies [40]. The details of this exercise are left out here for brevity.

The SLAU2 scheme developed by Shima and Kitamura [32, 33] has recently been modified to
improve shock-predicting capability [34]. This scheme has features well suited for DNS and LES. It
has robust shock-capturing ability, which is impervious to the specification of the numerical speed
of sound. This feature should be very useful in simulating reacting flows in which determining the
speed of sound is not easy. It also has numerical dissipation low enough to overcome the D’Alembert
paradox that plagues many flux split schemes. This scheme is used here with a van Albada limiter.
� is the switch that is closer to unity in smooth regions of the flow so that the turbulence dynamics

are accurately captured. Near shocks and other discontinuities, � , tend to zero so that the contribu-
tion of the shock-capturing scheme to the overall flux, Fh, dominates and an oscillation-free solution
is predicted.

Designing a proper switching function is so critical to the overall performance of hybrid schemes
that it has been the focus of many published studies [17, 29, 41–45]. Similar challenges exist for
designing other high-resolution shock-capturing methods. Pure WENO schemes need smoothness
detectors [15, 16, 46], while artificial diffusivity (hyperdiffusion) methods [9, 10] require carefully
designed hyperdiffusivity terms with adjustable constants in order to localize their effects them
where needed. A comprehensive review is beyond the scope of this paper, but a noteworthy fact of
relevance is that most of switching functions were designed to hybridize compact and ENO/WENO
schemes. Hyperdiffusivity approaches are almost always implemented on compact schemes, and
so the prescribed numerical constants may also be specific to compact schemes [10]. The one
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exception is the switching function proposed by Genin [35], which was used to hybridize a fourth-
order central scheme with a MUSCL-based Riemann solver just as in the present instance. A
modified version of it is used here. The Riemann solver used by Genin was a further hybrid between
Harten–Lax–van Leer contact (HLLC) [47] and Harten–Lax–van Leer–Einfeldt (HLLE) solvers
[48], and so that approach involves two steps of hybridization and is, therefore, significantly more
complex than the present approach.

The switching function is based on gradients of pressure and density fields so as to be applicable
in handling both shocks and contact discontinuities. The smoothness parameter of a field variable �
is defined [35] as follows:

S�;i D
j�iC1 � 2�i C �i�1j

j�iC1 � �i j C j�i � �i�1j
; if j�iC1 � 2�i C �i�1j > ���i

D �S th
� ; otherwise

(2)

The coefficients �P and �� for pressure and density fields were set to 0.05 and 0.1, respectively,
through numerical experimentation in earlier work [35], and the same values are retained here. The
threshold values S th

P and S th
� equal 0.5 and 0.25, respectively. The overall smoothness parameter at

a cell interface between cells .i; j; k/ and .i C 1; j; k/ is determined using smoothness parameters
at cell centers.

SiC1=2 D max.SP;i ; SP;iC1; S�;i ; S�;iC1/ (3)

Genin [35] used a Heaviside function of smoothness parameter to arrive at the switch (i.e.,
�iC1=2 D 1 �H.SiC1=2)). So, switching between central and flux split schemes was abrupt rather
than gradual. This leads to generation of numerical oscillations around sharp fronts although they
do not grow to destabilize the simulations as in the case of purely central schemes.

More gradual switching can suppress the oscillations, but some of the physical oscillations are
also dissipated in the process. A balance between some unwanted dissipation of physical oscilla-
tions and the Gibbs phenomenon is characteristic of almost all switching functions proposed so
far. Incidentally, the hyperdiffusivity approaches, which are alternatives to hybrid approaches, also
have this problem while determining where exactly and how much hyperdiffusion should be added
to suppress numerical oscillations around shocks. The same is true in the case of nonoscillatory
schemes as well. The ENO schemes switch between higher-order and lower-order stencils in order
to capture both physical fluctuations and sharp fronts. Weights were added later to the stencils to
facilitate more gradual switching to arrive at WENO schemes that are now used instead of ENO
schemes. When hybridized with compact (or other nondissipative) schemes, not only the procedure
for computing weights but also appropriate switching functions and associated constants have to be
chosen carefully for desirable results [17, 26].

A modification that helps the hybrid scheme suppress oscillations associated with the Gibbs
phenomenon away from discontinuities is made to the switching procedure. In a way, this can
be viewed as a simpler alternative to the filtering step used in many other alternate methods
discussed previously [13, 14, 49]. This type of filtering is usually based on a very-high-order spa-
tial filter (typically eighth or higher). The proposed modification here is a bit more practical for
complex geometries.

The Gibbs phenomenon results in checkerboard-type oscillations. A way to detect these
oscillations is to compute a function that characterizes them.

S 0iC1=2 D
.�iC2 � 2�iC1 C �i /.�iC1 � 2�i C �i�1/

.�iC1 � �i /2
(4)

Negative values of S 0 are indicative of the unphysical Gibbs phenomenon. Earlier, the presence of
a local maxima next to a local minima (which is easy to detect using gradient ratios needed for the
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Figure 1. Identification of unphysical oscillations. Both curves are indicative of unphysical two-point oscil-
lations. The dotted line has a local maxima next to a local minima, but the solid line has no local extrema
because of a mean gradient. So the presence of local extrema at two consecutive locations is not a necessary
condition for unphysical behavior, and this cannot be used as a criterion for identifying unphysical behavior.

S 0 computed as in Equation (4) is negative in both cases, indicating unphysical behavior.

MUSCL procedure) was considered as a way of characterizing unphysical oscillations. Although
quite effective, that approach cannot characterize Gibbs phenomenon in the presence of a strong
long-range gradient in the density field. The preceding expression, on the other hand, can always
detect the Gibbs phenomenon. This is explained using an illustration in Figure 1. To suppress the
numerical oscillations, a nonzero weight for the flux split scheme contribution to the overall flux is
needed. So, the switching function is now calculated as a function of both S , the shock or contact
discontinuity sensor, and S 0, the Gibbs phenomenon detector.

� D min

�
1

1C exp.14S/
; exp.min.2:5S 0; 0:0//

�
(5)

The need to include S 0 in the computation of the switching function is established later by
simulating several test problems.

There are adjustable constants involved in determining the weights for combining the two
schemes just like in other hybrid schemes. There are such constants in almost all other competing
methods as well. Unlike in some illustrative studies [18] that seek to demonstrate the potential of
a proposed approach by freely adjusting the constants independently for each test problem or in
comparative studies [6, 11] involving the best solutions (obtained using optimal switching functions
and associated constants) of various methods for a given problem, the same switching function with
fixed constants is used for all the test problems here.

3. RESULTS

The problems to test the present hybrid code are chosen from several past studies. These include the
work of Genin and coworkers, which is based on a noncompact hybrid solver much like the present
one and which proved to be quite effective for LES of supersonic flows [35, 50] . Some problems
in that study were used to test only the shock-capturing scheme and not the final hybrid scheme.
In the present study, the hybrid scheme is used for simulating these problems also to ensure that
hybridizing with a central scheme does not compromise the shock-capturing ability of the flux split
scheme. A comparative study of various high-resolution shock-capturing schemes available at the
time by Liska and Wendroff [51] is another prominent study chosen for comparison here.

The test problems fall into two broad categories. The first includes is canonical test cases for high-
speed-flow solvers, which do not involve any physical oscillations in solutions. These include one-
dimensional and multidimensional flow problems with intense and, in some cases, interacting wave
systems. The challenge here is to capture these interactions without creating unphysical oscillations.
If a scheme is prone to generating such oscillations, they are clearly evident in isolevel/contour plots,
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especially around shock or contact lines. If there are no physical oscillations that need capturing,
traditional shock-capturing schemes extended to second-order accuracy using MUSCL are mostly
sufficient for generating reference solutions. Previously published results could also be used for
comparison.

The second type of problems have physical oscillations in addition to shocks and other waves.
Such oscillations may result from inherent instabilities associated with initial states like in the case
of two-dimensional Riemann problems [51] or from the interaction of initial spatial fluctuations
with waves in supersonic flows. The Shu–Osher test [52], interaction of a single vortex with a shock
wave [46, 53] and shock amplification of a vorticity field [54] are a few problems that are in this
category. The physical oscillations have to be captured without creating artificial ones around shock
waves. No analytical solutions are available, and so reference solutions are generally obtained using
ultra-high-resolution WENO simulations.

3.1. Circular blast wave problem

A two-dimensional explosion test designed by Toro [55] is used to test how well curved shock waves
retain their shapes when they are not aligned with the grid [51, 56]. The crispness of the shock
structure and extent of post-shock oscillations predicted by a high-resolution solver may depend on
the relative alignment of the shock with respect to the mesh orientation. The domain is a square of
size 2.0 units with open boundaries. The density and pressure inside a circle of radius 0.4 are both set
to 1.0 while they equal 0.125 and 0.1 units, respectively, elsewhere. The gas constant is set to unity.
The flow is simulated over a time of 0.25 units on a uniform cartesian mesh just as suggested by Toro
[55]. In a way, this problem appears to be a radially symmetric counterpart of the Sod test case [57].
However, it is more complex as pointed out by Toro. The solution has complex interaction between
several waves. Initially, it has outward traveling and gradually weakening shock and contact waves
and a rarefaction wave traveling inwards towards the center. The contact wave eventually stops and
starts traveling inwards while rarefaction reflects from the center and overexpands the flow so as to
create an inward-traveling shock.

Some schemes may exhibit numerical oscillations behind shocks as the grid is refined while
producing oscillation-free shock and contact line predictions on coarse meshes. So this test was
conducted on a quarter of the domain, that too with a highly refined 400 � 400 mesh by Liska
and Wendroff [51] using different schemes. Most of the schemes used in this study may not gen-
erate numerical oscillations on a 100 � 100 grid. Thinner numerical shocks, in general, are more
susceptible to instabilities than thicker ones. Flux vector splitting schemes that smear out shock dis-
continuities are less susceptible to instabilities than flux difference splitting schemes. The challenge
of high-resolution shock-capturing comes down to predicting crisp shocks with no post-shock oscil-
lations while retaining contact resolving capability. Difficulties in achieving this has been discussed
in many studies, starting from the one published almost two decades ago by Quirk [58].

In the present study, simulations are performed in exactly the same way as reported by Liska and
Wendroff [51], and the density isolevel predictions of the SLAU2 and hybrid codes are shown in
Figure 2. Just as in their predictions, the pressure fields are quite axisymmetric (not shown here),
but density fields are not. Wiggles in density around the contact line are evident in the hybrid code
predictions but are relatively benign in comparison with those generated by all the schemes used
by Liska and Wendroff [51]. Note that a significant amount of work has been carried out towards
improving some of the schemes used in this study (especially the WENO-based ones), and recent
versions may provide much better predictions.

One key observation evident from the results of Liska and Wendroff [51] is that more dissipative
schemes that smear out shocks and contact lines tend to retain radial symmetry better but are likely
to wipe out physical fluctuations (as seen in solutions of other problems). The weighted average
flux (WAF)-HLLC scheme of Toro [55] captures the contact line better than others but is prone to
wiggles when it is aligned with the grid directions. The high-resolution solvers like WENO and
piecewise parabolic method (PPM) also seem to be susceptible to oscillations around the contact
line. WENO also predicts wiggles mostly when the contact line is aligned with the grid while PPM
has less directional dependence. As mentioned before, higher interpolations along grid lines do not
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(a) SLAU2 (b) hybrid

Figure 2. Predicted density isolevels for the circular blast wave problem. Isolevels correspond to 30
uniformly distributed values between minimum and maximum values.
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Figure 3. Predicted radial density profiles for the circular blast wave problem.

necessarily guarantee higher-order solutions and may even lead to oscillations in multidimensional
flow problems [15, 51, 59]. The hybrid code predicts shock and contact lines as crisply as the high-
resolution solvers used by Liska and Wendroff [51] but with much smaller numerical oscillations in
density field behind the contact line.

The radial density profiles are plotted in Figure 3 to show the levels of oscillations generated
behind wave fronts. Predictions of the hybrid code along the horizontal axis and the 45ı line are
compared with the SLAU2 prediction along the horizontal axis (the latter matches the reference
solution generated using random-choice method [55], but this is not shown here). In addition to
Figure 2, this plot illustrates that the hybrid code has minimal directional dependence compared with
WAF-HLLC and WENO codes used by Liska and Wendroff [51] and is less prone to unphysical
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Figure 4. Effect of leaving out the Gibbs phenomenon sensor in determining the weights of the hybrid code.

instabilities around the contact line than the PPM methods. Very-low-amplitude (about 0:4%) post-
shock oscillations (located at r � 0:81) are generated, which persist till the contact line (located at
r � 0:62). The post-contact line oscillations are higher in amplitude (roughly around 12% relative
to jump in density across the contact line and not the reference density for the problem) but dissipate
quickly behind it. The effect of changing the numerical constants in Equation (5) is briefly discussed
in Appendix B.

The radial variation of � (the switching/blending function) when using the hybrid scheme is also
plotted in Figure 3 using a different vertical axis on the right. The SLAU2 scheme has non-zero
contributions even at locations away from the shock and the contact line. � variation is found to be
highly oscillatory. Although this is not the case in most of the other test problems, this fact remains
a point of concern. It is to be noted in this context that the hyperviscosity approach [8] has a similar
problem. The hyperviscosity computed using higher-order polyharmonic operators can become too
large near discontinuities. The filtering operation to get around this problem has been reported to
result in high-wavenumber variations in hyperviscosity.

When the unphysical oscillation sensor is not considered in determining the weights, the oscil-
lations seem to persist for much longer distances. This is demonstrated by using the shock/contact
line sensor alone and leaving out the Gibbs phenomenon detector in determining the weights for the
hybrid code and comparing its results with those of SLAU2 in Figure 4. The consequences of using
the Gibbs phenomenon detector are surprising given that the numerical oscillations that are removed
by using it are not the two-point sawtooth-like oscillations that it is designed to control. It also seems
to remove oscillations of longer wavelengths. One likely explanation is the following. The central
flux in the hybrid code generates two-point oscillations, and the hybrid code, in turn, generates the
higher-wavelength fluctuations as a response. Effective control of two-point oscillations seems to
suppress both.

When unphysical oscillations generated at sharp fronts propagate far away, it is generally very
difficult to control them. This is partly because they cannot be characterized well in physical space.
Often, damping (in the form of artificial dissipation or that associated with a dissipative scheme) is
localized around a discontinuity using a discontinuity sensor. If the distance between the location
of oscillations and the discontinuity is beyond the half-width of the spatial stencil, a localized
damping approach does not work. Either higher-order WENO schemes with large stencils or an
additional filtering step [14, 60] is commonly used to effectively suppress numerical oscillations.
The use of a Gibbs phenomenon sensor either localizes overall dissipation and prevents the spurious
oscillations from propagating far away like in the former or kills the oscillations even far away from
discontinuities like in the latter.

The previously published [51] and present results for this problem highlight an important
observation regarding high-resolution solvers for supersonic flows. Often, much attention is paid
to capturing shocks accurately while developing the solvers, and so they may end up developing
problems around contact discontinuities. The same seems to be true in the case of the present scheme
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as well. A similar behavior was shown by Pirozzoli [6] for higher-order compact–WENO hybrid
schemes when applied to a two-dimensional Riemann problem involving shock diffraction. Shocks
were well captured, but oscillations seem to appear around contact lines.

3.2. Supersonic flow around a cylinder

This case was chosen to verify if the hybrid solver can capture a curved shock without generating
unphysical wiggles. Only a few studies [9, 30, 46, 61], to the authors’ knowledge, have considered
this test problem. It is not usually considered a test case for LES solvers because there are no
physical oscillations that need capturing. But unphysical wiggles may be generated just as in the case
of Toro’s blast wave problem discussed earlier. This problem is considered in addition to the blast
wave problem due to two key differences. The shock unlike in the blast wave problem is stationary,
and its alignment with the flow covers a range of values. The shock is always normal to the flow in
the blast wave problem.

Fiorina and Lele [9] simulated a Mach 3 flow around a cylinder using a solver based on hyper-
diffusivity approach. The curvilinear grid with radial and circumferential lines was orthogonal with
zero skewness. The pressure isolevels predicted by the hybrid solver for this problem on a mesh iden-
tical to theirs is shown in Figure 5. The present method seems to suppress the post-shock unphysical
kinks in pressure better than the hyperdiffusivity approach. It is also to be noted that abrupt switching
between the two schemes generates numerical oscillations that destabilize this simulation. Gradual
switching and the unphysical oscillation sensor are highly necessary for this case.

Tu and Yuan [30] simulated a Mach 4 flow around a cylinder using a characteristic filtering-based
compact scheme and a nonorthogonal grid. A nonorthogonal grid of the same size (60 � 60) gener-
ated by compressing an orthogonal grid (with radial and circumferential lines) in the flow direction
by a factor of 0.4 is used here for simulating the same flow here. The density fields predicted using
the hybrid scheme are shown in Figure 6. Two differences are evident when this figure is compared
with the corresponding plot of Tu and Yuan [30]. Shock thickness is higher in the case of the present
hybrid solver, which is expected because of the use of SLAU2, a scheme that is known to predict
thicker shocks than flux difference splitting schemes as well as other advection upstream splitting
method (AUSM) variants. The difference is not so stark when the present solution is compared

Figure 5. Pressure isolevels for Mach 3 flow past a circular cylinder predicted using the present hybrid
scheme. Isolevels correspond to 30 uniformly distributed values between minimum and maximum pressures.

Figure 6. Density isolevels (corresponding to 20 uniformly distributed values between minimum and maxi-
mum values) for Mach 4 flow around a circular cylinder predicted using the present hybrid scheme. A grid

line shown in the figure so that density variation along it could be compared with a reference solution.
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Figure 7. Comparison of density predictions along a grid line (shown in Figure 6).

with the one obtained using WENO on a similar nonorthogonal grid by Shu [61] (although Shu’s
result [61] corresponds to a freestream Mach number of 3 and only pressure isolevels were pro-
vided). Compared with the predictions of the hybrid solver, the shock thickness in these studies did
not change as drastically, as one moves away from the centerline. This is because WENO [61] and
upwind characteristic filtering [30] provide better shock-resolving capability than the second-order
MUSCL scheme used here for the purpose.

No post-shock oscillations are predicted when the normal to the shock is aligned with the flow
direction, but as the angle between them increases, unlike in the prediction of Tu and Yuan [30],
slight post-shock oscillations are evident. No such oscillations are predicted behind a straight
oblique shock (while predicting flow past a wedge). So these oscillations seem to a consequence of
shock curvature rather than its relative alignment with the flow direction.

When predictions of the hybrid code and SLAU2 are compared, the pressure fields (isolevel plots)
were indistinguishable visually while the density field in the case of the hybrid scheme seems to
have very mild wiggles. The maximum amplitude of the wiggles in the density field is below the
2% level. For comparison, Fiorina and Lele [9] reported wiggles in the pressure field of about 2%
amplitude for a Mach 3 test case. Compared with the theoretical value, a hybrid code underpredicts
the stagnation point density (the maximum value of density) by 0:8%.

Along a (grid) line shown in Figure 6, the predictions of density by SLAU2 and hybrid codes are
compared in Figure 7. The maximum difference in predictions along this line is about 1:2%. Note
that the plot shows that MUSCL fails to keep the SLAU2 solution monotone. The hybrid code relies
on the shock-capturing scheme to keep unphysical oscillations around the shock in check. If the
latter itself predicts nonmonotone solutions, the problem of numerical oscillations may be further
exacerbated by the central scheme, which has a nonzero weight behind the shock. In the future, a
multidimensional limiter could be considered for extending SLAU2 to the second order, and using
that may also improve the hybrid code predictions.

3.3. Emery test

This test introduced by Emery [62] and used extensively in many later studies involves unsteady
supersonic flow over a forward-facing step. Specifically, the Mach number everywhere initially in a
3�1 domain is set to 3.0. Then, a step of height 0.2 that begins at axial length 0.6 from the upstream
end and extends all the way to the downstream end is introduced suddenly at zero time. After
integrating for a fixed amount of time, the solution is examined for signs of unphysical behavior
and accuracy.

The density isolevels predicted by both hybrid and flux split schemes using a 240 � 80 mesh are
compared in Figure 8. The corner entropy fix suggested by Woodward and Colella [63] was used
at the expansion corner to prevent the numerical boundary layer downstream that most schemes
produce. The hybrid code predicts the shocks almost as well as the pure flux split scheme. There
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(a) SLAU2

(b) hybrid

Figure 8. Density isolevels for the Emery test problem.

appears to be no unphysical behavior at the triple point, and the crispness of the contact line
originating at that point is better in the case of the hybrid scheme and is on par with the best of
contact resolving schemes. Except for a bit thicker shocks resulting from the use of SLAU2 for
shock capturing, the present hybrid solver predictions are on par with those of fourth-order ENO
and fifth-order WENO schemes [46].

The effects of the slip line generated at the concave corner seem to remain even after it
crosses both the shocks incident and reflected off the lower wall. This is evident from the hybrid-
code-predicted density isolevels downstream of the shock reflected from the bottom wall (at an axial
location roughly midway between inflow and outflow boundaries). The hybrid code captures this
feature as well as the fifth-order WENO scheme and better than the fourth-order ENO scheme [46].
There is very little hint of it in the predictions of the more dissipative, second-order-accurate
SLAU2 scheme.

3.4. Shu–Osher test

This one-dimensional test involves a Mach 3 shock wave moving through a sinusoidally varying
density/entropy field. The shock amplifies the oscillations as it passes through. No analytical solu-
tion is available, and so reference solution is usually generated using a WENO scheme on a highly
refined mesh.

The initial flow field is specified as follows. On a [0:10] domain, a Mach 3 shock is located at
x D 2. The conditions behind the shock are determined using moving normal shock relations by
assuming unit values for pressure and density ahead of the shock. The density ahead of the shock is
perturbed sinusoidally as follows.

� D 1C 0:2 sin.5x/ (6)

The left boundary has supersonic inflow, and at the right boundary, the flow is stagnant, and the
pressure is locally uniform during the course of the simulation. So, the initial state is maintained at
the right boundary. Integration is performed over a time of 1.872, and then solutions are compared
with reference solutions.

Generally, a code is considered acceptable for capturing supersonic turbulence if the dynamics can
be captured well on mesh with 400 points [18, 30, 35, 51, 64, 65]. So, this resolution is used here as
well. Artificial diffusivity-based methods [8, 11] seem capable of capturing the physical oscillations
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Figure 9. Prediction of density field for the Shu–Osher problem using the present hybrid scheme.

immediately behind the primary moving shock with just 200 points. However, the shocklets that
form behind the primary shock wave as the compression waves collapse are more smeared, and
there is a rather large kink in the density field at the left edge of the sinusoidal fluctuations. It
is to be noted that the capturing of the physical fluctuations with fewer grid points in artificial
diffusivity methods [8, 11] is due to the use of compact schemes. In fact, the results from these
studies could not be replicated in the present study when the same artificial diffusivity models were
used with the present fourth-order central scheme. The compact schemes are usually of higher order
(sixth usually), and proper design of artificial diffusivity renders them with high resolution as well.
The design seems to be specific to the compact schemes. The distinction between resolution and
formal order of accuracy was explained by Adams and Shariff [18] and demonstrated using this very
problem by Pirozzoli [19].

The density field predicted by the hybrid code is compared with the reference solution in Figure 9.
The physical oscillations are captured well without any numerical artifacts. There is a small kink
in the density profile at the upstream end of the oscillations (which is more visible in the next
figure), but it is relatively insignificant compared with one generated by the artificial diffusivity-
based methods [8, 11].

Note that SLAU2 was designed to minimize the numerical dissipation in order to overcome the
D’Alembert paradox [33]. Its damping of kinetic energy and vorticity are, therefore, lower than those
of almost all other flux split schemes. In terms of damping density fluctuations (which are a key
feature of highly compressible turbulence), as seen in Figure 9, it is comparable with other flux split
schemes. A likely explanation is that not all the characteristic waves associated with Euler equations
are affected the same way by the SLAU2 construction. The damping of entropy wave seems just as
high as in case of other Riemann solvers. This observation highlights the need for a hybrid scheme
despite the fact that SLAU2 has many features desirable in DNS/LES solvers (as explained earlier).

Also shown in Figure 9 is the variation of � in space. It is clear that the central scheme is dominant
for the most part and the SLAU2 contribution is needed only around the primary shock wave and the
compression waves that collapse into shocklets. To the left of the point where density fluctuations
begin, unphysical oscillations are detected, and SLAU2 contribution seems necessary.

The need for a switching function that facilitates gradual rather than abrupt switching based on
not only a discontinuity sensor but also an unphysical oscillation sensor is established in Figure 10.
On a scale similar to one for Figure 9, the predictions made with and without the unphysical
oscillation sensor are quite similar, and so this plot uses a different scale to highlight the differ-
ences. Although the spurious oscillations resulting from abrupt switching are reduced by resorting
to more gradual switching, the amplitudes are still unacceptable. Even more gradual switching
can reduce these oscillations, but the increased damping would also damp out the physical den-
sity/entropy oscillations. This is demonstrated in Appendix B. Constructing a switching function
that also depends on an unphysical oscillation sensor would selectively suppress only the spuri-
ous/numerical oscillations, is a better alternative as evident from Figure 10. As noted earlier, the
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Figure 10. Effects of gradual switching between the schemes and the unphysical oscillation sensor.
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Figure 11. Entropy profiles for the Shu–Osher test problem.

SLAU2 contribution seems necessary just to the left of where the physical oscillations begin. Even
though these spurious oscillations are not two-point oscillations, they are suppressed quite effec-
tively. It is precisely at the starting point of the oscillations where the hyperviscosity approaches
(which otherwise work well for this problem) create a rather large unphysical kink in the den-
sity field. The small kink resulting from the hybrid code evident in this figure is much smaller
in comparison.

Density variations shown in previous plots result from acoustic and entropy waves behind the
moving primary shock wave. The numerical dissipation associated with any scheme is directly
correlated to how well it captures entropy waves. Difference between various schemes can be most
prominently seen by looking at entropy fluctuations [11]. Figure 11 shows the predicted profile
of entropy change (over reference state) nondimensionalized by specific heat at constant volume.
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When compared with the reference solution, it is clear that the numerical dissipation is slightly more
than in the compact–ENO hybrid of Adams and Shariff [18]. Johnsen and coworkers [11] presented
similar plots for various schemes, but for simulations performed with half the number of grid points.
The numerical dissipation associated with WENO and shock fit methods seems to be quite high even
in smooth regions of the flow (away from the shock) while that of compact schemes with hyperdif-
fusivity is acceptable. The level of dissipation of the present hybrid is even lower albeit at double
the resolution used in compact schemes.

3.5. Shock–vortex interaction

Formulated originally by Shu [46, 53] and used in several later studies [14, 30], this test involves
convecting a compressible isentropic vortex through a stationary Mach 1.1 normal shock located
at x D 0:5 in a Œ0; 2� � Œ0; 1� domain. The conditions behind the shock are obtained using
Rankine–Hugonoit relations. The gas constant, reference nondimensional pressure and density
are all set to unity. A small compressible vortex centered initially at Œ0:25; 0:5� and perturbs the
velocity, temperature and entropy fields according the following equations is convected by the
incoming flow into the shock.

u0 D ��e˛.1��
2/ sin� (7)

v0 D ���e˛.1��
2/ cos� (8)

T 0 D �
.� � 1/�2e2˛.1��

2/

4˛�
(9)

S 0 D 0 (10)

where � is the distance from the center of the vortex nondimensionalized by the critical radius
of the vortex, which equals 0.05. The parameters ˛ D 0:204 and � D 0:3 quantify the radial
spread and intensity of the vortex. The preceding equations represent a steady-state solution of
Euler equations. Reflective boundary conditions are used at the top and bottom boundaries. The
simulations are usually performed till the vortex crosses the shock almost completely at a time
of 0:35 s.

Before simulating the shock vortex interaction, the very long-term evolution of the vortex was
simulated to assess the damping of the hybrid scheme just as in some previous studies [15, 29, 61].
Negligible damping was seen after a time of 10 while it was noticeable after a time of 40. Unlike
the WENO scheme designed by Shu [61] or the higher-order artificial compression methods (ACM)
of Yee and coworkers [29], the present method could not maintain an indefinite undamped state, but
the solution turns out to be much better than the one obtained using the total variation diminishing
(TVD) filter reported by Yee and coworkers [29]. Although the central scheme is expected to be used
in the absence of shocks, the slow decay is explained as follows. The central schemes generate very
low-level density fluctuations. When the solver interprets them as unphysical (as per Equation (4)),
the weight associated with the flux split scheme becomes nonzero, and this contributes to some
dissipation. This additional dissipation has to be weighed against the advantage this scheme offers
by preventing the Gibbs phenomenon around strong gradients.

Shu [46] used a very early version of the WENO scheme and a 250� 100 mesh that was uniform
in the lateral direction and clustered around the shock in the axial direction. Lo and coworkers [14]
used a similar mesh and a compact scheme stabilized with characteristic filtering. They used both
global and localized versions of TVD, MUSCL, and WENO filters in a comparative study. Local
filtering generally resulted in better solutions (i.e., without numerical oscillations around shocks and
low dissipation far away from shocks), especially in the cases of TVD and MUSCL. But localization
required shock detection, which was carried out using a Ducros sensor [43] for TVD and MUSCL,
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Figure 12. Pressure isolevels (corresponding to 30 uniformly placed values between the minimum and
maximum) during shock vortex interaction predicted using the present hybrid scheme.

while a WENO smoothness indicator was used in the case of WENO. Tu and Yuan [30] used a
200 � 100 mesh, but it was uniform in both directions. Their method was also based on a compact
scheme, but it was upwinded unlike the central version of Lo et al. [14]. Characteristic-based flux
limiting (somewhat similar to the characteristic filtering of Lo et al.) was used to control oscillations
generated by the compact scheme around the shocks.

The studies of Lo et al. [14] and Tu et al. [30] provided the reference solutions for comparison
here. Key differences are to be noted prior to the comparison. A 250�100 grid that is uniform in both
directions was used here. Also, Lo et al. [14] did not use the same values of parameters associated
with shock detection for all test problems. Optimal values were presumably chosen to arrive at the
best possible solution in each case. That makes sense in a comparative study. Such problem-specific
tuning was not resorted to here. Tu and Yuan [30] reported using a single user-specified parameter,
but it was to avoid division by zero, and results remained insensitive to it. Like in the present case,
there was no problem-specific adjustment.

The pressure isolevels from the present study in Figure 12 compare well (barring the outlying
contours at outer edges of the vortex that are affected by numerical noise) with the corresponding
predictions of Tu et al. [30] and the local WENO filter-based prediction of Lo et al. [14]. The shock
resolution by Lo et al. [14] is better owing to grid clustering around the shock. The present scheme
does not generate any numerical oscillations of the kind observed in their predictions [14] made
using global TVD or MUSCL filters. An example of improper damping that may result in numerical
oscillations around the shocks can be seen in the results of Lo et al. [14] obtained using MUSCL-
based characteristic filtering. It is interesting to note that the present shock-capturing scheme is
extended to the second order using MUSCL and hybridized with a central scheme, but it does not
produce similar kind of oscillations.

4. SHOCK INTERACTION WITH VORTICITY FIELD

This test involves interactions of Mach 8 (with a much higher intensity than in the case of shock–
vortex interaction test) with a two-dimensional vorticity field. First proposed by Zang et al. [54]
for testing numerical methods ability to capture turbulence amplification through shocks and used
in the seminal work on ENO schemes by Shu et al. [52], it has been used to test codes based on
ENO and WENO (pure or hybrid forms) meant for performing LES (e.g., [18, 19, 65, 66]). It is to
be noted here that this test was used to compare pure WENO, hybrid and hyperdiffusivity methods
by Johnsen et al. [11] relatively recently. But they used a much weaker Mach 1.5 shock wave. They
concluded that post-shock oscillations were effectively controlled by shock-fitting methods while all
shock-capturing methods suffered from post-shock oscillations. Hyperdiffusivity methods produced
oscillations of significantly higher amplitudes, which persisted for longer distances behind shocks
than the WENO and characteristic filter-based methods.
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A normal shock wave initially located at x D �1 location in Œ�1:5; 1:5� � Œ�1; 1� propagates
to the right into a flow field with unit values for pressure, density, and velocity variation defined
as follows.

u D �
p
� sin.	=6/ cos.2	xcos.	=6/C 2	ysin.	=6// (11)

v D
p
� cos.	=6/ cos.2	xcos.	=6/C 2	ysin.	=6// (12)

The vorticity wave is inclined at an angle of 	=6 to the incoming shock wave. The initial state
behind the shock is computed from normal shock relations assuming uniform flow ahead of it. Left
and right boundaries are held at steady state while periodic boundary conditions are used in the
vertical direction. Integration over a time of 0.2 units is performed before solution is compared with
a ‘reference’ solution, which (as usual for problems without analytical solutions) is computed using
a very-high-resolution 960 � 640 uniform mesh.

The physics of the flow has been explained based on the reference solution computed using
a very fine mesh by Pirozzoli [19]. The fast-moving acoustic waves are separated by a sharp inter-
face (located roughly at x D 0:5) from slower vorticity and entropy waves. The longer-wavelength
acoustic dynamics can be captured well using a relatively coarse 60 � 40 mesh [66]. Even a
dissipative TVD scheme seems able to resolve these dynamics. The near-shock behavior poses a real
challenge to the solvers. No significant improvement in prediction of this behavior was reported by
Hannappel [66] when mesh was refined fourfold in each direction while retaining the TVD scheme.
Their study and one by Adams et al. [18] focused on establishing the superiority of ENO schemes
over dissipative TVD/MUSCL schemes. In fact, performance in the latter was judged based on com-
parison of predictions with linear theory for shock amplification of vorticity rather than a reference
solution. Resolution needed to capture all the features with sufficient accuracy was never established
in these studies. Later studies [19, 65] showed that a 192� 128 mesh is needed. Even seventh-order
WENO or compact–WENO hybrid schemes could not capture the behavior well enough with half
this resolution (i.e., a 96 � 64 grid). With a 192 � 128, Ghosh [65] reported that both fifth-order
WENO and its compact reconstructed version produced similar results. On the other hand, the fifth-
order WENO scheme of Pirozzoli [19] was found to be inadequate. It had to be hybridized with a
compact scheme.

The density variations along the centerline predicted by the present hybrid scheme and the
compact–WENO hybrid are compared with reference high-resolution solutions in Figure 13.
Surprisingly, the solutions of Pirozzoli [19] and Ghosh [65] predicted using a 192� 128 mesh were
quite similar (so only one is shown), but their reference high-resolution solutions differed. It turns
out that the solutions are very sensitive to how the shock structure is initialized. The proper way to
do this is to solve a steady-state problem to arrive at the normal shock structure and then use the
solution to initialize the moving shock. Often, this is not performed. Rather, it is initialized as a
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Figure 13. Density variation along the centerline for shock–vorticity interaction problem.
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thin front captured over one grid point. In the process of settling down (i.e., being captured over a
few grid points), a weak entropy wave may be generated that travels behind the shock wave as the
solution evolves (additional vorticity wave may also be generated if the shock happens to be curved).
The amplitude and wavelength of this entropy wave depend on the flux calculation method and the
reconstruction procedure used for higher-order extension. More dissipative schemes may dissipate
this wave while others will retain it and corrupt the solution. The kinks in density field around
x D 0:6 in the reference solution of Pirozzoli is a consequence of such corruption. Entropy waves
move at the local convective speed, and this location is where an entropy wave coincident with
the initial shock wave would be after a time of 0.2 units. A high-resolution simulation with a
720 � 480 grid and the second-order-accurate SLAU2 (flux split) scheme confirm this assertion.
While this solver was not expected to provide a reference solution (owing to its high numerical
dissipation) at this resolution, this exercise does confirm that shock initialization as a sharp
interface created similar kinks in density field near this location while a proper initialization as
explained earlier does not. The results of this exercise have been left out here for brevity.

The solutions to this problem are also sensitive to the numerical shock structure that is a
characteristic of the scheme. Small-scale dynamics are not captured in the case of thicker numerical
shocks. SLAU2 produces slightly thicker shocks than flux difference splitting schemes (such as
one used by Adams [18]) and some of the other shock-capturing schemes including other AUSM
variants. Some of the small-scale oscillations are missed if a 192� 128 mesh is used. Shock needed
to be captured more crisply in order to capture them. So, the resolution was refined by 25% in
the shock normal direction in order to obtain solutions on par with those reported by compact–
ENO combinations [19, 65]. The � variation in Figure 13 indicates that unphysical oscillations are
generated mostly behind the density interfaces (roughly around x D �0:35 and x D 0:5) and not as
much behind a rather strong shock wave at x D 0:8. As noted previously, this points to the need for
an increased focus on capturing contact line while constructing high-resolution solvers.

Figure 14 shows the density isolevels predicted by the present hybrid scheme. The interface
separating acoustic and entropy/vorticity waves is captured as well as in these earlier studies (albeit
at a slightly lower resolution) but better than in the case of the fifth-order pure WENO scheme of
Pirozzoli [19]. The hybrid code predicts a small but observable unphysical jump in density just to
the left of this interface around x D 0:5 (also evident from a careful observation of Figure 13).
This is similar to the near contact line jump in the density seen in the hybrid code predictions for a
circular blast wave problem. Results of the Emery test indicate no such jumps if the contact line
is aligned with the flow. It appears only when the contact line is normal to the flow. The use of
unphysical oscillation sensor in determining the weights for the two fluxes in the hybrid scheme
localizes this jump without leading to oscillations downstream as demonstrated using the blast
wave problem.
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Figure 14. Thirty-four equally placed density isolevels for shock–vorticity interaction problem.
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4.1. Vortex pairing in a temporal mixing layer

This test case introduced by Sandham and coworkers [67] and used in several subsequent studies
(e.g., [12, 29]) involves simulating growth and pairing of vortices in a temporal evolving mixing
layer at a convective Mach number of 0.8. This Mach is high enough to realize compressible effects
on mixing. Compression waves around the vortices collapse into shocklets that are typically found
in flows with high, turbulent Mach numbers. To be useful for compressible turbulence, a code has to
localize dissipation well enough to capture these shocklets without creating numerical oscillations
in their vicinity. Excessive damping away from the shocks may slow the growth of initial instability
and delay the roll-up and pairing processes.

A Œ0; 30� � Œ�50; 50� domain is discretized using a 100 � 100 mesh that is uniform along the
abscissa and is clustered at the center in the ordinate direction according to the following mapping.

y D 50
sinhŒby.y=50/�

sinhŒby �
(13)

The velocity field is initialized using a hyperbolic tangent profile.

u D
1

2
tanh.2y/ (14)

The velocity jump across the shear layer and the initial vorticity thickness (ratio of velocity jump
and maximum velocity gradient) are used as reference velocity and length scales. The normalized
temperature is determined by assuming stagnation enthalpy is gradient free. The Reynolds number
based on reference quantities is set to 1000.

Functions that approximate eigenmodes [29] for linear growth of instabilities in mixing layers are
used to provide initial perturbation to start the roll-up process.

v0 D †21ak cos.2	kx=30C �k/ exp.�y2=b/ (15)

b, the modulation parameter, is set to 10. The subharmonic (k D 1) and most unstable (k D 2)
waves are triggered by setting their amplitudes to 0.01 and 0.05, respectively. The phase of �	=2
is used for both waves. The u-velocity perturbation is computed by assuming that the velocity
perturbation is divergence free. Periodic and slip boundary conditions are used, respectively, in axial
and transverse directions.

Yee and coworkers [29] reported that temperature contours are most sensitive to oscillations and
used temperature isolevel plots to analyze their results for this problem. The same is carried out here
in Figure 15.

Yee and coworkers [29] simulated this problem at the same resolution using central schemes with
characteristic filtering. TVD filtering added too much dissipation, and so increasing the order of
the baseline scheme from second all the way to sixth had no effects on the predictions. The roll-up
and pairing were delayed, and shock was much thicker when compared with predictions made after
adding ACM. The overall evolution of the temperature field here compares well with that predicted
with their ACM/TVD filter. Specifically, the results are closer to their so-called ACM44 scheme,
which is overall spatially fourth order accurate. The shocks are captured without any numerical
oscillations, and the numerical dissipation away from shocks also seems minimal. The parameter 
,
which premultiplies the Harten switch in the filtering step, is claimed to be problem dependent in
their work [29]. The best results were presumably obtained by adjusting this parameter.

Finally, the consequence of not leaving out the unphysical oscillation sensor while determining
the switching function on solution for this problem is illustrated in Figure 16. When the switching
is based only on the discontinuity sensor, much numerical noise is generated, and the large-scale
structure is also affected. The solution, unlike one generated by considering both the discontinuity
and unphysical oscillation sensors, ends up being very different from the one resulting from the
ACM44 scheme of Yee and coworkers [29] (which is treated as a reference solution here).
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(a)t=40 (b)t=80 (c)t=120 (d)t=160

Figure 15. Predicted temperature isolevels during vortex pairing in a mixing layer.

5. CONCLUSIONS

A simple hybrid finite volume method for supersonic turbulence computations has been presented
in this paper. The hybrid flux is computed as a weighted average of the spatially fourth-order
MacCormack scheme (assuming the error associated with dimensional splitting is negligible) and
a second-order SLAU2 scheme developed recently [33, 34]. The method is fully explicit and has
a five-point stencil in each direction, the minimum necessary for proper resolution of turbulence.
It is highly suited for parallel computing on machines with distributed-memory architecture with just
two layers of message passing at block interfaces. The procedure for combining the two schemes
differs from those used in the past in that it is based on not only the presence of discontinuities
but also spurious unphysical oscillations. Through this procedure, poorly resolved waves are
suppressed as suggested by Adams and Shariff [18] without resorting to an additional filtering step
[10, 13, 14, 44, 60].

The proposed method captures shocks as well as the SLAU2 scheme with no observable
post-shock oscillations in all except the case of inviscid flow around a cylinder. For that problem,
the SLAU2 scheme itself produces a nonmonotone solution. It remains to be seen if the hybrid
code predictions can be rectified by using a multidimensional limiter instead of the one-dimensional
MUSCL procedure for extending the shock-capturing scheme to the second order. The method does
produce slight overshoots around contact discontinuities if they are normal to the flow direction.
Spurious oscillations that may result from these overshoots are effectively suppressed through the
use of a Gibbs phenomenon detector in computing the weights for combining the two fluxes.

The results for the test problems indicate that the resolution of physical oscillations (turbulence) in
the present method is on par with fifth-order WENO schemes and only marginally lower than that of
compact scheme-based methods. The easier parallelizability and avoidance of an explicit low-pass
filtering step can offset this disadvantage while performing DNS or LES of supersonic turbulence.
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(a)with (b)without

Figure 16. Effect of using the unphysical oscillation sensor for determining the switching function.

APPENDIX A: ORDER OF ACCURACY TEST FOR THE CENTRAL SCHEME

Taylor–Green vortex in the incompressible limit has the following analytical solution.

u D sin.x/ cos.y/e�2�t (A.1)

v D � cos.x/ sin.y/e�2�t (A.2)

p D
�

4
Œcos.2x/C cos.2y/� e�4�t (A.3)

The flow is periodic in the domain Œ0 W 2	; 0 W 2	�. The flow is simulated using a 16 � 16 mesh,
and gradually, the resolution is doubled till a mesh of 128 � 128 is reached. The flow’s Reynolds
number based on domain size and maximum flow velocity is set to 100. This is typically the value
used for validating codes in reported literature. Cell Reynolds number varies between about unity
and 6, which is typical of DNS/LES. After significant vortex decay, the maximum error in velocity is
computed and plotted against resolution on a logarithmic scale in Figure A.1. A linear fit to the plot
has a slope of �3:58, which is reasonably close to �4, which is expected of a fourth-order scheme.
If the data point corresponding to the highest resolution is removed, the slope, indeed, is closer to
�4, indicating the possibility that machine error may have affected results at this resolution.
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Figure A.1. Order of accuracy test of the central scheme using errors in Taylor–Green vortex flow
simulations performed with different resolutions.
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Figure A.2. Dependence of the central scheme’s numerical viscosity on grid resolution.

Many of the high-resolution finite volume solvers used for turbulence computations are based on
dimensional splitting. One-dimensional higher-order interpolations are used to construct fluxes on
cell faces using cell-centered quantities. This is performed because quadrature corrections required
to ensure genuinely multidimensional higher-order accurate flux computation are very expensive
[46]. As noted by Pirozzoli [6], this practice really results in second-order accuracy. Less than
fourth-order accuracy here may also have resulted from dimensional splitting. Ducros and cowork-
ers [68] have investigated the need for quadratures and observed that the errors resulting from
dimensional splitting are usually negligible. Claims of higher-order accuracy are often made without
using quadrature corrections in case of compact schemes used for turbulence computations.

The simulations are also conducted at various resolutions by setting viscosity to zero. In the
inviscid limit, the solution should remain stationary. However, the code predicts very slow decay.
Using the preceding formulae, the effective numerical viscosity is computed at each resolution.
The effective numerical viscosity is plotted against resolution once again on a logarithmic scale in
Figure A.2. A linear fit to this plot has a slope of �7:02, indicating that the dissipative error of the
scheme is of the order 7 which is well below 4, the overall order of the scheme.

APPENDIX B: EFFECTS OF NUMERICAL PARAMETERS ASSOCIATED WITH THE
SWITCHING FUNCTION

The effect of changing the numerical constant 2.5 in Equation (5) to 1.0 is shown in Figure B.1.
This constant relates the weight of the SLAU2 contribution (numerical dissipation) to the amplitude
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Figure B.1. Effect of changing the numerical constant associated with the unphysical sensor on the solution
of the circular blast wave problem. The solid line corresponds to the solution generated using a value of 1.0

instead of 2.5 in Equation (5).
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Figure B.2. Effect of changing the constant associated with the discontinuity sensor on the solution of the
Shu–Osher problem. The closed symbols correspond to the solution generated by replacing the numerical

constant 14 with 8 in Equation (5).

of the unphysical oscillation as detected by the sensor. A higher value of this constant increases the
weight of the SLAU2 contribution to the overall flux if unphysical oscillations are detected. With
lower values, obviously, the solution is a bit more oscillatory behind the contact line. Increasing
the value further (above 2.5) has no noticeable effect. The post-contact line kink in density would
still remain. This kink can be reduced if the other constant (i.e., 14) in Equation (5) is adjusted.
This constant controls how gradually the central and SLAU2 fluxes are blended. By reducing this
constant, the kink will be reduced, but at the expense of extra numerical dissipation. This problem
has no physical oscillations; the flow is very smooth away from the shock and the contact line. So,
this is not a good choice to demonstrate the problem with additional numerical dissipation.

The dissipative effect of a more gradual switching between the two schemes based on the
discontinuity sensor is illustrated in Figure B.2. The entropy fluctuations that are most sensitive to
numerical dissipation are damped out if the smoother blending function is used. This problem is
chosen for demonstrating this instead of others involving vorticity fluctuations because the damping
of vorticity and kinetic energy of SLAU2 is quite low compared with other flux split schemes. The
vorticity fields are less affected if switching is made more gradual. The same cannot be said about
density fluctuations.
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